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Model-Based Cancellation of Biodynamic
Feedthrough Using a Force-Reflecting Joystick
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Abstract— Manual control performance on-board a moving
vehicle is often impeded bybiodynamic feedthrough—the effects
of vehicle motion feeding through the operator’s body to produce
unintended forces on the control interface. In this paper, we
propose and experimentally verify the use of a motorized control
interface to cancel the effects of biodynamic feedthrough. The
cancellation controller is based on a parametric model fit to
experimental data collected using an accelerometer on the vehicle
and a force sensor on a temporarily immobilized manual control
interface. The biodynamic model and system identification ex-
periment are in turn based on a carefully constructed model of
the coupled vehicle-operator system. The impact of biodynamic
feedthrough and the efficacy of the cancellation controller are
estimated by comparing the performance of 12 human subjects
using a joystick to carry out a pursuit tracking task on-board
a single-axis motion platform. The crossover model is used as
a basis for developing three performance metrics. After first
confirming the deleterious effects of platform motion, cancellation
controllers derived from individually fit biodynamic feedthrough
models were shown to significantly improve performance. With
the cancellation controller active on-board the moving platform,
performance levels were almost half-way restored to the levels
demonstrated on the stationary platform.

Index Terms— biodynamic feedthrough, vibration feedthrough,
McRuer’s crossover model, force reflecting interface.

I. I NTRODUCTION

T HE performance achievable by a human operator using
a manual control interface to track a moving target may

be limited by various factors, including the kinematics of the
interface device, its mechanical response, and parameters of
the associated visual display. The limits of performance in pur-
suit tracking and compensatory tracking have been extensively
studied, especially in the field of aviation, where the design
of the aircraft dynamics and flight controller must take pilot
performance carefully into consideration [1] [2]. A further
limiting factor arises if the tracking task is performed on-board
a moving vehicle. Motions of the vehicle can couple through
the operator’s body and accelerations can induce inertia forces
that act on the joystick, giving rise to tracking commands quite
outside the intentions of the human operator. The phenomenon
of vehicle motion coupling through the operator’s body has
been termedbiodynamic feedthroughor vibration feedthrough
and has been studied extensively; a survey is contained in [3].

The systems in which biodynamic feedthrough plays a role
can be divided into two classes according to whether or not
the vehicle itself is under the control of the manual control
interface.
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For the class in which the vehicle is under control of the
interface, a feedback loop is closed through the operator’s
body, as the vehicle accelerations produce joystick motions
that in turn command vehicle motion. Oscillations may appear
in the human-machine system—oscillations that may grow or
become unstable with sufficient loop gain and accumulated
phase difference. Especially because these oscillations can
jeopardize the safe operation of the vehicle, they have attracted
significant attention in the literature. For example, oscillations
appearing in the roll behavior of high-performance aircraft
have been analyzed in [4]. The dynamics of both motion-
type and force-type joystick interfaces and the associated
human-machine system were analyzed by Hess [4], [5]. Hess
constructed a structural pilot-aircraft model to analyze the
roll motion including a biodynamic feedthrough model, and
models of pursuit tracking performance, vestibular feedback,
and manipulator force response. Biodynamic feedthrough also
appears in the drive dynamics of powered wheelchairs and
hydraulic excavators [6], [7]. Biodynamic feedthrough might
also play a role in inciting or exacerbating another feedback
loop whose stability is often compromised, namely Pilot
Induced Oscillations (PIO). Time delays between the action
and perceived response of the controlled element are at the
root of PIO, and occasionally the gain or phase margins can
be exceeded when the PIO loop is coupled with or disturbed
by feedthrough dynamics [8].

The second class of system in which biodynamic
feedthrough plays a role does not feature a feedback loop
through the operator’s body. In these systems the object being
moved or steered with the interface is a machine or object
other than the vehicle. Instead, biodynamic feedthrough may
be interpreted as a path by which a disturbance enters the
tracking loop (the control loop in which the operator acts as
controller, and the interface and controlled object are plant). As
vehicle passengers increasingly take on manual control tasks
while on-board ground and air vehicles, the role of biodynamic
feedthrough acting as disturbance or detractor from perfor-
mance becomes more and more relevant. Especially in modern
military operations, manual control input is demanded of crew-
members while underway. But even the design of interface to
informatics devices in civilian automobiles requires attention
to the effects of biodynamic feedthrough. This second class of
system has not been addressed in the literature.

Various approaches have been proposed to mitigate the
effect of biodynamic feedthrough. Perhaps the most straight-
forward and often effective means is to redesign the kinematics
of the interface or configure an arm or handrest to stabilize
the hand. A steering wheel, for example, is essentially immune
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to translational accelerations whereas the largely translational
displacements of the hand on a joystick make joystick in-
terfaces sensitive to translational accelerations directed per-
pendicular to the joystick axis of rotation. Another approach
involves modifying the mechanical response of the interface
device, such as increasing joystick damping [6] and/or stiff-
ness. Also, so-calledmotion sticksare considered more im-
mune to biodynamic feedthrough thanforce sticks(also called
stiff sticks) [3]. Short of interface redesign, signals within
the system comprising the vehicle, human, and controlled
element (whether or not the controlled element is the vehicle)
can also be manipulated to mitigate biodynamic feedthrough.
Gains can be reduced [6] or reduced selectively according
to frequency content using a filter (although compromised
tracking performance often results). Alternatively, a filter can
be used to remove that portion of the command signal that is
due to biodynamic feedthrough, when such filter is designed
according to a model of biodynamic feedthrough. Grunwald
et al.[9] demonstrated the utility of such a filter and Vergeret
al.extended the approach to an adaptive filter [10].

