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Haptic Rendering of Parametric Surfaces Using a Feedback Stabilized
Extremal Distance Tracking Algorithm

Volkan Patoglu and R. Brent Gillespie

Abstract— A new extremal distance tracking algorithm is pre-
sented for convex parametric curves and surfaces undergoing rigid
body motion. The geometric extremization problem is differen-
tiated with respect to time to produce a dynamical system that
incorporates dependence on both surface shape and rigid body
motion. Extremization then takes place by integrating these dy-
namical equations, but with a feedback controller in place to sta-
bilize the solution. A controller design using feedback lineariza-
tion is developed that simultaneously accounts for surface shape
and motion while asymptotically achieving (and maintaining) the
extremal pair. Collision detection then takes place in a framework
fully analogous to that used for multibody simulation. Local stabil-
ity results are extended to provide global stability for body shapes
composed of pieced-together convex parametric surface patches
using a switching algorithm.

I. INTRODUCTION
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Fig. 1. Schematic representation of haptic rendering.

Haptic rendering is the process by which virtual objects are
made apparent to be felt and at the same time made available
to be manipulated by a human user. Haptic rendering requires
a haptic interface, a computationally mediated virtual environ-
ment, and a paradigm according to which the two are linked.
Figure 1 presents a schematic view of a haptic interface and
the manner in which it is most commonly linked to a virtual
environment. On the left portion of the figure, mechanical in-
teraction takes place between a human and the physical haptic
interface device, or more specifically, between a fingertip and
the device end-effector. In the computational domain depicted
on the right, an image of the device end-effector E is connected
to a proxy P through what is called the virtual coupler. The
proxy P in turn interacts with objects such as A and B in the
virtual environment. Proxy P might take on the shape of the
fingertip or a tool in the user’s grasp.

The virtual coupler is depicted as a spring and damper in par-
allel, which is a model of its most common computational im-
plementation. Rigid bodies in the virtual environment, includ-
ing P , have both configuration and shape —they interact with
one another according to their dynamic and geometric models.
Configuration (including orientation and position) is indicated
in Figure 1 using reference frames (three mutually orthogonal
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unit vectors) and reference points fixed in each rigid body, while
shape is indicated by a surface patch. Note that the end-effector
image E has configuration but no shape. Its interaction with
P takes place through the virtual coupler and requires only the
configuration of E and P .
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Fig. 2. Block diagram of haptic rendering.

The various components in Figure 1, including the human
user, haptic device, virtual coupler, and virtual environment,
form a coupled dynamical system whose behavior depends on
the force/motion relationship of each component. Figure 2
shows these components interconnected in a block diagram,
where the additional indication of causality has been made.

Not apparent in the block diagram is the detail inside the
virtual environment block which must be brought to bear to
simulate systems with changing contact conditions, including
a forward dynamics solver, collision detector, and interaction
response algorithm. The focus of this paper is a collision de-
tector that treat bodies whose geometry is modelled using pa-
rameterized functions that may collide, rest, slide, or roll on
one another. In particular, we treat objects whose boundaries
are represented using parametric surface patches. Patches are
joined at boundaries that might correspond to discontinuities in
curvature or might simply be put in place to effect a decompo-
sition into a set of convex patches.

The core of this paper contains a new approach for tracking
the pair of extremal points on a pair of convex parametric sur-
faces. Features of our approach include its guaranteed stability
and seamless integration with the forward dynamics solver and
interaction response algorithms. In section II, we will undertake
a literature review of collision detectors. In section III, the pro-
posed dynamic model for the tracking algorithm is layed out in
detail. Controller design and analysis takes place in section IV.
The switching algorithm that handles transitions is presented
in section V. In section VI, simulation results are presented.
We further discuss our algorithm in Section VII and wrap up in
section VIII.
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II. BACKGROUND

To calculate a global solution in a computationally efficient
manner, it is very common to handle the collision detection
problem in two parts: a far phase which involves a coarse
global search for potentially interacting surfaces and a near
phase, which is usually based on a fast local optimization
scheme. Local operations, if they can be used to improve a
proposed extremal distance by some form of gradient descent
operation, can be made quite fast. Thus the use of a near phase
algorithm contributes to efficiency, especially when the distance
problem is called not just once for a particular pair of objects,
but at each time step in order to track the evolution of the ex-
tremal distance over a number of time-steps. Additionally, re-
striction to convex objects or features is often made in the near
phase, since in such case the distance problem also becomes
convex and admits fast, iterative solution by convex optimiza-
tion.

