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Abstract. We introduce from first principles a synthetic aperture radar (SAR) imaging and target motion

estimation method that is combined with compensation for radar platform trajectory perturbations. The

main steps of the method are (a) segmentation of the data into properly calibrated small apertures, (b)

motion or platform trajectory perturbation estimation using the Wigner transform and the ambiguity

function of the data, in a complementary way, (c) combination of small aperture estimates and construction

of high resolution images over wide apertures. The analysis provides quantitative criteria for implementing

the aperture segmentation and the parameter estimation process. X-band persistent surveillance SAR is

a specific application that is covered by our analysis. Detailed numerical simulations illustrate the robust

applicability of the theory and validate the theoretical resolution analysis.

1. Introduction.

In synthetic aperture radar (SAR) we want to image the reflectivity of a given surface using an antenna

system mounted on a platform flying over it, as illustrated in Figure 1. Information about the unknown

reflectivity is obtained by emitting periodically at rate ∆s probing signals f(t) and recording the echoes

D(s, t), indexed by the slow time s of the SAR platform displacement and the fast time t of the probing

signal. The slow time parametrizes the location ~rp(s) of the platform at the instant it emits the signal, and

the fast time t runs between two consecutive illuminations (0 < t < ∆s).

An image is formed by superposing over a platform trajectory segment of arc length (aperture) a, the

data D(s, t) match-filtered with the time reversed emitted signal f(t), and back propagated with the round

trip travel times τ(s, ~ρ I) from the platform to the imaging points ~ρ I ,

I(~ρ I) =

∫ S(a)

−S(a)

ds

∫
dtD(s, t)f

(
t− τ(s, ~ρ I)

)
=

∫ ωo+πB

ωo−πB

dω

2π

∫ S(a)

−S(a)

ds f̂(ω)D̂(s, ω)e−iωτ(s,~ρI). (1.1)

Here hat denotes Fourier transform, the bar stands for complex conjugate, B and ωo are the bandwidth and

central frequency of f(t) respectively, S(a) is the slow time range over the aperture of length a, and

τ(s, ~ρ I) = 2|~rp(s)− ~ρ I |/c (1.2)
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Figure 1. Setup for synthetic aperture imaging.

is the round trip travel time from the platform to the imaging point ~ρ I . See Figure 1 for an illustration of

the imaging setup.

The basic theory of SAR imaging is presented in [9, 13, 8]. The imaging function (1.1) can be modified

in the case of large apertures by introducing a weight factor W (s) that accounts for the geometrical spreading

of the wave field over the length of the aperture

IW (~ρ I) =

∫ ωo+πB

ωo−πB

dω

2π

∫ S(a)

−S(a)

dsW (s)f̂(ω)D̂(s, ω)e−iωτ(s,~ρI). (1.3)

The weight factor is often approximated by W (s) ≈ |~rp(s)− ~ρ I |. It can be calculated exactly in the case of

simple platform trajectories, so that the point spread function is as tight as possible [6, 15, 9].

Our main objective in this paper is to image moving localized reflectors, or targets, that can be tracked

in real time by processing data over sufficiently small sub-apertures. We introduce a process based on the

Wigner transform and the ambiguity function of properly segmented small aperture data, that can either

estimate the target motion or compensate the SAR platform trajectory perturbation. The latter process is

called autofocus. It is only after the motion estimation and autofocus have been carried out over successive,

overlapping segments of the trajectory, that we can compute the final image over an extended aperture,

using an imaging function like (1.3). This approach can be applied to a wide range of SAR imaging systems,

including X-band persistent surveillance SAR.

The main steps in the analysis of SAR imaging with motion estimation and autofocus are as follows.

First we segment the data into small apertures and find analytically under what conditions phases can

be linearized so that computationally efficient local Fourier transforms can be used. Next we describe an

approach that estimates incremental target motion relative to the SAR platform, using the location in the

phase space of the peaks of the Wigner transform and the ambiguity function of the data. Moreover, we

show that the Wigner transform and the ambiguity function provide complementary information and that

they have different resolution. Most of the analysis assumes data in a time window containing the echoes

from a single strong target, but we consider the case of multiple targets, as well.