The use of a motorized control interface for cancellation
of biodynamic feedthrough was proposed in [11] and [12]
and further developed and applied in [13] and [14]. In this
approach, an estimate of the biodynamic feedthrough force
acting on the joystick is generated and applied directly to
the interface through the action of a motor coupled to its
motion. Generation of the cancellation force is accomplished
with a controller based on an estimate of the biodynamic
system transfer function and a measure of vehicle motion.
Ideally the interface itself, as the site at which the forces
cancel, should respond as if biodynamic feedthrough were not
present. As a result, the interface has a different mechanical
feel to it. Sirouspour and Salcudean [13] [14] describe the use
of a controller whose design is optimized to simultaneously
cancel feedthrough effects and match a desired admittance of
a joystick interface. The investigation covered only the case
in which the vehicle was the controlled element, and used a
model of biodynamic feedthrough based on the driving point
impedance of the operator. In a related approach, Repperger
[8] has investigated the use of a motorized joystick (haptic
interface) for mitigating PIO.

In this paper, we develop a model of biodynamic
feedthrough and develop a system identification experiment to
be used as the basis of a cancellation controller that injects
its effort through a motor coupled to the interface device.
The system identification experiment relies on a force sensor
integrated into the joystick and its temporary configuration
as astiff stick with a mechanical stop in the form of a peg.
Then during tracking operation, the peg is removed and the
motor is employed as the control actuator. We investigate
the utility of our compensation controller in the context of
a pursuit tracking task, and use the well-known crossover
model by McRuer [2] to analyze human performance with
and without the controller in place. We also incorporate
trials without vehicle motion into our experiment to establish
baseline tracking performance by our subjects. Our model
of biodynamic feedthrough is parametric (ARMA) but not
based on a multibody dynamics model of the operator. Future

work will include the development of physically-based models
and perhaps the use of adaptive cancellation controllers. In
this paper we address only the second class of systems, in
which the controlled element is not the vehicle and thus the
biodynamic feedthrough is a pathway for disturbance to enter
the tracking loop. Our present experimental results indicate
that the cancellation controller significantly improves human
performance in tracking tasks in a moving vehicle.

In the following, we begin in Section II by introducing
a model of the human operator in terms of biodynamic
coupling through his body and in terms of pursuit tracking
control performance per the crossover model. In Section III we
develop the system identification experiment and associated
parameter fit and present the means of characterizing pursuit
tracking performance. In Section IV we present our experi-
mental results, grouped under three conditions: (A) stationary
vehicle, (B) moving vehicle without compensation, and (C)
moving vehicle with compensation. We end by discussing the
merits of the cancellation approach in Section V.

II. M ODELING THE HUMAN -VEHICLE SYSTEM

In this section we develop a mathematical model of the in-
teracting human operator and vehicle—a model aimed specif-
ically at capturing the effects of vehicle motion on manual
control performance. Naturally, the most interesting part of the
system model pertains to the human operator. Our model for
the operator has two main sub-models: The first is a descrip-
tion of the mechanics of the operator’s body that is responsible
for transmitting mechanical energy between the vehicle seat
and the manual control interface. This sub-model, which we
call the biodynamic model, does not include any volitional
control. That is, it does not include human perception or
action. The second component of the operator model describes
volitional response to visual input pertaining to a pursuit
tracking task. We call this sub-model the volitional tracking
model. The development of the interacting biodynamic and
tracking sub-models shall become the basis in Section III
below for the design of a system identification experiment that
estimates parameters for a biodynamic model and the design
and experimental verification of a compensating controller
based on that model.

To begin the development of the system model, let us briefly
introduce our experimental apparatus in Figure 1. For now, the
experimental apparatus serves our purpose as a convenient, if
somewhat simplified, representative of a ground vehicle. The
apparatus will be more fully described in Section III, where
the topic will be its use in experiments aimed at verifying the
model and the cancellation of biodynamic feedthrough. Here,
it suffices to say that the apparatus is a single-axis motion
platform capable of simulating the lateral motions of a vehicle
while an operator attempts to perform a manual control task
on-board that vehicle. The operator is seated in a chair on the
platform and uses his right hand to grasp a joystick mounted on
the platform. Through the joystick, and using visual feedback,
the operator may cause a cursor on a computer screen to
follow a target that moves in an unpredictable fashion. The
target following task is modeled after the well-known pursuit
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tracking task and is representative of a large family of manual
control tasks that might be undertaken on-board a vehicle.
By adopting pursuit tracking, we are able to draw upon
well-known models of human performance such as McRuer’s
crossover model and certain associated performance metrics.

Our apparatus produces motion in a lateral direction only,
for which we draw justification from the observation that bio-
dynamic feedthrough, when it appears in a real-world vehicle,
produces motion predominantly in a particular axis and does
not seem to depend on coupling between axes. Although our
apparatus has limited workspace, it can nevertheless be used to
induce biodynamic feedthrough since the phenomenon usually
involves only small to moderate amplitude oscillations.

xv , Platform displacement

Joystick displacement, 
xj

Reference target displacement,

Ball screw 

and linear 

guides
Capstan

drive

Plant output cursor displacement, p
x

rx

Fig. 1. A human operator seated on a single-axis motion platform uses
a joystick to cause a cursor on the screen to track a target that moves in
an unpredictable fashion. The translational axis of the motion platform is
perpendicular to the rotational axis of the joystick, thus both the platform and
hand motions are in the lateral direction.

As mentioned above, we begin by making a distinction
between the passive biodynamics and the active sensorimotor
function of the human operator. The phrasepassive biodynam-
ics refers to the coupling of mechanical energy across the two
mechanical interfaces that exist between the operator’s body
and the environment. The first mechanical interface lies be-
tween the seat and operator’s trunk and the second lies between
the joystick and the operator’s hand. In contrast to the tracking
model that captures the sensorimotor function of the operator,
the biodynamic model includes only unconscious responses,
perhaps including stretch reflexes. For now, we assume that
the biodynamic model and tracking model superpose.