1) Far Phase: The far phase is composed of two major
steps. First, a global proximity test is performed using hierar-
chies of bounding volumes or spatial decompositions for each
surface patch. The distances between bounding boxes for each
pair of surface patches drawn from all pairs of bodies are com-
pared to a threshold distance and patches that are too distant
to be contacting are pruned away. Remaining surface patches
are declared active. For a full review of bounding volume and
space decomposition methods, see [1] and references therein.

In the second step of the far phase, approximate interac-
tion points on active surfaces are computed. For example, if
the geometric models are represented by non-uniform ratio-
nal B-splines (NURBS), control polygons of the active surface
models can be used to calculate a first order approximation to
the closest points. Bounding box centroids of paired surface
patches can be projected onto the polygonal control meshes of
each other and parameters can be interpolated from the mesh
node values. These approximate projections serve as good ini-
tialization points for the near phase of the collision detector.

2) Near Phase: After initialization with the approximations
calculated in the far phase, the near phase employs an algorithm
to iteratively improve the extremal distance between each ac-
tive pair of surface patches. Most previous work in collision
detection has concentrated on computing the distance between
convex polyhedral objects. Polyhedral models have been exten-
sively studied because they are simple to handle, their resolu-
tion is sufficient for many applications, and they are almost al-
ways compatible with 3-D modelling or CAD systems. We first
review the near phase algorithms for polyhedra, then discuss
algorithms that compute the distance between objects bounded
by continuous surfaces.

A. Polyhedral Models

State of the art algorithms for computing the distance be-
tween convex polyhedra are based on the algorithm by Gilbert,
Johnson and Keerthi (GJK) [2] and the algorithm of Lin and
Canny [3]. The GJK algorithm makes use of Minkowski dif-
ference and (simplex-based) convex optimization techniques to
calculate the minimum distance. It is an iterative algorithm
that generates a sequence of ever improving intermediate steps
within the polyhedra to converge to the true solution. The al-
gorithm of Lin and Canny makes use of Voronoi regions and

temporal/spatial coherence between successive queries to nav-
igate along the boundaries of the polyhedra in the direction of
decreasing distance. The V-Clip algorithm by Mirtich [4] is
reminiscent of the Lin and Canny closest features algorithm but
makes several improvements. H-Collide by Gregory et.al. [5]
is a specialized collision detection framework for haptic inter-
action which makes use of several earlier algorithms to detect
collisions between polygonal surfaces at interactive rates.

B. Nonpolyhedral Models
Most of the available closest point algorithms for nonpolyhe-

dral models address the problem indirectly —by converting the
problem into a polyhedral one with the use of adaptively refined
meshes. Another indirect approach proposed by Adachi [6] and
Stewart [7] uses intermediate tangent representations.

Although these indirect methods can be successfully imple-
mented for some applications, there also exist cases for which
they are not sufficient. Intermediate representations fail to ap-
proximate surfaces with high curvature, and polyhedral approx-
imations to complex models can grow very large in the number
of polygons.

Less literature exists on direct methods for nonpolyhedral
models. Gilbert et.al. extended their algorithm to general con-
vex objects in [8]. In a related paper [9], Turnbull modifies the
GJK algorithm to handle convex shapes defined using NURBS.
Similarly, in [10] Lin and Manocha present an algorithm for
curved models composed of spline or algebraic surfaces by ex-
tending their earlier algorithm for polyhedra.

Also worth noting are the subdivision techniques imple-
mented by Duff [11] and Von Herzen [12]. Snyder [13] im-
proves these subdivision methods by modelling the collision de-
tection between time dependent surfaces as a constrained min-
imization problem. The problem is then solved using interval
Newton methods.

In the field of computer graphics, Kriezis [14], Barnhill [15]
and Bajaj [16] propose to model parametric surface intersec-
tions using differential equations whose solution may be in-
terpreted as a tracing/marching method. Although the goal
of these approaches is only to calculate surface intersections,
the manner in which the problem is modelled and appropriate
points are traced is closely related to our extremal pair tracking
algorithm.

