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Abstract

A new extremal distance tracking algorithm is presented
for parametric curves and surfaces undergoing rigid body
motion. The essentially geometric extremization problem
is transformed into a dynamical control problem by dif-
ferentiating with respect to time. Extremization is then
solved with the design of a stabilizing controller. We use
a feedback linearizing controller. The controller simulta-
neously accounts for the surface shape and motion while
asymptotically achieving (and maintaining) the extremal
pair. Thus collision detection takes place in a framework
fully analogous to the framework used for the simulation
of dynamical response.

1 Introduction

To trigger the appropriate impact response that gener-
ally accompanies a collision between objects in the phys-
ical world, there exists the matter that makes up those
objects and occupies space. In simulation, however, an
algorithm must be put in place to detect collisions be-
tween objects which have no matter. A collision detec-
tor must trigger the computation of interaction forces or
impulses that act, in simulation, to prevent interpenetra-
tion. In virtual environments and simulations of robots
interacting with their environment, collision detection is
an important technology. In this paper, we present an
algorithm suitable for collision detection between objects
whose boundaries are represented with parametric sur-
faces.

The extremal distance E is defined as the minimum dis-
tance between two surfaces when they are disjoint, the
local maximum penetration depth when they are inter-
penetrated and zero during tangential contacts [1]. We
present an algorithm that maintains the two extremal
points on a pair of parametric surfaces as those surfaces
move. The motion of each extremal point is found as a
function of the motion and shape of both surfaces. Addi-
tionally, initialization errors are tolerated and driven to
zero. Although the algorithm handles only local extrema
on convex shapes, with an extension involving global

bounding box comparisons and surface transitions, gen-
eral complex surface shapes can be handled.

Parametric surfaces are used in Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) tools,
where the surface representation must provide smooth-
ness and continuity independent of the resolution of a
particular rendering. Parametric surfaces such as non-
uniform rational B-splines (NURBS) have the advantages
of compact representation, higher order continuity and
cost effective computation of surface derivatives and nor-
mals. Thus our algorithm is relevant to interactive simu-
lation of models created using CAD and CAE packages,
since it eliminates the need for intermediate representa-
tions such as polygonal meshes or faceted surfaces.

The new algorithm is especially useful when a human in-
teracts with a model through a haptic interface. It may
be used to efficiently track the maximum penetration dis-
tance and the appropriate common normal between the
model and an image of the user’s finger in the virtual en-
vironment. The penetration distance and normal vector
may then be used to produce a reaction force through
the haptic interface. The algorithm allows direct haptic
rendering of the CAD surface rather than rendering of
an intermediary surface. Another powerful property of
the algorithm is its dynamic nature, which takes the mo-
tion of the surfaces into account. This dynamic structure
makes it possible to easily combine extremal point track-
ing with physics-based simulation. Although the present
work is developed for collision detection, it is based on
our previous work in cobot control [2] and related work
in path following for mobile robots [3].

In section 2, we review the previous work in collision de-
tection. The proposed dynamic model is derived in sec-
tion 3. Controller design and analysis takes place in sec-
tion 4. In section 5, simulation results are presented and
finally, section 6 concludes the paper.

2 Background

This section reviews extremal point algorithms by clas-
sifying them according to the geometric model represen-



tations they can handle. Two main categories presented
are the polygonal models and the nonpolygonal models.

2.1 Polygonal Models
Previous work in collision detection has widely concen-
trated on computing the distance between convex poly-
hedral objects. Polyhedral models are extensively stud-
ied because they are easier to deal with than more general
models, are almost always compatible with 3-D modelling
systems, and their resolution is sufficient for many tasks.
State of the art algorithms for computing the distance
between convex polyhedra are the algorithm by Gilbert,
Johnson and Keerthi (GJK) [4], [5] and the algorithm of
Lin and Canny [6], [7].

The GJK algorithm makes use of Minkowski difference
and convex optimization techniques to calculate the min-
imum distance. The iterative algorithm generates a se-
quence of ever improving intermediate steps within the
polyhedra to converge to the true solution. The algo-
rithm of Lin and Canny makes use of Voronoi regions and
temporal/spatial coherence between successive queries to
navigate along the boundaries of the polyhedra in the
direction of decreasing distance.