For each mechanical interface, a force and a velocity may be
defined to characterize the interaction. Let the interaction force
fs and common seat/trunk velocitẏxv characterize mechanical
interactions between the seat and trunk of the operator and let
the interaction forcefb and the hand/joystick contact velocity
ẋj characterize the hand/joystick interactions. Between these
four variables, there exist four transfer functions. Two driving-
point impedances, denotedZ11 andZ22, describe how vehicle
velocity ẋv and joystick velocityẋj impact the vehicle forcefs

and the joystick forcefb, respectively. The other two transfer
functions are through-impedancesZ12 and Z21 that capture

how the vehicle velocitẏxv and the joystick velocitẏxj affect
the joystick forcefb and the vehicle forcefs, respectively. The
four transfer functions are assembled together in a two-port
shown inside the dashed box in Figure 2. Note that although
the joystick rotates about a horizontal axis, we define the
displacementxj of the hand as a translational displacement,
measured relative to the platform, since the angular workspace
is small (< 30◦) and the distance from pivot to hand is large
(10 cm).

We use a feedback control model to capture the volitional
actions that the operator applies to the joystick in response
to visual input from the screen. As shown in Figure 2, the
operator applies a forceft to the joystickJ in an attempt to
minimize the errorxe between the reference signalxr and the
outputxp of the plantP . A transfer functionT characterizes
the input-output relationship of this tracking controller. The
feedback path from the plant output models visual input
to the operator. The path froṁxv through the blocks mj

accounts for the effect of vehicle acceleration on the mass of
the joystick. Assuming small joystick displacementsxj , the
equivalent massmj accounts for the inertia force that acts on
the joystick due to the acceleration̈xv of the moving vehicle.
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Fig. 2. The human operator is modelled as a two-input, two-output system
in which the input velocityẋs and output forcefs comprising port 1 capture
the interaction between the trunk and the vehicle seat, while the output force
fb and input velocityẋj comprising port 2 describe the interaction between
the hand and the joystick. The four impedances capture the input-output maps
of the two-port. The transfer functionT describes how the operator responds
to the visually observed difference between the reference signalxr and the
plant outputxp by imposing a forceft on the joystickJ . The forcefb enters
the tracking loop as a disturbance. The forcefb is the biodynamic response
of the human operator to the joystick angular velocityẋj and the vehicle
velocity ẋv .

A. Modeling the biodynamic system

To highlight the role of biodynamic feedthrough as a
disturbance to the tracking loop, the block diagram in Figure
2 may be re-arranged and simplified to arrive at the block
diagram in Figure 3. Since the vehicle mass is significantly
larger than the mass of the operator, we model the vehicle as
an ideal motion source and remove the transfer functionsZ11

andZ22. The two pathways from vehicle velocitẏxv through
Z21 andsmj may be combined by definingf ′b ≡ fb + smj ẋv

and by definingH ≡ Z21/s−mj to create the single pathway
from vehicle acceleration̈xv through the transfer function
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H shown in Figure 3. Note that the input toH is now the
vehicle acceleration̈xv . A block diagram manipulation was
used to move the driving point impedanceZ22 to its position
in feedback around the joystickJ . The role of the vehicle
accelerationẍv acting through the biodynamic modelH is
now apparent as a disturbance acting on the tracking control
loop.
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Fig. 3. In this block diagram, biodynamic feedthrough can be recognized as
a pathway for vehicle acceleration̈xv to enter as a disturbance in the tracking
loop. This block diagram follows from that in Figure 2 after removingZ12

and Z11 under the assumption that the vehicle acts as a motion source and
after definingH ≡ Z21/s−mj and movingZ22 into position as a feedback
loop around the joystickJ .

We propose to mitigate the effects of biodynamic
feedthrough on tracking by injecting an estimatef̂ ′b of the
force f ′b into the tracking loop. We will injectf̂ ′b through
the action of a motor coupled to the joystick such that its
direction opposes that off ′b. Thus f̂ ′b should cancel the effect
of biodynamic feedthrough. In Figure 1, the capstan drive that
couples a DC motor inside the joystick box to the joystick is
noted. To produce the estimatêf ′b , we assume that a measure
of vehicle acceleration̈xv is available (perhaps through an
accelerometer). We further require an estimateĤ of the
biodynamic feedthrough functionH. Insofar that the model
Ĥ is accurate, the action of̂f ′b should reduce the effect of
vehicle acceleration disturbancëxv on the tracking loop.

Construction of the estimatêH relies on data from a
system identification test that involves the human subject and
measurement of vehicle accelerationẍv and the hand/joystick
interaction force under special conditions. This system identi-
fication step takes place prior to implementation of the cancel-
lation controller, but using essentially the same hardware. The
production of vehicle acceleration̈xv (by virtue of the vehicle
itself) and its measurement with an accelerometer are already
assumed for the operation of the cancellation controller. A
force (or torque) sensor on the joystick is the new sensor
required for the system identification step. A force sensor
on the joystick, however, can only measure the total force
f , which is the sum of the biodynamic forcef ′b, the volitional
force ft, and the driving point impedance responsefjb of
the operator (see Figure 3). However, if joystick motion is
prevented, say, by a peg that locks it in a vertical position
during the system identification test, then the impedanceZ22

will not be excited andfjb = 0. If further the subject is not
given any task and asked to not produce any force by volition,
then ft can be assumed small. Under these conditions, and
assuming the force and acceleration signals in question can
be represented as linear functions of the Laplace variables,

then

H(s) =
F ′b(s)

s2Xv(s)
=

F (s)
s2Xv(s) ẋj=0, ft=0

(1)

A more complete description of the experiment used to con-
struct the estimatêH(s), using a pegged joystick and an “idle”
operator shall be taken up in Section III below.

B. Modeling volitional tracking

In contrast to the biodynamic model, a model of an operator
whose hand on the joystick responds to visual input to cause
a cursor or cross-hairs to track a moving target cannot rely
strictly on biomechanics. Cognitive processes, in particular
visual perception and volitional muscle action are at play in the
transfer functionT that is the controller in the tracking loop.
High-level cognitive processes such as feedforward control or
path planning can be neglected, since the target moves in an
unpredictable fashion, has no preview, and must therefor be
continually monitored. If there exists a transfer function in
the plant (for example an integrator from steering angle to
vehicle heading, as in the simplest model of driving) then the
operator must take such behavior into account if he is to have
any success at tracking with such a plant. Fortunately, pursuit
tracking has been studied extensively and is richly reported in
the literature [2]. We have adopted the pursuit tracking task
precisely because such models exist, based on experimental
observation of human behavior. The most famous of these
models is the “crossover model”, first introduced by McRuer
[2].