Our contribution is a near-phase algorithm designed specifi-
cally for parametric surface patches. It is a tracking algorithm
like the near-phase algorithms designed for polyhedral models
and thus depends on convexity and acquires efficiency. Unlike
those near-phase models, however, our algorithm in its basic
form is designed to operate on features rather than bodies. (The
extremal distance problem on the previously identified extremal
features is quite trivial for polyhedra, but not for nonpolyhedral
bodies.) To extend our algorithm to handle bodies (composed of
surface patches), we employ a switching algorithm that handles
transitions when tracked pairs encounter surface boundaries.
That switching algorithm also uses Voronoi regions and thus is
closely related to the Lin-Canny algorithm. Thus the switching
algorithm extends a local solution to become global for con-
vex bodies. Finally, the inclusion of a coarse global search (far
phase) may be used to extend our algorithm to cover noncon-
vex bodies and further to determine whether an extremum is a
maximum or minimum solution.
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Thompson et.al. also contribute a tracking type closest point
algorithm for non-polyhedral models. Their near-phase algo-
rithm is based on Newton’s method. Extensions to this work
include [17], which handles a moving surface and [18], which
makes use of higher order derivatives and tangent plane projec-
tions at singularities. Finally in [19] this approach is general-
ized to surface-to-surface interactions and combined with the
“velocity formulation”, which keeps track of the exact extremal
distance during contact and penetration as surfaces move, given
exact initial conditions.

Our algorithm is based on a dynamic formulation of the mo-
tion of the extremal points and the dependence of point motion
on both surface motion and surface shape. To continually solve
the relationship between point motion and surface shape and
motion, a feedback control problem is formulated and solved
with the design of a stabilizing controller. The controller output
is the motion of each of the extremal points, and may be used to
update the parameter values that locate the points themselves.
The speeds along the tangent curves are produced by the con-
troller as functions of the surface motions and surface shapes.
These speeds may be integrated to arrive at the closest points,
where integration is the essential process of “maintenance”.

In our algorithm, we differentiate the essentially geometric
problem to form the “differential kinematics” of the closest
points, and then we integrate these differential kinematics, but
with a feedback loop in place to ensure that the integration is
robust and stable. As a result, collision detection takes place
in a framework fully analogous to that used for the simulation
of the dynamical response. In fact, as will be shown, colli-
sion detection and forward dynamics solution can take place
through the solution of a single set of coupled differential equa-
tions. Similar feedback stabilization techniques will be familiar
to roboticists. In particular, to solve for the inverse kinematics
of robot manipulators, it is customary to integrate the differen-
tial kinematics in a feedback loop to avoid drift and numerical
disturbances [20].

III. MODELING
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Let there exist a parametric representation for the surface
shown in Figure 3. Note that all surfaces described by alge-
braic implicit equations have parametric representations. We
use f to denote a position vector to a point on the surface. And
we use f(u, v) to refer to the mapping from <2 to <3 that gen-
erates the Cartesian coordinates [x(u, v) y(u, v) z(u, v)]T from
the independent parameters u and v.

The following development relies on the existence of surface
continuity through at least two differentiations. We also require
that both surfaces be strictly convex. However, the method

can be generalized to piecewise continuous surfaces and non-
convex surfaces using an appropriate switching method, as
mentioned above.

Let fu(u, v) and fv(u, v) denote the first partial derivatives
with respect to u and v of the parametric surface at the point
f(u, v). Similarly, let fuu(u, v) denote the partial derivative
with respect to u of fu and so on. Note that the first partials
are tangent to the isoparametric curves of u and v respectively.
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Fig. 4. Two parametric surfaces with a position vector ∆R between two
arbitrary points

Two parametric surfaces are plotted in Figure 4 with their
corresponding isoparametric curves. On these surfaces, two ar-
bitrary points f(u, v) and h(r, s) and surface tangents evaluated
at these points are shown using notation similar to that used in
Figure 3. ∆R(u, v, r, s) is a vector between these arbitrary
points.

Note that when the difference vector ∆R is normal to both
surfaces, the requirements of the extremal distance are satis-
fied. In such case the values, denoted u?, v?, r? and s?, of the
parameters u, v, r, and s locate the extremal pair f(u?, v?) and
h(r?, s?). The extremal distance is then equal to the Euclidian
norm of ∆R.

We define scalars Ψu,Ψv as the projections of the difference
vector ∆R onto the tangents fu and fv of surface f ; and simi-
larly we define Ψr, and Ψs as the projections of the difference
vector ∆R onto the tangents hs and hr of surface h as follows.

Ψu 4

= ∆R · fu (1)

Ψv 4

= ∆R · fv (2)

Ψr 4

= ∆R · hr (3)

Ψs 4

= ∆R · hs (4)

When the projection errors are all zero, the conditions for the
extremal pair are met: the difference vector ∆R is perpendic-
ular to both surfaces at f and h.

Note that it is possible to define the extremal distance condi-
tion by an alternate set of equations as presented in [19]. This
alternative formulation makes use of surface tangents of one
surface and normals of both surfaces. Although we use the set
(1) - (4) in our further derivation in this paper, very similar re-
sults can be achieved using the alternate set.