Many of the existing polyhedral collision detection al-
gorithms also utilize scheduling and spatial partitioning
techniques to speed up the solution process. Since con-
vex optimization techniques are used in these methods,
non-convex polygonal shapes must be handled by divid-
ing them into convex parts.

2.2 Nonpolygonal Models
Most of the available closest point algorithms for non-
polygonal models address the problem indirectly. One
such indirect method uses adaptively refined meshes to
convert the problem into a polyhedral one. Another in-
direct approach proposed by Adachi [8] and Stewart [9]
uses intermediate tangent representations.

Although these indirect methods can be successfully im-
plemented for some applications, there also exist cases
when they are not sufficient. Intermediate representa-
tions fail to approximate surfaces with high curvature,
and polyhedral approximations to complex models can
grow very large in the number of polygons.

Less literature exists on direct methods for nonpolygo-
nal models. Gilbert et. al. extended their algorithm
to general convex objects in [10]. In a related paper [11],
Turnbull modifies the widely used GJK algorithm to han-
dle convex shapes defined using NURBS. Similarly, in [12]
Lin and Manocha present an algorithm for curved mod-
els composed of spline or algebraic surfaces by extending
their earlier algorithm for polyhedra.

Also worth noting are the subdivision techniques imple-
mented by Duff [13] and Herzen [14]. Snyder improves

these methods by modelling the collision detection be-
tween time dependent surfaces as a constrained minimiza-
tion problem and solves it using interval Newton methods
[15].

In the field of computer graphics, Kriezis [16] and Bajaj
[17] propose modelling parametric surface intersections
by differential equations and using tracing/marching
methods to calculate them. Although the goal of these
approaches is only to calculate surface intersections, the
way the problem is modelled and appropriate points are
traced are closely related to our extremal pair tracking
algorithm.

Thompson et. al. contribute a different kind of closest
point algorithm: rather than finding the closest point at
each iteration, their algorithm continually updates the
closest point based on the motion of the “end-effector”
point and the curve or surface shape. After initializing
the algorithm with the closest point, it maintains the
closest point or “tracks” the end-effector. In [18], it is
called a “tracking” algorithm. Extensions to this work in-
clude [19], which handles a moving surface and [20], which
makes use of higher order derivatives and tangent plane
projections at singularities. Finally in [21] this approach
is generalized to surface to surface interactions and com-
bined with the “velocity formulation”, which keeps track
of the exact extremal distance during contact and pene-
tration as surfaces move, given exact initial conditions.

Note that in the final surface-to-surface tracking algo-
rithm of [21], motion of the surfaces and extremal point
tracking are performed in a decoupled manner. Succes-
sive approximations are performed by multi-dimensional
Newton’s method to obtain a static solution before the
surfaces are allowed to move for the next update. The
combined velocity formulation is an approach to handle
motion of the surfaces and extremal tracking simultane-
ously, but it only works for the contact case and needs
exact initial conditions.

Our algorithm is also a tracking algorithm. However, it
is based on a dynamic formulation of the motion of the
extremal points and their dependence on both surface
motion and surface shape. To continually solve the re-
lationship between point motion and surface shape and
motion, a feedback control problem is formulated and
combined with the dynamic simulation. The controller
output is precisely the motion of each of the extremal
points, and may be used to update the parameter values
that locate the points themselves. The speeds along the
tangent curves are produced by the controller as functions
of the surface motions and surface shapes. These speeds
may be integrated to arrive at the closest points, where
integration is the essential process of “maintenance”. Be-
cause of its dynamic formulation, the tracking algorithm
can be neatly combined with the dynamic simulation pro-
cess.



3 Modeling
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Figure 1: A parametric surface

Let there exist a parametric representation for the sur-
face shown in Figure 1. Note that all surfaces described
by algebraic implicit equations have parametric represen-
tations. We use f to denote a position vector to a point
on the surface. And we use f(u, v) to refer to the mapping
from �2 to �3 that generates the Cartesian coordinates
[x(u, v) y(u, v) z(u, v)]T from the independent parame-
ters u and v.