Note that it is only the relative motion between the target and the SAR platform that appears in the
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problem. Thus, when imaging a single strong target, we cannot estimate simultaneously its speed and the

platform trajectory perturbations. To decouple the motion estimation from the autofocus process we need

a complex imaging scene, with multiple targets that move at different speeds. We consider in this paper

the case of multiple strong stationary targets, and show under which conditions we can carry the autofocus

process. Because the Wigner transform and the ambiguity function have multiple peaks in this case, we use

their centroids[2, 3] to estimate the platform trajectory perturbations. The results extend easily to multiple

targets that move in the same way, as a group. The case of multiple targets in different motion is not

discussed here, because the phase space approach alone does not work. It must be complemented with a

data pre-processing (filtering) step that will be presented in a different paper.

That the Wigner transform is a natural tool for detection and imaging of moving targets has been

known. For example, the estimation of target motion from the peaks of the Wigner transform is considered

in [11, 10]. The robustness of the estimation to additive noise and extensions to cases with few targets are

addressed in [3]. See also [16, 17] for experimental results. Alternative approaches to autofocus are given in

[14, 12, 4]. The main result of this paper is the theory of estimating target motion and compensating for

platform trajectory perturbation using in a complementary way the Wigner transform and the ambiguity

function. It includes the analysis of robustness to uncertainty of the flight path and of the initial target

locations.

The paper is organized as follows. We begin in Section 2 with a mathematical model of the SAR data

and the range compression processing. The first appendix provides a summary of the relevant physical

parameters that are typical in X-band persistent surveillance SAR. In Section 3 we carry out a target

motion estimation using the Wigner transform and the ambiguity function of the range compressed data.

In Section 4 we apply the results to the autofocus problem. These two sections show how by identifying

the peaks in the Wigner transform and ambiguity function we can estimate parameters that can be used for

either improving target motion estimation or for compensation for SAR platform trajectory perturbations.

The case of multiple stationary targets is considered in Section 5. In Section 6 we present the results of

detailed numerical simulations, first for target motion estimation alone, and then for autofocus, without

target motion. The latter include results for multiple targets. We end with a summary in Section 7.

2. Mathematical model of the data.

To study the resolution of motion estimation and autofocus with phase space methods based on Wigner

transforms and ambiguity functions, we use a simple model of the SAR data. It corresponds to the reflectivity

R(t,x) of a small (point-like) moving target. The target trajectory is an arbitrary curve in the imaging

surface ~x = (x, z = h(x)), with elevation z = h(x). We suppose that it is smooth enough to approximate the

motion locally, between two consecutive illuminations t ∈ (0,∆s), by translation from ~ρ(s) = (ρ(s), h(ρ(s)),

at speed

~u(s) = (u(s),∇h(ρ(s)) · u(s)) (2.1)

on the imaging surface. For simplicity of the exposition, we take a flat surface z = h(x) = 0, so that

~u(s) = (u(s), 0) and we can write

R(t,x) = δ(x− ρ(s)− tu(s)), t ∈ (0,∆s). (2.2)

The results extend easily to surfaces with known elevation z = h(x) and speed (2.1).
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Our analysis is based on several approximations that are motivated by specific SAR data regimes. One

such regime arises in the GOTCHA Volumetric SAR Data Set [7] for X-band persistent surveillance SAR,

described in Appendix A, and used as an illustration throughout the paper.

2.1. The basic data model and range compression.

We assume hereafter that ~u(s) and the platform speed

~V(s) = ~r′p(s) = V (s)~t(s) (2.3)

satisfy

|~u(s)| . V (s) and
ωo
c
V (s) τ(s, ~ρ(s)) = 2π

V (s) τ(s, ~ρ(s))

λo
∼ 1. (2.4)

This says that we are in a high frequency regime, where the platform moves a distance comparable to λo

over the very short travel time duration τ(s, ~ρ(s)), at speed of light c. The platform speed is along the

unit vector ~t(s), tangential to the trajectory at ~rp(s). The range scale L gives the typical distance from the

SAR platform to the imaging scene and we suppose that it is similar to the radius R(s) of curvature of the

platform trajectory. We also assume a relatively narrow bandwidth B, satisfying

V (s)

c
� B

νo
� 1. (2.5)

The bandwidth is narrow (B � νo), but B is sufficiently large so that over the duration O(1/B) of the range

compressed signal, the platform moves a small distance with respect to λo. The following model of the data

D(s, t) is derived in Appendix B.