McRuer’s crossover model describes the human controller
not as an isolated input-output system, but as a member of the
open-loop transfer function. The open-loop transfer function,
under unity gain feedback as in Figure 3, is the cascade of the
controller T , the joystick dynamics, and the plant dynamics
P . Let us denote the feedback interconnection ofJ and Z22

together with the integrator asJ∗. Then the crossover model
states that the open-loop transfer functionTJ∗P has the
frequency response, in the region of crossover, of an integrator
with a certain time delay. The crossover frequencyωc is that
frequency for which the response has unity or 0dB gain. In
symbols,

T (jω)J∗(jω)P (jω) =
ωce

−jωTd

jω
(2)

where the time delayTd depends on the operator, the type
of plant and the reference signal. According to the crossover
model, this description of the open-loop transfer function holds
true in a 1-1.5 decade frequency range centered about the
crossover frequency [1].

Such an open-loop transfer function (basically an integrator)
is simply a good idea, in basic controller design terms. The
high gain at low frequencies facilitates good tracking of the
slower components of the reference signal (with frequencies
below the crossover frequency). The low gain at high frequen-
cies ensures high frequency noise suppression. Associated with
an integrator is a 90◦ phase margin, some portion of which
will be consumed by the pure time delay, another portion
of which will remain as net phase margin at the crossover
frequency. The integrator, with its gross 90◦, is a suitable
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compromise between performance (which would produce less
available phase margin) and stability robustness. What the
human operator evidently does when acting as a controller in
the pursuit tracking task is to choose (or achieve) a crossover
frequencywc and time-delayTd, then invert or compensate
for the plant and joystick dynamics to produce an open-loop
transfer function of an integrator with time delay (as in Eq.
(2)).

Ample experimental evidence reveals that trained human
operators can extract good tracking performance from various
plants, yielding open-loop transfer functions in the form of
Eq. (2). Values forωc and Td have even been tabulated for
various types of reference signal and various types of plant
dynamics, includingK, K/s, andK/s2, whereK is a gain
[1]. In general, the more difficult the task, the lower the
crossover frequencyωc and the higher the time-delayTd. In
our experiments, we shall adopt a simple plant dynamics: unity
gain or P = 1. We shall also propose the use ofωc as a
performance metric.

Note that we have modeled the human as a force source,
not as a motion source, thus the joystick is a double-integrator
and the plant is unity gain. An alternative would have been
to model the human as a motion source, in which case
the joystick impedance might have been neglected and the
joystick/plant transfer function would simply be unity.

III. M ETHODS

Two distinct experiments were used in conjunction to
construct and test our approach to biodynamic feedthrough
cancellation. The first is aimed at constructing the modelĤ
of the biodynamic system, or of determining parameter values
for a model whose form has been assumed. The particular
model we used is a auto-regressive moving average (ARMA)
model. This topic will be taken up in section III-A. The second
experiment is designed to test the efficacy of the cancellation
controller at improving tracking performance. For the design
of the second experiment, we pay particular attention to
the choice of the reference signal. Our aim is to choose a
reference signal that will maximize the information about
tracking performance that can be extracted from the data. This
topic is discussed in section III-B. Finally, subsection III-C
presents the protocol used in the first and second experiments,
describing the tasks undertaken by the human subjects.

A. Identification of the biodynamic system

For the biodynamic model, we assumed a model structure
in the form of a difference equation with constant parameters
ci, (i = 0, 1, ..., 4) anddj , (j = 1, ..., 4)

f ′b(n) =
4∑

i=0

ci ẍv(n− i)−
4∑

j=1

dj f ′b(n− j), (3)

where the signalsf ′b and ẍv are represented in discrete time
and n indexes discrete samples. The constantsci and dj are
to be determined by fit to experimental data. To re-arrange the
difference equation into a structure useful for fitting parameter

values, we defined a data matrixA and a parameter vectorb
as

A = [ẍv(n), . . . , ẍv(n− 4), −f ′
b
(n− 1, ) . . . , −f ′

b
(n− 4)]

b = [c0, . . . , c4, d1, . . . , d4]T ,
(4)

where underbars on̈xv and f ′b indicate column vectors of
discrete data that march back in time by row and arguments
that indicate shifting of the entire column in discrete time.
Thus the construction of matrixA facilitates the least-squares
solution for the parameters contained inb using the well-
known pseudoinverse form

b = (AT A)−1AT f ′
b
(n) (5)

The form of the modelĤ in Eq. (3), in particular the
fourth order and zero relative degree, were chosen based on
observations of the experimental transfer function estimate
(MATLAB function tfe ) constructed from experimental data
of acceleration and force. Data were collected using white
noise to produce motion of the platform, whose accelerationẍv

was measured with an accelerometer, filtered with an analog
anti-aliasing filter, and recorded. During this time the platform
reference signal was white noise bandpass filtered to 0.7-
4 Hz. The maximum amplitude accelerations recorded were
0.75 g. A human subject sat in the platform chair with their
hand grasping the joystick but not performing any task. The
joystick’s angular position was fixed relative to the platform
with a snug-fitting steel peg inserted through its structure. A
load cell in the stem of the joystick sensitive to shear forces
measured the joystick forcef ′b, which in turn was anti-alias
filtered and recorded. Although platform motion control was
managed at 1000 Hz, data recording occurred at 100 Hz and
the test lasted for 2 minutes. Before processing, the data were
low-pass filtered (fifth order Butterworth filter,fc=10Hz) and
down-sampled to 50 Hz. A typical experimental run for a
representative human subject produced the transfer function
estimate shown in Figure 4 as a swath of dots on the magnitude
and phase versus frequency axes. Two peaks separated by a
notch at about 6 Hz appear in the magnitude plot, supporting
the choice of a fourth order model. Higher order models did
not produce better fits. Since the magnitude is approximately
flat at high frequencies and the phase generally starts and
returns to−180◦ at high frequencies (a trend observed to hold
generally across subjects), a relative degree of zero was chosen
for the model.