The following development relies on the existence of sur-
face continuity through at least two differentiations. We
also require that both surfaces be strictly convex. How-
ever, the method can be generalized to piecewise contin-
uous surfaces and non-convex surfaces using an appropri-
ate switching method.

Let fu(u, v) and fv(u, v) denote the first partial derivatives
with respect to u and v of the parametric surface at the
point f(u, v). Similarly, let fuu(u, v) denote the partial
derivative with respect to u of fu and so on. Note that
the first partials are tangent to the isoparametric curves
of u and v respectively.

Two parametric surfaces are plotted in Figure 2 with their
corresponding isoparametric curves. On these surfaces,
two arbitrary points, f(u, v), h(r, s) and surface tangents
evaluated at these points are shown using notation sim-
ilar to that used in Figure 1. ∆R(u, v, r, s) is a vector
between these arbitrary points. Note that when the error
vector ∆R is normal to both surfaces, the requirements
of the extremal distance defined in section 1 are satisfied.
In such case the values, denoted u�, v�, r� and s�, of the
parameters u, v, r, and s locate the extremal pair f(u�, v�)
and h(r�, s�). The extremal distance is then equal to the
Euclidian norm of ∆R.

We define scalars Ψu,Ψv as the projections of the error
vector ∆R onto the tangents fu and fv of surface f ; and
similarly we define Ψr, and Ψs as the projections of the
error vector ∆R onto the tangents hs and hr of surface
h as follows.
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Figure 2: Two parametric surfaces with a position vector
∆R between two arbitrary points

Ψu �=∆R · fu (1)

Ψv �=∆R · fv (2)

Ψr �=∆R · hr (3)

Ψs �=∆R · hs (4)

When the projection errors are all zero, the conditions
for the extremal pair are met: the error vector ∆R is
perpendicular to both surfaces at f and h.

Note that it is possible to define the extremal distance
condition by an alternative set of equations as presented
in [21]. This alternative formulation makes use of surface
tangents and a normal of each surface. Although we use
the set (1) - (4) in our further derivation in this paper,
very similar results can be achieved using the alternative
set.

Given a set of equations, one way to find the extremal pair
is to search for the solution u�, v�, r�, s� that minimizes
the projection errors using a gradient descent algorithm.
This procedure would require the computation of a Ja-
cobian for use in Newton Iteration. This is the approach
undertaken in [21].

In the present work, rather than taking the Jacobian of
the system of equations (1) through (4) with respect to
the independent parameters u, v, r and s, we differentiate
them with respect to time. The differentiation operation
causes the motion of the surfaces and the time rates of
change of the parameters du/dt, dv/dt, dr/dt and ds/dt,
called the parametric velocities, to show up in the differ-
ential equations for the projection errors.

Note that one must effectively freeze time (and conse-
quently the motion of the bodies) while using a gradient
descent algorithm to find the extremal pair. In contrast,
taking the time derivative of equations (1) through (4)
produces a dynamic expression where the time rates of



change of the projection errors are expressed in terms of
the motion and shape of the surfaces.

It is worth mentioning that although we use vector ex-
pressions throughout the paper, one needs to express each
vector consistently in a single reference frame before in-
terpreting the operations as matrix operations. Where
dot products and cross products appear, we use bold-
face notation to indicate operations which may be per-
formed in a basis-independent fashion. Once suitably ex-
pressed in a reference frame, standard matrix operations
may be used, and we indicate this using normal typeface.
Note also that since the right hand sides of equations (1)
through (4) are basis-independent vector expressions, it
is important to specify a frame in which differentiation
is to be performed. We choose to express the vectors in
the first two equations, (1) and (2), in the body frame
A and the vectors in last two equations, (3) and (4), in
the body frame B (see Figure 2). This choice results in
simpler matrix expressions.

Consider the case where each surface is attached to a rigid
body in motion. In Figure 2 these bodies are named A
and B. Assume that the configuration of bodies A and
B with respect to a reference frame N is known. Then
motion of these bodies with respect to the reference frame
N will be specified by the vectors NωωωωωωωωωωωωωA, NωωωωωωωωωωωωωB, NvAo and
NvBo .