Proposition 1. Let f(t) = e−iωotfB(t) be the probing signal, given by a base-band waveform fB(t) modulated

by a carrier frequency νo = ωo/(2π). We have

D̂(s, ω) =

∫
dt eiωtD(s, t) ≈ (ωo/c)

2f̂B(ω − ωo)
(4π|~rp(s)− ~ρ(s)|)2

eiωoψ(s)+iωτ(s,~ρ(s)), (2.6)

where ψ(s) is the Doppler phase

ψ(s) = τ(s, ~ρ(s))

(
~V(s)

c
−
~u(s)

c

)
· ~m(s), ~m(s) =

~rp(s)− ~ρ(s)

|~rp(s)− ~ρ(s)|
. (2.7)

Instead of working directly with the recorded data D(s, t), we compress them by convolution with the

complex conjugate of the time reversed emitted pulse f(−t), offset by the travel time τ(s, ~ρo) to a reference

point ~ρo in the imaging plane,

Dr(s, t) =

∫
dt′D(s, t′)f (t′ − t− τ(s, ~ρo)), |~ρ(s)− ~ρo| � L. (2.8)

We shall make the approximation

|f̂B(ω − ωo)| ≈ |f̂B(0)|1[ωo,πB](ω), (2.9)

where 1[ωo,πB](ω) is the indicator function of interval [ωo − πB, ωo + πB]. This holds for linear frequency

modulated chirps [13] or for pulses f(t) ∼ e−iωotsinc(πBt). We also set the Doppler phase ψ(s) to the

constant ψ(0) over the small apertures a used in our data processing, because for |s| ≤ S(a) = a/(2V ), we

suppose

ωo [ψ(s)− ψ(0)] ∼ ωosψ′(0) ∼ ωosV
2

c2
∼ aV

λoc
� 1. (2.10)
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The model of the range compressed data follows from (2.6), (2.8) and (2.9),

D̂r(s, ω) ≈ ω2
o

c2

∣∣∣f̂B(0)
∣∣∣2 1[ωo,πB](ω)

(4π|~rp(s)− ~ρ(s)|)2
exp {iωoψ(0) + iω [τ(s, ~ρ(s))− τ(s, ~ρo)]} . (2.11)

It has the advantage that no matter how long is the waveform f(t), Dr(s, t) behaves like a short pulse

with support O(1/B). Another advantage is that since D̂r(s, ω) has smaller phases than D̂(s, ω), it is more

convenient in numerical computations.

Remark 1. In the GOTCHA Volumetric SAR data set described in Appendix A, the assumptions above are

justified as follows. Apertures a = 124m, of one degree on the circular planar path of the platform, with radius

R = 7.1km, are spanned by the aircraft at speed V = 250km/h ≈ 70m/s in 1.8s. In such short time, the target

motion can be approximated by translation at speed |~u| ∼ 100km/h ≈ 28m/s . V . This gives 2πτV = 2.9cm,

which is similar to λo = 3cm, so (2.4) holds. Moreover, |~V|/c = 2.3 · 10−7 � B/ν0 = 6.5 · 10−2, so (2.5)

holds. The target range is L ∼ 10km, which is similar to R, and aV/(λoc) = 9.6 · 10−4 � 1, so (2.10) holds.

3. Motion Estimation with the Wigner transform and ambiguity function.

We describe a phase space approach to target motion estimation. It is based on the Wigner transform and

the ambiguity function of the data over small sub-apertures. We give quantitative criteria for the aperture

segmentation, and explain how the Wigner transform and the ambiguity function give complementary

information about the target motion. We also compare their resolution, and study their robustness to

uncertainty of the flight path and of the initial target location.

We assume hereafter that the platform speed V (s) = |~V(s)| along the tangent ~t(s) of the flight path, the

curvature R(s) and the target speed ~u(s) = (u(s), 0) are sufficiently smooth functions of s, to approximate

them by constants over the short time intervals that define the sub-apertures. We also introduce the notation

u = |~u|.