Given the set of equations (1) - (4), one way to find the ex-
tremal pair is to search for the solution u?,v?,r?,s? that mini-
mizes the projection errors using a gradient descent algorithm.
This procedure would require the computation of a Jacobian for
use in Newton Iteration. This approach is undertaken in [19].

In the present work, rather than taking the Jacobian of the
system of equations (1) through (4) with respect to the inde-
pendent parameters u, v, r and s, we differentiate them with
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M =







fu ·fu+∆R·fuu fv ·fu+∆R·fuv −hr ·fu −hs ·fu
fu ·fv+∆R·fuv fv ·fv+∆R·fvv −hr ·fv −hs ·fv

fu ·hr fv ·hr −hr ·hr+∆R·hrr −hs ·hr+∆R·hrs

fu ·hs fv ·hs −hr ·hs+∆R·hrs −hs ·hs+∆R·hss







, b =







−(AωωωωωωωωωωωωωB
× h) · fu

−(AωωωωωωωωωωωωωB
× h) · fv

(BωωωωωωωωωωωωωA
× f) · hr

(BωωωωωωωωωωωωωA
× f) · hs







respect to time. The differentiation operation causes the mo-
tion of the surfaces and the time rates of change of the param-
eters du/dt, dv/dt, dr/dt and ds/dt, called the parametric ve-
locities, to show up in the expression for the projection error
derivatives.

Note that one must effectively freeze time (and consequently
the motion of the bodies) while using a gradient descent al-
gorithm to find the extremal pair. In contrast, taking the time
derivative of equations (1) through (4) produces a dynamic ex-
pression where the time rates of change of the projection errors
are expressed in terms of the motion and shape of the surfaces.

It is worth mentioning that although we use vector expres-
sions throughout the paper, one needs to express each vector
consistently in a single reference frame before interpreting the
operations as matrix operations. Where dot products and cross
products appear, we use boldface notation to indicate operations
which may be performed in a basis-independent fashion. Once
suitably expressed in a reference frame, standard matrix opera-
tions may be used, and we indicate this using normal typeface.
Note also that since the right hand sides of equations (1) through
(4) are basis-independent vector expressions, it is important to
specify a frame in which differentiation is to be performed. We
choose to express the vectors in the first two equations, (1) and
(2), in the body frame A and the vectors in last two equations,
(3) and (4), in the body frame B (see Figure 4). This choice
results in simpler matrix expressions.

Consider the case where each surface is attached to a rigid
body in motion. In Figure 4 these bodies are named A and B.
Assume that the configuration of bodies A and B with respect
to a reference frame N is known. Then motion of these bodies
with respect to the reference frame N will be specified by the
vectors NωωωωωωωωωωωωωA, NωωωωωωωωωωωωωB, N

v
Ao and N

v
Bo .

Using the notation
Ad

dt
(.) to indicate differentiation in refer-

ence frame A, and noting that, for any vector βββββββββββββ, A d

dt
(βββββββββββββ) =

B d

dt
(βββββββββββββ) + AωωωωωωωωωωωωωB × βββββββββββββ, we take time derivatives of Equations (1)-

(4) as follows

Ψ̇u = A d

dt
[(f − h) · fu] (5)

Ψ̇v = A d

dt
[(f − h) · fv] (6)

Ψ̇r = B d

dt
[(f − h) · hr] (7)

Ψ̇s = B d

dt
[(f − h) · hs] (8)

and rearrange into matrix form to produce the following differ-
ential equations for the projection errors

Ψ̇ = M U + b (9)
ẋ = U (10)
y = x (11)

where Ψ =









Ψu

Ψv

Ψr

Ψs









, U =









du

dt
dv

dt
dr

dt
ds

dt









and M and b are shown at the top of the page.
In this state space realization the state variables Ψ are taken

to be the projection errors. The inputs U are time derivatives
of surface parameters whereas the system outputs are denoted
by y. The desired outputs from the algorithm are the estimates
x = [u, v, r, s]T of the parametric values of extremal points on
each surface, u∗, v∗, r∗ and s∗, at every instant of time. These
estimates can be calculated as a by-product of the control ef-
fort that regulates the projection errors to zero. Details of this
procedure are shown in the next section.

IV. CONTROL

Equations (9)-(11) define a nonlinear dynamic model to
maintain the extremal pair on two surfaces undergoing rigid
body motion. It characterizes the projection error derivatives
in state space form and formulates the extremal distance prob-
lem as a standard nonlinear control problem.