Ψu = (f − h) · fu (5)
Ψv = (f − h) · fv (6)
Ψr = (f − h) · hr (7)
Ψs = (f − h) · hs (8)

Taking time derivatives of equations (5) to (8), and rear-
ranging, one can present an expression for the projection
error derivatives as

Ψ̇ = M U + b (9)
ẋ = U (10)
y = Ψ (11)

where

Ψ =




Ψu

Ψv

Ψr

Ψs


, U =




du
dt
dv
dt
dr
dt
ds
dt




and M and b are shown at the top of the next page.

In this state space realization the state variables, Ψ, are
taken to be the projection errors. The inputs U are time
derivatives of surface parameters whereas the system out-
puts are denoted by y. The desired outputs from the
algorithm are the estimates x = [u, v, r, s]T of the para-
metric values of extremal points on each surface, u∗, v∗, r∗

and s∗, at every instant of time and these estimates can
be calculated as a by-product of the control effort that
regulates the projection errors to zero. Details of this
procedure is shown in the next section.

4 Control

Equation (9) defines a nonlinear dynamic model to main-
tain the extremal pair on two surfaces undergoing rigid
body motion. It characterizes the projection error deriva-
tives in state space form and formulates the extremal dis-
tance problem as a standard nonlinear control problem.

The control input vector U is composed of time deriva-
tives of surface parameters, i.e. the elements of U are
speeds along the tangent curves. The objective of the
controller is to continually update these speeds to regu-
late the projection errors to zero, i.e. to maintain the
extremal pair on the surfaces.

With the model (9)-(11) in hand, the extremal pair on
the surfaces can be dynamically tracked making use of
a control loop with exact feedback linearization. Exact
feedback linearization is feasible since the plant is imple-
mented in the computer and at any instant of time the
specific values of M and b can be exactly calculated.

Note that feedback linearization is fundamentally differ-
ent than Jacobian linearization in that feedback lineariza-
tion is achieved by exact state transformation and feed-
back, rather than by linear approximations of the dynam-
ics for a small range of operation [22].

First, in order to feedback linearize the model, an inner
feedback loop is designed. Assuming the matrix M is not
singular in the range of operation, we define the control
input vector U in terms of a new input vector µ as

U = M−1 (µ − b) (12)

and apply this control input to (9). Then the nonlin-
ear model is algebraically transformed into an equivalent
linear model

Ψ̇ = µ (13)

Second, an outer loop linear controller is used to impose
the desired linear dynamics to equation (13). In this pa-
per, a full state linear feedback

µ = −K Ψ (14)

is utilized to stabilize the closed loop dynamics and to
achieve desired performance: to keep projection errors
small. However, it is possible to synthesize different outer
loop controllers to satisfy various design objectives.

Exponential stability of the overall controller is guaran-
teed since there are no internal dynamics associated with
this input-output linearization. This observation follows
from the fact that the relative degree of the system is the
same as its order and input-output linearization leads to
input-state linearization [22].

Figure 3 shows the block diagram of the completed con-
troller design. Here again, the inner loop renders the sys-
tem as a linear model utilizing the input vector µ whereas



M =


fu ·fu+∆R·fuu fv ·fu+∆R·fuv −hr ·fu −hs ·fu

fu ·fv+∆R·fuv fv ·fv+∆R·fvv −hr ·fv −hs ·fv
fu ·hr fv ·hr −hr ·hr+∆R·hrr −hs ·hr+∆R·hrs

fu ·hs fv ·hs −hr ·hs+∆R·hrs −hs ·hs+∆R·hss




b =


 (NvA − NvB + AωN × (pOAo − pOBo ) − AωωωωωωωωωωωωωB × h) · fu

(NvA − NvB + AωN × (pOAo − pOBo ) − AωB × h) · fv
(NvA − NvB + BωN × (pOAo − pOBo) − BωA × f) · hr

(NvA − NvB + BωN × (pOAo − pOBo ) − BωA × f) · hs
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Figure 3: Control block diagram showing an inner feedback
linearization loop and an outer linear control loop

the outer loop achieves desired dynamics of the linear
system via full state feedback with gain matrix K. In
practice, the values of the gain matrix K are chosen to
produce a rate of convergence that outruns any potential
disturbance due to motion and shape.