The continuous traces on the Bode plot in Figure 4 show
the frequency response of the model fit to the same data. The
model parameters, or coefficients in the difference equation
were computed using Eq. (5) and this model was excited with
white noise as vehicle acceleration to produce a simulated
joystick force response that in turn was fed into the MATLAB
tfe function.

B. System identification of volitional tracking

In contrast to the parametric form of the model used for
system identification of the biomechanical subsystem, we
used a non-parametric model for the tracking loop. We are
primarily interested in an expression of the tracking loop in
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Fig. 4. The frequency response of the forcef ′b to the excitation̈xv during
the system identification test is shown for one subject. The Bode plot of the
modelĤ fitted on the experimental data is shown in a continuous line.

the frequency domain, in particular the magnitude and phase
response of the open-loop transfer function from the error
signalxe to the plant outputxp. This form is inspired by the
crossover model. We chose this form in the hope that certain
characteristics such as the crossover frequency might become
suitable performance metrics. To maximize the information to
be extracted from the data, we paid particular attention to the
design of the reference signalxr to be tracked.

n(t)

r(t)
T

y(t)yl(t) +

+

Fig. 5. A generic nonlinear system expressed as the sum of adescribing
functionT and a remnantn(t).

To introduce the design of a reference signalxr that best
facilitates the identification of the open-loop transfer function
of the tracking loop, let us consider the generic system shown
in Figure 5. Let the transfer functionG from r(t) to y(t) be
expressed as the sum of a describing functionT and a remnant
or noise inputn(t). Since we assume that the signalsyl(t) and
n(t) are not measurable, the challenge is to designr(t) such
that the best estimatêG of T can be extracted from the signals
r(t) andy(t).

Beginning with the cross-correlation functionφry(τ), de-
fined as

φry(τ) = lim
θ→∞

1
2θ
·
∫ θ

−θ

r(t + τ)y(t)dt, (6)

and the autocorrelation functionφrr(τ) defined similarly,
one may divide the cross-correlation spectral density (CSD)
Φry(jω) by the power spectral density (PSD)Φrr(jω) to
obtain an estimatêG for the transfer functiong(jω), where
Φry(jω) and Φrr(jω) are the Fourier transforms ofφry(τ)
andφrr(τ), respectively.

Because the Fourier transform and cross-correlation are
linear operators, one may write:

Ĝ(jω) = Φry(jω)
Φrr(jω) =

Φr(yl+n)(jω)

Φrr(jω) = T (jω) + Φrn(jω)
Φrr(jω)

= T (jω) +
R∞
−∞ e−jωτ ·φrn(τ)dτ

Φrr(jω)
(7)

which expresses the estimatêG as the sum of a describing
function T (jω) and a remnant or error term. The error term
can be made small ifr(t) andn(t) are uncorrelated by using
a maximally long test time. Alternatively, the error term may
be minimized by increasing its denominator, or increasing the
value of the PSD of the reference signal for the frequency
range of interest. Since the expression in Eq. (7) holds at any
frequencyω = ωk, an estimateĜ(jωk) closest toT (jωk) at
that frequency can be obtained by exciting the system with
r(t) = L sin(ωk), whereL is a limit set to avoid saturations
in the signalsr(t) or y(t). This observation suggests a test
paradigm in which the frequency responseĜ is reconstructed
from a set of estimates ofT (jωk), each taken at a particular
frequencyωk. The collection of test frequencies are chosen
to span the frequency range of interest. For the describing
function T , the estimates can be made at the same time
using a sum of sinusoids for the input signalr(t). If it is
further supposed thatT is linear and time invariant (LTI), then
superposition holds and the resulting estimate is not dependent
on the particular amplitudes or frequencies chosen inr(t).
The magnitude and phase estimates are available only at each
frequencyωk, and appear as isolated dots on a Bode plot.
The estimateĜ is then constructed by fitting or interpolating
among these dots.

This approach has been used in previous work on pursuit
tracking. It is common practice, in fact, to report the frequency
response of pursuit tracking using isolated points on a Bode
plot [15], [2], [5], [16] and [17].

In the present work, a sum of fifteen sinusoids was used for
the reference signalxr(t). Even though this signal is periodic,
it is random appearing due to its complexity and therefor
eliminates precognitive tracking. Special attention was paid
to the choice of frequencies and their amplitude, following in
part the recommendations in [18]. To ensure that the reference
signal had zero mean over the 180 second test time, the period
of each sinusoid was chosen to be an integer ratio of 180. This
guarantees that each sinusoid starts and ends at the same phase.
Also, the frequencies of the component sinusoids were chosen
to be relative prime multiples of the fundamental frequency of
0.0055 Hz. Since the crossover frequency for each subject was
expected to lie between 0.1 Hz and 0.6 Hz, the frequencies of
the fifteen sinusoids were distributed evenly (on a logarithmic
frequency scale) in the range between 0.01 Hz and 4 Hz. The
prime multipliers were: 2, 3, 5, 7, 11, 17, 23, 37, 59, 87, 131,
199, 310, 467, and 719.

The amplitudes of the 15 sinusoids were enveloped with an
exponential function of frequency as follows:

xr = 0.75
15∑

k=1

e−0.14(k−1) sin(ωkt + φk) (8)
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The decay rate−0.14 and the scaling factor0.75 were deter-
mined experimentally so as to keep the cursor inside the screen
but utilize much of the available space. Also, attention was
paid to make sure the signal would contain sufficient energy
at high frequencies to impose a suitable tracking challenge.
The phase anglesφk of the sinusoids were randomized before
each test to eliminate any use of memory.