3.1. Motion estimation with the Wigner transform.

The Wigner transform of the range compressed SAR data is given by

W(s,Ω, ω, T ) =

∫ Ω̃

−Ω̃

dω̃

∫ S̃

−S̃
ds̃ D̂r

(
s+

s̃

2
, ω +

ω̃

2

)
D̂r

(
s− s̃

2
, ω − ω̃

2

)
eis̃Ω−iω̃T , (3.1)

where Ω and T are frequency and time variables, dual to the variables of integration s̃ and ω̃. The ω̃ integral

limit is Ω̃ = 2πB − 2|ω − ωo|, so that ω ± ω̃/2 remains in the support of D̂r for all ω̃ ∈ [−Ω̃, Ω̃]. The time

offset interval s̃ ∈ [−S̃, S̃] is chosen in terms of an aperture a measured along the trajectory, S̃ = a/(2V ).

The center of the aperture is indexed by the slow time s.

The Wigner transform takes the following form, as proved in Appendix C.

Proposition 2. Consider apertures a so that the Fresnel number a2/(λoL) satisfies

a2

λoL
� 4νoV

Bu
, and

a2

λoL
� 8LV

au
. (3.2)

Then, the Wigner transform evaluated at ω = ωo has the form

W(s,Ω, ωo, T ) ∼ |f̂B(0)|4

|~rp(s)− ~ρ(s)|4
sinc{πB [T −∆τ(s)]}sinc

{
4πa

λo

[
Ωc

2ωoV
− Φ(s)

]}
, (3.3)
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where

∆τ(s) = τ(s, ~ρ(s))− τ(s, ~ρo) and Φ(s) =
~u

V
· ~m(s)−~t(s) · ( ~m(s)− ~mo(s)) . (3.4)

Here, symbol ∼ stands for approximate, up to a multiplicative constant, ~m(s) is the unit vector in (2.7), and

~mo(s) =
~rp(s)− ~ρo
|~rp(s)− ~ρo|

(3.5)

is the unit vector from the platform to the reference point ~ρo in the imaging plane.

Remark 2. Among the two conditions on the Fresnel number in (3.2), the first one is more restrictive,

because typically L
a &

νo
B � 1. It allows us to linearize the phases in the integral over s̃ and obtain therefore

a simple expression of the Wigner transform W. If we relaxed the condition to

a2

λoL
.

4νoV

Bu
, (3.6)

we would get a more complicated formula for W, involving Fresnel integrals instead of the sinc functions.

However, the conclusions drawn below remain similar, because they use estimates of the peaks ΩW(s) and

TW(s) of W. These peaks are not affected by the quadratic phases in the Fresnel integrals. In GOTCHA,

the second condition in (3.2) says a� 390m for u = 100km/h. The relaxed condition (3.6) says a . 219m,

so we can work with a ∼ 100m.

Now let us use (3.3) to relate the peaks ΩW(s) and TW(s) of W to the travel time τ(s, ~ρ(s)) and the

target speed ~u projected along ~m(s),

~u

V
· ~m(s) =

cΩW(s)

2ωoV
+~t(s) · ( ~m(s)− ~mo(s)) +O

(
λo
a

)
, (3.7)

and

τ(s, ~ρ(s)) = TW(s) + τ(s, ~ρo) +O

(
1

B

)
. (3.8)

Thus, we can use the peak TW to estimate the travel time, and therefore the distance to the target. There is

only one peak if there is only one target. In general, there will be many peaks, associated to different targets

[3], and the Wigner transform may be used to select a time window containing the echo from a single target

that we track. This assumes a separation in range between the target and the remainder of the imaging

scene. The analysis in this section is based on this assumption, but we address in Section 5 the case of

multiple strong targets whose pulse compressed echoes arrive at almost the same time.

To estimate ~u, we need an initial estimate of the target location in the sub-aperture. This estimate is

then adjusted from one sub-aperture to another, using the estimated speed. To simplify the formulas, we

assume in the analysis an estimate of ~ρ(s) (i.e. of ~m(s)) at time s corresponding to the middle of the sub-

aperture. The results can be obviously modified to initial location estimates by letting ~ρ(s) ~ρ(s)− ~u S̃/2.

Equation (3.7) determines only one component of ~u, along ~m(s). To get ~u = (u, 0), we also need its

cross-range projection P(s)~u, where P(s) is the orthogonal projection

P(s) = I − ~m(s) ~m(s)T . (3.9)

The latter can be determined, in principle, from additional sub-apertures with centers slightly shifted at

s+ δs, by small δs. For example, we could use the estimated ~u · ~m(s+ δs) and ~u · ~m(s) to write

~u · [ ~m(s+ δs)− ~m(s)] ≈ δs~u · ~m′(s) = δs

(
V~t(s)− ~u

)
|~rp(s)− ~ρ(s)|

· P(s)~u.
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However, such differentiation will not work well with noisy data. We show next that the ambiguity function

complements the Wigner transform, as it provides a more robust and direct estimate of P(s)~u.