The control input vector U is composed of time derivatives of
surface parameters, i.e. the elements of U are speeds along the
tangent curves. The objective of the controller is to continually
update these speeds to regulate the projection errors to zero, i.e.
to maintain the extremal pair on the surfaces.

With the model (9)-(11) in hand, the extremal pair on the sur-
faces can be dynamically tracked making use of a control loop
with exact feedback linearization. Exact feedback linearization
is feasible since the plant is implemented in the computer and
at any instant of time the specific values of M and b are exactly
known. Note that feedback linearization is fundamentally dif-
ferent than Jacobian linearization in that feedback linearization
is achieved by exact state transformation and feedback, rather
than by linear approximations of the dynamics for a small range
of operation [21].

First, in order to feedback linearize the model, an inner feed-
back loop is designed. Assuming the matrix M is not singular
in the range of operation, we define the control input vector U
in terms of a new input vector µ as

U = M−1 (µ − b) (12)

and apply this control input to (9). Then the nonlinear model is
algebraically transformed into an equivalent linear model

Ψ̇ = µ (13)

Second, an outer loop linear controller is used to impose the
desired linear dynamics to equation (13). In this paper, a full
state linear feedback

µ = −K Ψ (14)

is utilized to stabilize the closed loop dynamics and to achieve
desired performance: to keep projection errors small. However,
it is possible to synthesize different outer loop controllers to
satisfy various design objectives.

Exponential stability of the overall closed loop system is
guaranteed since there are no internal dynamics associated with
this input-output linearization. This observation follows from
the fact that the relative degree of the system is the same as
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U = M−1(µ − b)

µ = −K Ψ

∫

[

Ψ̇ = M U + b

ẋ = U

]

dt

motionmotion

Ψ

x

x
µ U

Fig. 5. Control block diagram showing an inner feedback linearization loop
and an outer linear control loop
its order and input-output linearization leads to input-state lin-
earization [21].

Figure 5 shows the block diagram of the completed controller
design. Recognizable here is the inner loop that renders the
system linear from input µ to output x. The outer loop achieves
desired dynamics of the linear system via full state feedback
with matrix gain K.

Furthermore, the desired outputs, i.e. the parametric values
of the extremal pair, are continually maintained using the con-
trol input vector U . This is simply achieved by integrating the
input vector U with initial conditions extracted from the start-
ing points. In practice, the state vector Ψ is augmented with the
input vector U to perform all integrations in a single operation.
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U = M−1(µ − b)

µ = −K Ψ

Ψ = Ψ(x)
∫

[ẋ = U ] dt

motion

Ψ

x

x

x

µ U

Fig. 6. Control block diagram showing an alternative implementation

In fact, even a simpler implementation is possible. Figure 6
demonstrates this equivalent case. Since the projection errors
Ψ can be directly calculated through equations (1) to (4), the
derived dynamic model can be replaced by this set of nonlinear
equations. Note that although the derived dynamic model is
replaced, the controller design remains unchanged.
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It is also possible to combine the extremal pair tracking al-
gorithm with dynamics as discussed in section I. One such case
is shown in Figure 7. Here, motion of the bodies is calculated
simultaneously with the maintenance of the extremal pair be-
tween them. In this figure, the equations of motion for the bod-
ies are defined by a second-order differential equation where θ
represents the set of configuration variables. The inertia ma-

trix M(θ) and the Coriolis matrix C(θ, θ̇) summarize inertial
properties of the bodies. F(t) denotes external control forces
acting on the bodies while N (θ, θ̇) includes all other frictional
and gravitational forces. As shown in Figure 7, all integration
(update and maintenance) operations are combined in a single
integration operation.

Finally, it is important to mention that the algorithm need
not be initialized with the exact extremal points. Any initial
point within the region of attraction of the designed nonlinear
controller (which is the entire convex surface) will converge to
the extremal pair since the controller is exponentially stable.
Moreover the convergence rate can be adjusted by tuning the
controller gain K.

V. HYBRID SYSTEMS

We have adopted the mathematical language of hybrid dy-
namical systems to describe collision detection between bod-
ies composed of parametric surface patches. Hybrid systems
contain both discrete and continuous state variables and exhibit
both discrete and continuous state dynamics. In certain hybrid
systems, continuous and discrete dynamics not only coexist,
but interact such that changes in the continuous and discrete
dynamics occur in response to continuous and/or discrete state
variables. In the case of collision detection between paramet-
ric bodies, however, the coupling between the continuous and
discrete dynamics is somewhat limited. When tracking the ex-
tremal distance between a body and a point, the continuous state
the describes the motion of the extremal point on the body is de-
coupled from the discrete state that specifies the relevant feature
on the body. In particular, the switching times do not depend
on the continuous states. On the other hand, when tracking the
extremal distance between two bodies (either in a plane or in
space) the switching times do in fact depend on certain portions
of the continuous states.