Once the fifteen sinusoids were constructed, a code was
written to extract the open-loop transfer function of tracking,
G(ωk) = Xp(ωk)/Xe(ωk) for the fifteen angular frequencies
k = 1, . . . 15. The integral in Equation 6 and the Fourier
transforms needed to compute the CSD and the PSD were
carried out numerically in MATLAB.

C. Human subject test protocol

Human subject tests were used to experimentally verify
the proposed solution. The subjects carried out a pursuit
tracking task with a motion stick in the motion platform
under three conditions. First, the subject used the joystick to
track a target while the platform remained stationary. Tests
under this condition were used to establish baseline tracking
performance for each subject. Second, the subject used the
joystick to track a target while the platform moved under
white noise input and without cancellation torque on the
joystick. Tests under this condition were used to demonstrate
tracking performance degradation due to ride motion. In tests
under the third and final condition, the subject used the
joystick to track a target while the platform moved under
white noise input and and while the cancellation controller
imposed torques on the joystick through the joystick motor.
Tests under this third condition were used to determine the
extent to which the controller restores tracking performance
in a moving environment.

Twelve subjects were tested, ten men and two women aged
22-31. The subject pool did not include the authors. Each
subject provided informed consent according to University of
Michigan human subject protection policies. Each subject had
several hours of past experience with our apparatus using the
joystick for tracking with and without the platform moving.
Each subject was given at least three minutes of additional
practice time before each test to decrease learning effects. The
three tests were carried out in a randomized order for each
subject to average out the effects of learning and fatigue. The
subjects were not told when the compensator was on or off.
Each subject was buckled up in a seat attached to the platform
using a four-point harness. Each subject grasped the single-
axis joystick with his or her right hand and were instructed
not to use the elbow rest.

Our experimental apparatus, introduced above in Figure 1,
features a 2.24 kW brushless DC servo motor (Koll Morgan
Goldline B 404-B-A3) that moves the platform on linear
guides by means of a ball screw. The platform moves only
in the lateral direction, and has a±0.15 m workspace. A
high-resolution resolver is integrated into the motor housing
and the motor moves under the control of a position feedback
loop closed within the motor amplifier. This position follower
is commanded with filtered white noise generated by a PC

and transmitted through an interface card by ServoToGo Corp.
To ensure that the platform excursions do not exceed its
workspace, the position reference signal was digitally band-
pass filtered to 0.7-2 Hz, as mentioned above. The platform
bandwidth was confirmed to exceed 6Hz. The resulting accel-
erations were characterized as 1.6 m/s2 RMS and 7.5 m/s2

peak.
The joystick has an angular workspace of±30◦ and features

encoder output with a resolution of 4096 counts per revolution.
The joystick is coupled to a 150W DC servo motor (Maxon
RE 040) through a capstan drive. A 15 inch computer monitor
was positioned on fixed ground about 1.5 m in front of the
subject. White lines 1 mm thick on a black background were
used to draw a square target box of 30 mm width that moved
horizontally on the lower part of the screen according to the
signal xr(t). White lines were also used to draw a cursor
in the form of a cross that moved under the control of the
plant outputxp(t). The vertical position of the joystick placed
the cursor in the center of the screen. The plant outputxp

was proportional to joystick angular displacement 1 rad=0.6
m screen displacement.

1) Performance Metrics:To quantify the success of track-
ing under the various experimental conditions, three perfor-
mance metrics were defined. The first metric is the root-mean
square average tracking error, denoted RMS. The second,
called Dwell Ratio and denotedrd, was defined as the ratio of
time the cursor lay inside the square target relative to the total
test time. Thistime-on-targetdefinition is based on the notion
that in many applications the target can be hit even if the
aiming device does not point exactly at the center. The third
is the crossover frequencyfc in Hz, defined as the frequency
at which a line of -20 dB/decade slope fit to the magnitude
frequency response estimate crossed the 0dB axis. After the
fifteen dots were obtained on a frequency domain plot using
Equation 7, a straight line with a slope constrained to -20
dB/dec was fit to the first eleven points using the method
of least squares. The lowest eleven frequencies range up to
1 Hz, which is the typical upper limit of human tracking
performance. A small RMS error, a large Dwell Ratio and
a large crossover frequency are indicative of good tracking
performance.

In addition to using single numbers that characterize an
entire three minute tracking task for each human subject, we
also defined two moving averages. The first such average was
defined for the Dwell Ratio using an indicator function returns
one whenever the cursor is inside the target box, and zero
otherwise, then averaging this function over a running 10
second window throughout the test. The mean and standard
deviation of the results obtained for the twelve subjects were
computed and plotted against time for each test condition.
The second moving average was defined for RMS error, also
computed as the average over a running ten second time
window.

IV. RESULTS

After fitting an individualized biodynamical model to the
characterization data taken with the pegged joystick, the
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tracking performance of each subject was tested under each of
three conditions: (A) baseline (stationary platform), (B) mo-
tion disturbance uncompensated and (C) motion disturbance
compensated. Results indicate that motion disturbance has a
significant deleterious effect on tracking performance and that
compensation significantly reduces that effect. Performance
was significantly improved with the compensating controller,
but not quite restored to baseline levels. Since the compensat-
ing controller used for each subject was based on a biodynam-
ical model individualized to that subject, we first present and
compare the 12 biodynamical model fits. We then review the
performance differences between the three conditions using
our various performance metrics, including RMS error, Dwell
Ratio (time on-target), and crossover frequency.