3.2. Motion estimation with the ambiguity function.

The ambiguity function of the range compressed SAR data is given by

A(s,Ω, s̃, T ) =

∫ ωo+πB

ωo−πB
dω

∫ S

−S
ds D̂r

(
s+ s+

s̃

2
, ω

)
D̂r

(
s+ s− s̃

2
, ω

)
eisΩ−i(ω−ωo)T . (3.10)

The slow time window center s and the offset s̃ are independent variables, and Ω and T are the dual variables

of s and ω − ωo, respectively. The expression of (3.10), in our setup, is given in the next proposition. Its

derivation is very similar to that of the Wigner transform, and we do not repeat it here.

Proposition 3. If we choose S = a/(2V ), with a satisfying (3.2), the ambiguity function evaluated at

s̃ = a/(2V ) is given approximately by

A
(
s,Ω,

a

2V
, T
)
∼ |f̂B(0)|4e−

iωoa
c Φ(s)

|~rp(s)− ~ρ?|4
sinc

{
πBa

c

[
cT

a
+ Φ(s)

]}
sinc

[
aΩ

2V
+

πa2Φ⊥(s)

λo|~rp(s)− ~ρ(s)|

]
, (3.11)

where ∼ denotes approximate up to a multiplicative constant, Φ(s) is the same as in (3.4),

Φ⊥(s) =

∣∣∣∣P(s)

(
~t(s)−

~u

V

)∣∣∣∣2− |~rp(s)− ~ρ(s)|


∣∣∣Po(s)~t(s)∣∣∣2
|~rp(s)− ~ρo|

−
~t′(s)

V
· ( ~m(s)− ~mo(s))

 , (3.12)

and Po(s) is the orthogonal projection Po(s) = I − ~mo(s) ~mo(s)
T .

Thus, the ambiguity function allows us to estimate both the projection of ~u on ~m(s), and the norm of

the projection of the relative speed ~V − ~u on the plane orthogonal to ~m(s). As already noted, in (3.11) we

evaluate the ambiguity function at the extreme value of the slow time offset s̃ = a/(2V ). This is to get the

tightest second sinc function, which gives the sharpest estimate of the peak ΩA(s) in Ω.

The peak TA of the ambiguity function determines

~u

V
· ~m(s) = −cT

A(s)

2S̃V
+~t(s) · ( ~m(s)− ~mo(s)) +O

( c

Ba

)
. (3.13)

We already have the estimate (3.7) of ~u · ~m(s), from the Wigner transform. In fact, estimate (3.13) is less

precise, with resolution

c

Ba
=
νoλo
Ba

� λo
a
.

It is the other peak of A that gives the complementary information,∣∣∣∣P(s)

(
~t(s)−

~u

V

)∣∣∣∣2 =
∣∣∣Po(s)~t(s)∣∣∣2 |~rp(s)− ~ρ(s)|

|~rp(s)− ~ρo|
+
|~rp(s)− ~ρ(s)|

V
×[

~t′(s) · ( ~mo(s)− ~m(s))− ΩA(s)c

2ωos̃V

]
+O

(
λoL

a2

)
, (3.14)

without any need to differentiate, as was the case with the Wigner transform. This equation, in conjunction

with (3.7), determine the target speed u, up to an ambiguity of the orientation of t− u/V in the direction

orthogonal to m in the imaging plane. Here ~t = (t, tz) and ~m = (m,mz).
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Remark 3. Note that because of our aperture limitation assumption (3.6), the estimate (3.14) is useful if

we have a large Fresnel number

1� a2

λoL
.

4νoV

Bu
. (3.15)

This means that the aperture a cannot be too small if the motion estimation is to work. It must be large

enough, but still limited by (3.6). For example, in GOTCHA, the Fresnel number is a2/(λoL) = 49 for one

degree aperture, and 4νoV/(Bu) = 154.