In the following, let us develop a hybrid mathematical model
to describe the most general case: extremal distance tracking
between two bodies. Thereafter, we will show how certain ar-
guments may be removed from the argument lists for the vari-
ous functions to describe the case of extremal distance tracking
between a body and a point.

Consider a system described by a state space S =
⋃n

i=1
Si,

where the state x within each mode Si evolves according to the
differential equation

ẋ(t) = Fi(x(t), θ(t)), (15)

where θ(t) is an exogenous input representing the specified mo-
tion of the bodies. Note that the state vector x has the same di-
mension in all modes, a property that can be accommodated by
setting unused elements to zero. Associated with each mode Si

is a set of transitions to other modes. And associated with each
transition in that set is a switching function f and a resetting
function φ. Let us index the members of the set of transitions
(and likewise the set of f ’s and set of φ’s) with a superscript
j and indicate the size of each set with mi, which in general is
different for each mode. A subscript i indicates association with
the ith mode. Members f j

i of the set of switching functions Ji

trigger transitions out of mode Si :

Ji =
{

f j
i (x(t), θ(t)) = 0, (j = 1, ...,mi)

}

(16)
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The time t∗ that, together with the state x
− = x(t∗) and spec-

ified motion θ(t∗), produces a zero of transition function f j
i is

called a switching instant; it triggers the associated transition.
Once a transition is triggered, the associated member φj

i of the
set of resetting functions Φi is executed to relate the initial state
values x

+ in the new mode to the final state values x
− in the

last mode.

Φi =
{

x
+ = φj

i (x
−, t∗), (j = 1, ...,mi)

}

(17)

A special case of the resetting functions is the set of initial con-
ditions for the initial mode S1.

To particularize the description of a hybrid system contained
in Eqs. (15) through (17) for the case of collision detection
between a body and a point, one may remove the argument x

from each switching function in (16). The switching functions
depend only on the specified motion of the body and point, not
on the motion of the extremal point on the body. In fact, for
collision detection between two bodies, the switching between
features on one body depends only on the motion of the ex-
tremal point on the other body and the motion, not the motion
of the extremal point on its own surface.

Evaluation of the hybrid system can be viewed as a sequence
of subproblems, each characterized by a continuous evolution
in a mode terminated by an event (i.e. zero crossing of a switch-
ing function), and then evaluation of the resetting functions to
initialize the new mode.

A transition from one discrete state to another one is trig-
gered when a discrete state (a feature) encounters a transition
condition (i.e. an active feature goes out of the Voronoi region
of the other active feature). These discrete transitions are han-
dled in a manner similar to the Lin and Canny algorithm. Note
that whenever a transition occurs, not only the discrete state
changes, but also the continuous system model changes and the
continuous states are updated according to the reset relations Φ.
It is convenient to represent the discrete dynamics of the hybrid
system using an automaton as in Figure 9.

To analyze convergence to the extremal pair, first consider
the case when both objects are stationary. In section IV it
was shown that, once initialized with the correct pair of fea-
tures (but not necessarily with the correct extremal pair within
the features), our algorithm accounts for the initialization errors
and disturbances, exponentially converging to the extremal pair.
This exponential convergence within the feature is guaranteed
since the basin of attraction of the controlled system spans all
the feature itself. Therefore (for the stationary case) in order
to achieve global asymptotic stability, it would be sufficient to
introduce a far phase that locates the correct pair of features to
initialize the near algorithm.

Now, consider the case when objects are in motion. Introduc-
tion of motion converts the problem into a tracking problem. In
our method, within each feature, the motion of the objects are
exactly accounted for by the feedforward term of the controller.
However, some extra effort is required to handle transitions be-
tween features that are due to the motion. In order to be able to
track the extremal distance through features, the switching al-
gorithm is put in place. The switching algorithm decides when
and how to handle transitions between features according to
Voronoi criteria. Therefore, with the installment of the switch-
ing algorithm, our method simultaneously tracks the extremal
pair and the correct set of features containing them.

Even under motion, convergence to the extremal pair is guar-
anteed since the motion is handled in a feedforward manner
and the transitions are handled in such a way that each time a
transition is triggered the extremal distance is guaranteed not to
increase.