A. Biodynamical model fits

Using the technique based on a least squares fit to theẍv and
f ′b data presented in the previous section, a biodynamic model
was constructed for each of the 12 subjects. Values for the 9
parameters in the difference equation model locate four zeros
and four poles in the discrete z-plane or equivalently, certain
notches and peaks in the frequency domain. Although the fit
was performed using time-domain techniques, here we present
and compare the frequency responses of the 12 biodynamic
models. Figure 6 shows the frequency response of the 12
biodynamic models on 12 Bode plots. Each biodynamic model
fit features a notch in magnitude between 5 and 8 Hz followed
by a small peak. Because a form with zero relative degree
was chosen, the magnitude flattens and phase returns to 180◦

at high frequencies. We are most interested in the features
that appear in the 0.1-10 Hz range, since this is the frequency
range that characterizes human tracking performance and bio-
dynamic feedthrough (crossover frequencies are expected to lie
between 0.1 and 1 Hz [1]). The nominal 180◦ phase difference
between ẍv and f ′b is appropriate to our sign convention
adopted forxv and f ′b and Newton’s first law (that inertia
forces oppose the direction of acceleration). Note that if one
uses 10dB to approximate the magnitude at low frequencies
(which appears in Figure 6 to generally correspond to the DC
gain) then the biodynamic forcef ′b is moderately small at 3.2
N per 1 m/s2 acceleration or 32 N per g of acceleration.

Note that the biodynamic model can be expected to be a
function of the subject’s body posture, the restraints used, the
configuration of the joystick axis, the joystick length, and the
degree of muscle co-contraction adopted by the subject, and
tightness of grip. The biodynamic model also reflects such
effects as the stretch reflex and possibly other reflex loops,
but hopefully does not reflect any effects of volitional control
(something that certainly depends on conformance by each
subject to experiment instructions).

B. Tracking Performance Results

Before presenting summary results and statistics across the
12 subjects and across the 180 second trial time, let us first
present some time trajectories. Figure 7 shows trajectories of
the referencexr(t) and plant outputxp(t) for one subject
during a typical 20-second period of the 180 second trial. In
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Fig. 6. System identification results for twelve subjects. The models show
similar trends, but they can not be substituted with a single, average model.
The current solution necessitates the construction of a separate controller for
each individual.

separate plots, tracking performance is shown for each of the
three conditions (A) stationary platform, (B) moving platform
uncompensated and (C) moving platform compensated. In
each of the three plots, the solid line is the reference signalxr

and the dashed line is the plant outputxp. It can be seen in
(A) that the operator produces an outputxp that is a delayed
and low-pass filtered version ofxr. In plots (B) the tracking
performance is noticeably deteriorated by the presence of
platform motion feeding through the biodynamic subsystem. In
(C) the compensator has restored tracking performance almost
back to the level of the stationary platform case (A).

For each condition, the tracking error or difference between
the xr and xp signals was used to compute an average
error across the 12 subjects. These average errors are further
processed using RMS computed over a moving 10 second
window and presented as the thick black line in Figure IV-
B. Gray shading extends one standard deviation above and
below the RMS trace. Comparing plots for the conditions (A),
(B), and (C) in Figure 8 reveals that platform motion degrades
performance and increases variance across the 12 subjects and
that compensation partially restores that performance but does
not significantly decrease the variance across the 12 subjects.

Figure 9 shows similar moving averages of the Dwell Ratio
(time-on-target) for the 12 subjects. The Dwell Ratio is the
fraction of time the cursor lay inside the box-shaped target
relative to the total test time. The traces in Figure 9 indicate
the fraction of time that all 12 subjects located their cursors
within target during a 10 second moving window. A Dwell
Ratio value of 1 is always and 0 is never on target: higher
values indicate better performance. Figures 9 (B) and (C) show
that platform motion degrades performance while Figure 9 (C)
shows again that compensation partially restores performance.

Note that the traces in Figures 8 and 9 show traces over the
full 180 seconds of test-time per trial, from which trends across
the 180 seconds might be inferred, trends such as learning,
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Fig. 7. Twenty seconds of the referencexr and plant outputxp signals are shown for a typical subject under the three experimental conditions: (A) stationary
platform (B) moving platform without compensation (C) moving platform with compensation for biodynamic feedthrough.

loss of attention, or fatigue. Performance seems steady for the
most part, with the possible exception of condition (B)-Moving
platform without compensation, where a slight increase in
RMS error and drop in Dwell Ratio over the 180-second trial
is apparent. We did not, however, evaluate the significance of
this trend.

Summary statistics were computed for the RMS error and
Dwell Ratio by condition across the 12 subjects and collapsed
over the 180 second trial period. The median RMS errors for
the three conditions are presented as lines through the middle
of the boxes in the box-and-whisker plot in Figure 10. The
boxes enclose the lower and upper quartiles and the whiskers
show the range of the data. Similarly, the box-and-whisker plot
in Figure 11 shows the summary statistics for the Dwell Ratio
by condition across the 12 subjects and collapsed over the 180
second trail period. Differences in RMS error and Dwell Ratio
by condition are clearly evident in Figures 10 and 11.
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Fig. 10. Boxplot of RMS error values across the twelve subjects under the
three test conditions
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Fig. 11. Boxplot of Dwell Ratios across the twelve subjects under the three
test conditions

We are particularly interested in the nature of the lowpass
filter that characterizes the difference between the reference
signalxr(t) and the plant outputxp(t). A frequency response
plot of the closed loop transfer functionXp(jω)

Xr(jω can be
expected to have flat response for low frequencies and by
the same token, the open-loop transfer functionXp(jω)

Xe(jω can
be expected to show higher magnitude at low frequencies.
Also, the frequency response under conditions (B) or (C) could
be expected to see increased amplitude at those frequencies
where significant energy feeds through the biodynamic system,
disturbing the tracking loop. Using the methods outlined in
Section III above, we extracted the magnitude and phase
response at a set of 15 frequencies for a particular set of input
sinusoid amplitudes. In accordance with the crossover model,
we fit lines of -20 dB/decade slope to the series of magnitude
response points, using only the first 11 points (those near
the resulting crossover frequency). Figure IV-B presents the
frequency response of the transfer functionG that relates the
outputxp to the errorxe for a representative subject, for each
of the conditions. The estimates at each of the 15 frequencies
are shown as dots in both the magnitude and phase plots. For
each condition a line of -20 dB/decade slope was fit to the
first 11 magnitude points, as shown. From those best-fit lines,
the crossover frequencies were determined for each condition.
In Figure 12 a crossover frequency of 0.4 Hz can be seen for
the stationary platform case in (A), of 0.1 Hz for the moving,
uncompensated case in (B) and of 0.25 Hz in the moving,
compensated case in (C). This trend (lower crossover with a
moving platform, but partial restoration with compensation) is
typical of all 12 subjects.