3.3. Sensitivity of target motion estimation to knowledge of its initial location.

The estimation of ~u requires the vector ~m(s) in (2.7), and the target range |~rp(s) − ~ρ(s)|. Neglecting the

SAR platform trajectory perturbations, the range is determined with resolution c/B from the travel time

τ(s, ~ρ(s)), which is estimated from the Wigner transform. The target location cannot be determined directly

from the data, before forming an image, but we suppose that we know an estimate ~ρe of ~ρ(s), either from

direct observations, or from tracking the target at previous times. That is, we approximate ~m(s) by

~me(s) =
~rp(s)− ~ρe(s)
|~rp(s)− ~ρe(s)|

,

with ~ρe in the imaging plane, at distance c/2τ(s, ~ρ(s)) from ~rp(s).

Now we quantify the sensitivity of motion estimation to the error ~ρ − ~ρe. Let ∆~u = (∆u, 0) be the

error of the estimated velocity. We obtain from (3.7) that

(~u + ∆~u)

V
· ~me =

cΩW

2ωoV
+~t · ( ~me − ~mo) =

~u

V
· ~me +

(
~t−

~u

V

)
· ( ~me − ~m) +O

(
λo
a

)
and therefore

∆~u

V
· ~me =

(
~t−

~u

V

)
· ( ~me − ~m) +O

(
λo
a

)
= O

(
|~ρ− ~ρe|

L

)
+O

(
λo
a

)
. (3.16)

From (3.14) we have∣∣∣∣Pe(~t− ~u + ∆~u

V

)∣∣∣∣2− ∣∣∣∣P(~t− ~u

V

)∣∣∣∣2 =
|~rp − ~ρ|
V

~t′ · ( ~m− ~me) +O

(
λoL

a2
+

c

BL

)
= O

(
|~ρ− ~ρe|

L
+
λoL

a2

)
= O

(
λoL

a2

)
, (3.17)

because |~t′| = V/R ∼ V/|~rp−~ρ|. The second term in the error dominates the first, provided that |~ρ−~ρe| . a,

because (3.6) and u . V give

|~ρ− ~ρe|
L

.
a

L
.
νoλo
Ba

=
c

Ba
.
λoL

a2
.

We conclude from (3.17) that the cross-range velocity estimation is insensitive to the choice of the

reference point ~ρe, as long as |~ρe− ~ρ| . a. However, (3.16) shows that to maintain the resolution ∼ λo/a in

the estimation of ~u · ~m with the Wigner transform, we need a more precise estimate of the target location,

with |~ρ− ~ρe| comparable to the cross range resolution λoL/a.
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3.4. Motion estimation with SAR platform trajectory perturbations.

The SAR platform trajectory is known only approximately. We therefore consider perturbations ~µ(s) of

~rp(s) and set ~rp(s) ~rp(s) + ~µ(s) in the data model (2.11). We assume that the SAR platform trajectory

perturbations vary on the slow scale s and are small, so that only the unperturbed platform speed appears

in the Doppler phase ψ in (2.7). This is because ωoψ ∼ 1 by assumption (2.4), and therefore perturbations

of ψ are negligible. The effect of ~µ(s) on the amplitude of D̂r(s, ω) is also negligible.

3.4.1. Assumptions about the SAR platform trajectory perturbations. Let us begin with the

observation that the platform trajectory perturbations induce the following perturbations of the travel time

2

c
|~rp(s) + ~µ(s)− ~ρ(s)| − τ(s, ~ρ(s)) =

2

c
~µ(s) · ~m(s) +O

(
|~µ(s)|2

cL

)
, (3.18)

with negligible residual under the assumption

|~µ(s)| �
√
λoL. (3.19)

When ~m(s) · ~µ(s) is large enough, we can estimate it directly from the perturbations of the arrival time

of the pulse compressed SAR data. Since the compressed pulse support is O(1/B), we can estimate and

compensate ~m(s) · ~µ(s) from the arrival times when

| ~m(s) · ~µ(s)| � O
( c
B

)
.

By compensation, we mean that once we estimated ~m(s)·~µ(s), we can replace in all the subsequent processing

the ideal platform locations ~rp(s) by ~rp(s) + ( ~m(s) · ~µ(s)) ~m(s). We assume from now on that such a

compensation has been made.