VI. SIMULATION RESULTS

We developed computer simulations to check the dynamic
formulation and the control algorithm discussed in the previous
sections. Our simulations are implemented in Matlab/Simulink
and sample results are presented below.
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Va

Vb

Vc

Fig. 8. A convex planar body A composed of curves C1, C2, C3 joined at
vertices Va, Vb, Vc. Lines indicate boundaries between interior and exterior
Voronoi regions.
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Fig. 9. The automaton used to govern the motion of the extremal point on
body A of Figure 8. Switching times for the simulation shown in Figure 10 are
also indicated.

Figure 8 shows a convex planar body A formed by joining
three convex curves C1, C2, and C3 at vertices Va, Vb, and Vc.
Also shown in Figure 8 are the six lines that bound the external
Voronoi regions of A and the three lines, called medial axes that
bound the internal Voronoi regions of A. The medial axes are
each the locus of points equidistant to two curves of A. The au-
tomaton that describes the hybrid dynamics of an extremal point
lying on the boundary of A is shown in Figure 9. The three
large ellipses in Figure 9 each describe a mode in which the ex-
tremal point lies on a particular curve. The continuous dynam-
ics within a particular mode govern the motion of the extremal
point so long as it lies on the correspondingly labelled curve.
The three smaller circles each describe the (trivial) dynamics
of the extremal point while it lies on the correspondingly la-
belled vertex. The arrows indicate the transition functions that
switch between modes. The two outer circular loops indicate
transitions from one external Voronoi region to another, while
the two inner triangular loops (not involving vertices) indicate
transitions across medial axes from one internal Voronoi region
to another.

Figure10 shows a simulation that produces the tracking be-
havior of an extremal point on A as a point P (the other member
of the extremal pair) traces out a pre-specified spiral path that
begins inside A and ends outside A. In all, 100 snapshots of
the simulation are shown, or 100 extremal distances connect-
ing the extremal pair. To begin, the extremal point is initialized
with the wrong value and the algorithm quickly converges to
the correct answer as indicated by the dotted lines and sweep-
ing arrow. Thereafter, one end the extremal distance is either
perpendicular to a curve of A or anchored on a vertex of A.
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Fig. 10. The extremal distance is shown between A and a point tracing out
a spiral that begins inside and ends outside A. Simulated transition times are
indicated.
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Fig. 11. The trajectory and sequence of parameters u1, u2, u3 on curves
C1, C2, C3 for the simulation shown in Figure 10. Transition times are also
indicated.
The times at which transitions between modes occur are shown
both in Figure 10 and on the automaton in Figure 9. For exam-
ple, at t = 34.4 seconds, P crosses the medial axis and tracking
on C1 jumps to tracking on C2. At t = 66.9 seconds, P crosses
the boundary of A and the definition of extremal changes from
maximum penetration depth to minimum distance, but tracking
continues on C3. At t = 86.5 seconds, the extremal point an-
chors on Vc and at t = 91.6 seconds it continues on C1 again.
The transition times are also indicated for this particular simu-
lation in Figure 11, which is a plot of the curve parameters ui

versus time. All three curve parameters ui, (i = 1, 2, 3) can
be varied from 0 to 1 to trace out body A while the particular
sequence and trajectory of values shown in Figure 11 pertains
to the evolution of the extremal point shown in Figure 10. Also
visible in Figure 11 is the fast convergence of startup error at
the very beginning of the simulation.

Figure 12 shows twelve irregularly spaced, labelled snap-
shots from the simulation of the extremal pair tracking problem
for two convex planar bodies. During the simulation body A re-
mains fixed and B undergoes a motion in which it spins around
its own center while its center traces out an inward spiral cen-
tered on A. The active curves or vertices, which correspond to
similarly labelled modes in the automata not shown, are also in-
dicated in Figure 12. Figure 13 shows the curve parameters ui

of A and ri of B. The sequencing and evolution of both curve
parameters ui and ri that locate the extremal points on A and
B can be seen. The snapshot times are also indicated in Figure
13 as are the transition times.

Figure 14 shows the extremal distance between a spatial body
C and a point that traces out a helix. Body C is formed by
joining three parametric surfaces at their intersecting curves and

A AA

A A AA

A A AA

B

B

B

B

B

B

B

B

B

B

B
B

1 2 3 4

5 6 87

9 10 11 12

A

PSfrag replacements

t = 0 t = 1.30 t = 3.25 t = 4.64

t = 8.30 t = 9.30 t = 10.10 t = 11.42

t = 12.30 t = 12.76 t = 13.15 t = 14.00

C1

C1
C1 C2

C3

C3C3
C3

Ca

CbCb

Cb

Cc

Cc
Cc

Cc

CcCc

V1

V2

V2

V3

Va

Vb

VcVc

Fig. 12. The extremal distance between planar bodies A and B as A remains
fixed and B spins and traces a circle around A. Twelve snapshots are shown,
taken at irregular intervals. The active curves or vertices of A and B are indi-
cated.
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Fig. 13. The trajectory and sequence of parameters u1, u2, u3 on curves
C1, C2, C3 and ra, rb, rc on curves Ca, Cb, Cc for the simulation shown in
Figure 12. Transition times are indicated.