Figure 13 presents a box-and-whisker plot of the crossover
frequency values obtained for the twelve subjects under the
three experimental conditions. The changes in crossover fre-
quency demonstrate tracking performance degradation as a
result of platform motion and a largely restored tracking
performance as a result of compensation.

To analyze statistical significance of the differences by
condition, multiple-factor analysis of variances (MANOVA)
was applied to the three performance metrics (RMS error,
Dwell Ratio, and crossover frequency), revealing significant
main effects due to condition and subject, with no significant
interaction effects. Thereafter, paired t-tests were applied to
each of the performance metrics comparing conditions (A)
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Fig. 8. RMS error averages with ten second moving time windows under the three test conditions
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Fig. 9. Dwell ratios averages with ten second moving time windows under the three test conditions
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Fig. 12. Open loop transfer function of tracking under the three test conditions
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Fig. 13. Boxplot of crossover frequencies across the twelve subjects under
the three test conditions

and (B). These results are presented in Table I, showing the
means and difference between the means, and p-values in four
columns. Using anα level of p = 0.01, the results show
statistically significant degradation in tracking performance
with the addition of platform motion. Paired t-tests were also

TABLE I

CHANGES IN PERFORMANCE METRICS, TRACKING IN STATIONARY AND

MOVING PLATFORM, WITHOUT COMPENSATION

Metric A. No motion B. Motion ∆ p-value
RMS error 4.04 9.62 5.58 1.79e-9

rd 0.48 0.23 -0.25 1.5e-12
fc, [Hz] 0.25 0.10 -0.15 5.67e-7

TABLE II

CHANGES IN PERFORMANCE METRICS, TRACKING IN MOVING PLATFORM,

WITHOUT AND WITH COMPENSATION

Metric B. No comp. C. Comp. ∆ p-value
RMS error 9.62 7.01 -2.61 4.05e-6

rd 0.23 0.31 0.08 4.07e-5
fc, [Hz] 0.10 0.14 0.04 0.0047

applied to the three performance metrics comparing conditions
(B) and (C) (with motion but without and with compensation,
respectively). These results are presented in Table II. This
table shows that the addition of the compensating controller
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significantly improves tracking performance according to all
three performance metrics.

V. D ISCUSSION ANDCONCLUSIONS

Manual control is significantly more difficult onboard a
moving vehicle than on solid ground. Vehicle motion affects
human perception and human action in ways that are depen-
dent on body configuration, on vibration frequency, and on
the configuration of the axes of the manual control interface.
We have shown how a model-based controller acting through
a motorized joystick can be used to mitigate the effects of
vehicle motion on manual control. We developed our model
for biodynamic feedthrough based on a careful consideration
of the operator’s body as a two-port between the seat and the
joystick handle. Even if the vehicle is assumed to act like
a perfect motion source on the operator’s body, two transfer
functions are still at play: a through-impedance relating vehicle
motion to joystick force and the driving-point impedance of
the operator’s body as seen by the joystick. These were both
considered in the design of a system identification experiment
aimed at producing a model suitable for cancellation of
biodynamic feedthrough.

Results indicate that the cancellation controller performs
quite well. Performance differences were also noticeable to
the experimental subjects. In post-experiment interviews, the
subjects indicated that they felt comfortable with the compen-
sating controller, that they felt its action in the feel of the
joystick but did not find it distracting, and that they trusted it
to help improve their performance.

The objective of our future work is to compare the per-
formance improvement offered by a motorized joystick to
improvement available from other means, including changes
to body configuration and degrees of freedom available in the
manual interface, use of an armrest or other constraint, and use
of a model-based filter rather than controller acting through
a motor. We are also interested in using structures for the
biodynamic feedthrough function that are based on multibody
dynamic models of the human operator. We expect that such
models might be more capable of extrapolation or of predicting
the relative merits of various mitigating approaches. Current
work that will be reported in a subsequent paper is focused on
the sister class of systems, in which biodynamic feedthrough
closes a loop between the vehicle and joystick.
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[12] S. S̈ovényi and R. Gillespie, “An investigation of vibration feedthrough
and feedthrough cancellation in joystick controlled vehicles.,”2003
International Mechanical Engineering Congress and R and D Expo,
IMECE2003-41598, Washington, D.C. USA, ASME Dynamic Systems
and Control Division, DSC, vol. 72, no. 1, pp. 567–576, 2003.

[13] M. R. Sirouspour and S. E. Salcudean, “Robust controller design for
canceling biodynamic feedthrough,”8th International Symposium on
Experimental Robotics, ISER, July 8-11, 2002.

[14] M. Sirouspour and S. Salcudean, “Suppressing operator-induced oscilla-
tions in manual control systems with movable bases,”IEEE Transactions
on Control Systems Technology, vol. 11, no. 4, pp. 448–459, July 2003.

[15] D. T. McRuer, R. W. Allen, D. H. Weir, and R. H. Klein, “New results in
driver steering control models,”Human Factors, vol. 19, no. 4, pp. 381–
397, 1977.

[16] R. Hess, “Theory for roll-ratchet phenomenon in high performance
aircraft,” Journal of Guidance, Control and Dynamics, vol. 21, no. 1,
pp. 101–108, Jan-Feb. 1998.

[17] D. Johnston and B. Aponso, “Design considerations of manipulator and
feel system characteristics in roll ratcheting,”NASA CR-4111, Feb. 1988.

[18] D. W. Repperger, D. B. Rogers, J. W. Frazier, and K. E. Hudson, “A task
difficulty - G stress experiment,”Ergonomics, vol. 27, no. 2, pp. 161–
176, 1984.