Furthermore, the desired outputs, i.e. the parametric
values of the extremal pair, are continually maintained
with the knowledge of the control input vector U . This
is simply achieved by integrating the input vector U with
initial conditions extracted from the starting points. In
practice, the state vector Ψ is augmented with the input
vector U to perform all integrations in a single operation.

motion

��
µ �� U = M−1(µ − b)

U ��
∫

ẋ = U dt x �� Ψ = Ψ(x) Ψ

��

x
��

x��
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Figure 4: Control block diagram showing an alternative im-
plementation

In fact, even a simpler implementation is possible. Figure
4 demonstrates this equivalent case. Since the projection
errors Ψ can be directly calculated through equations (5)
to (8), the derived dynamic model can be replaced by
these set of nonlinear equations. Note that, although the
derived dynamic model is replaced, the controller design
stays unchanged.

It is also possible to combine the extremal pair tracking
algorithm with dynamics as discussed in section 1. One
such case is shown in Figure 5. Here, motion of the bodies
is calculated simultaneously with the maintenance of the

extremal pair between them. In this figure, the equations
of motion for the bodies are defined by a second-order
differential equation where θ represents the set of con-
figuration variables. The inertia matrix M(θ) and the
Coriolis matrix C(θ, θ̇) summarize inertial properties of
the bodies. F(t) denotes external control forces acting
on the bodies while N (θ, θ̇) includes all other frictional
and gravitational forces. Decisions about external control
forces are made by the motion controller. The motion
controller can be designed to achieve different tasks, for
example to capture influences of human acting through a
haptic interface. For this implementation, all integration
(update and maintenance) operations are combined in a
single operator.

Finally, it is important to mention that the algorithm
need not be initialized with the exact extremal points.
Any initial point within the region of attraction of the de-
signed nonlinear controller will converge to the extremal
pair since the controller is exponentially stable. More-
over the convergence rate can be adjusted by tuning the
controller gain K.

5 Simulation Results

We developed a computer simulation to verify the valid-
ity of the dynamic formulation and the effectiveness of
the control algorithm discussed in the previous sections.
Our simulations are implemented in Matlab/Simulink
and sample results are presented below.
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Figure 6: Simulation construction: two ellipsoids in rigid
motion
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Figure 5: Combining extremal pair tracking with dynamics

As a sample simulation case, two ellipsoids drawn in an
isometric view are shown in Figure 6. To indicate the
extremal distance (found by prior application of the al-
gorithm) a dashed line is shown. The extremal pair is
located at the intersection of the dashed line with the
ellipsoids.

In our implementation, we initialize the algorithm with
two points different from the extremal pair. These points
are marked by stars (�) in Figure 6. The initial error
vector (denoted by the solid line) ∆R is also drawn.

Next, both of the ellipsoids are allowed to move as rigid
bodies with specified time dependent motion (velocities
and angular velocities) and the extremal tracking algo-
rithm is started. Figure 7 demonstrates exponential con-
vergence of the normalized projection errors, where a pro-
jection error is normalized by dividing by the norm of the
current error vector ∆R and the norm of the appropri-
ate tangent vector. From Figure 7, we can conclude that
even though the initialization is not exact, the algorithm
exponentially converges to the extremal pair and main-
tains them as the surfaces move. The convergence rate is
adjustable by tuning the linear feedback gain K.
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Figure 7: Normalized projection errors versus simulation
time

6 Conclusions

We are interested in pursuing a combined simula-
tion/collision detection approach since it results in an
algorithm that is easy to implement and that makes max-
imum use of all the data available to track the extremal
points. The proposed algorithm is very suitable for both
dynamic simulation and haptic rendering due to the con-
tinuous availability of surface normals and penetration
distances that are necessary to calculate the collision re-
sponse and/or the haptic feedback.

Our algorithm treats the extremal point problem for ob-
jects modelled using parametric curves and surfaces in a
direct manner, without resorting to polyhedral approx-
imations. Thus it serves the needs of CAD/CAM and
virtual environment systems that require smoothness in-
dependent of rendering. Additionally, our algorithm is
suited to real-time implementation. Finally, our algo-
rithm features convenient tuning of convergence proper-
ties through design of the feedback gain K and enjoys
immunity to start-up errors.
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