vertices. The surfaces as labelled S1, S2, and S3, the curves
Ca, Cb, and Cc and the vertices Vα and Vβ . The sequence and
trajectory of the surface parameters ui and vi, taken pairwise
with (i = 1, 2, 3) to locate the extremal point on C are shown
in Figure 15. Periods of time in which the extremal point lies
on the bounding curves can be recognized.
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Fig. 14. The extremal distance is shown between a spatial body C and a point
tracing out a helix. Body C is composed of 3 parametric surfaces (only S1 and
S2 are visible) joined at 3 curves (only Ca and Cb are visible) and 2 vertices
(Vα and Vβ .)
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Fig. 15. Changes in curve parameters during tracking.
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VII. DISCUSSION

The control theoretic approach to extremal point tracking that
we have described in this paper possesses several significant
advantages. First of all, it is very general —in the sense that
various feedback control designs and discretization choices ex-
ercised within our approach yield various algorithms, some of
which have previously appeared in the literature.

A second significant advantage of our approach is that lo-
cal exponential stability can be guaranteed within each feature.
This stability guarantee holds no matter how fast the bodies
might be moving or how sharp their curvature might be, since
these effects are accounted for in the controller design. Specif-
ically, the motion (known exactly through the solution of the
forward dynamics) is essentially fed forward using the term
b and the dependence on curvature is accounted for with the
use of M−1 (see Eq. (12)) in the production of the linearized
system dynamics. The stability properties of closed loop sys-
tem then follow from linear controls theory. Furthermore, the
convergence rate can be chosen arbitrarily fast for the tracking
problem as posed in continuous time.

Since the controller and its associated dynamics will be im-
plemented in discrete time, the important question is the preser-
vation of the stability properties through discretization. Since
our system equations are in fact linear, stability would be pre-
served through discretization using the the trapezoidal (bilin-
ear) rule or Backward Euler integration scheme, even for con-
vergence rates set arbitrarily fast using aggressive gain values
K. But since such implicit methods are not an option for real-
time haptic rendering, we must consider preservation of stabil-
ity through discretization using explicit methods. As it turns
out, there exist standard techniques whereby the convergence
rate (determined by gain K) and step size may be traded off
against one another while maintaining stability. In [22] stan-
dard discrete time controller design techniques are utilized to
calculate proper controller gains given an explicit integration
method and fixed integration step size. With these techniques,
stability of the algorithm is guaranteed even after discretization.

Moreover, with proper design of the ‘far’ phase and the
switching algorithm for the collision detector as discussed in
Section V, global stability of the extremal tracking controller
can be achieved, even for geometric models made of several
surface patches pieced together.

Finally, whenever one of the pair of objects under consider-
ation is just a point, our algorithm is capable of tracking the
minimum distance when the objects are disjoint and maximum
penetration depth when they are interpenetrated. If none of the
objects of interest are points, then our algorithm can track the
minimum distance between them when they are disjoint. How-
ever, since the interpenetration case is a nonconvex problem,
the algorithm can only return a penetration flag when the ob-
jects are interpenetrated. One possible method to utilize our al-
gorithm to track the maximum interpenetration distance for two
interpenetrated objects is to simultaneously track the extremal
distance between all interpenetrating features.

VIII. CONCLUSIONS

We are interested in pursuing a combined simula-
tion/collision detection approach since it results in an algorithm
that is easy to implement and that makes maximum use of all
the data available to track the extremal points. The proposed

algorithm is suitable for both dynamic simulation and haptic
rendering due to the continuous availability of surface normals
and penetration distances that are necessary to calculate the col-
lision response and/or the haptic feedback.

Our algorithm treats the extremal point problem for objects
modelled using parametric curves and surfaces in a direct man-
ner, without resorting to polyhedral approximations. Thus it
serves the needs of CAD/CAM and virtual environment sys-
tems that require smoothness independent of rendering. Addi-
tionally, our algorithm is suited to real-time implementation.
Finally, our algorithm features convenient tuning of conver-
gence properties through design of the feedback gain K and
enjoys immunity to start-up errors.
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