We now introduce some simple, conservative bounds on the norm of the trajectory perturbation ~µ(s)

and its derivatives with respect to the slow time s. They are conservative in the sense that they are sufficient

for the sensitivity analysis presented here and for the autofocus analysis presented in Section 4.

We assume in (3.19) that the norm of the trajectory perturbations is bounded by

|~µ(s)| ∼ µ�
√
λoL� a, (3.20)

with the second inequality being a consequence of the smallness of the inverse Fresnel number λoL/a
2 � 1

in (3.15). The speed |~µ′(s)| should be a small fraction of V . We scale it using a dimensionless parameter δ,

so that

S|~µ′(s)| ∼ λoL

aδ
� a for S = a/(2V ), δ � λoL

a2.
and δ � µ

a
. (3.21)

This implies |~µ′(s)| � V , and it says that over the short time interval S defining the sub-aperture, the

deviation of the platform from the unperturbed trajectory is much smaller than a, but it may be larger than

the spot size λoL/a, depending on δ. The first assumption on δ implies, along with (3.6), that δ � B/νo for

target speeds u . V . We also take δ � µ/a.

We assume next that the acceleration of the trajectory perturbation satisfies

S2|~µ′′(s)| ∼ λo
γ
� λoL

a
for S = a/(2V ), (3.22)

where we have introduced another dimensionless parameter γ � a/L. Moreover,

S3|~µ′′′(s)| � λo (3.23)
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so that we can approximate ~µ(s+ s̃) by a second degree polynomial in s̃ over the small time interval |s̃| ≤ S
used in the motion estimation,

~µ(s+ s̃) ≈ ~µ(s) + s̃~µ′(s) +
s̃2

2
~µ′′(s). (3.24)

It is convenient in the sensitivity analysis to assume that γ ∼ δ so that we can work with the single

dimensionless parameter ε = min{1, γ, δ}, which according to our assumptions above satisfies

ε� λoL

a2
, ε� B

νo
and ε� µ

a
. (3.25)

This allows us to linearize phases and express the Wigner transforms and the ambiguity functions in terms

of sincs, rather than Fresnel integrals.

Remark 4. Let us illustrate the assumptions made in this section in the GOTCHA regime described in

Appendix A: Assumption (3.19) says that |~µ(s)| � 17m. At one degree aperture a = 124m, we have

λoL/a
2 = 0.02, B/νo = 0.06 and so we can choose in (3.25) ε & 0.3. This gives in (3.21) |~µ′|/V . 0.1, that

is |~µ′| . 25km/h ≈ 7m/s and in (3.22) |~µ′′| . 648km/h2 = 0.05m/s2. These are very conservative bounds.

In fact, when we look in detail at the calculations in Appendix D, we see that if we keep track of all the

multiplicative constants, the results stated below would hold for accelerations that can be about twenty times

larger than this. The same applies to the assumption (3.23) on |~µ′′′|.

3.4.2. Sensitivity of motion estimation to SAR platform trajectory perturbations. With the

scaling above, we obtain the following results proved in Appendix D.

Proposition 4. The Wigner transform of the range compressed data takes the form

W(s,Ω, ωo, T ) ∼ |f̂B(0)|4

|~rp(s)− ~ρ(s)|4
sinc

{
πB
[
T + δTW −∆τ(s)

]}
sinc

{
4πa

λo

[
c(Ω + δΩW)

2V ωo
− Φ(s)

]}
, (3.26)

where ∼ denotes approximate, up to a multiplicative constant, ∆τ(s) and Φ(s) are given in (3.4) and

δTW =
2~µ(s) · ~m(s)

c
,

cδΩW

2V ωo
=
~µ′(s)

V
· ~m(s) +

(
~t(s)−

~u

V

)
· P(s)~µ(s)

|~rp(s)− ~ρ(s)|
.

The ambiguity function evaluated at s̃ = a/(2V ) has the form

A
(
s,Ω,

a

2V
, T
)
∼ |f̂B(0)|4e−

iωoa
c

[
c δTA
a +Φ(s)

]
|~rp(s)− ~ρ(s)|4

sinc

{
πBa

c

[
c(T + δTA)

a
+ Φ(s)

]}
×

sinc

[
a(Ω + δΩA)

2V
+

πa2Φ⊥(s)

λo|~rp(s)− ~ρ(s)|

]
, (3.27)

where Φ⊥(s) is the same as in (3.12) and

δTA = − a
V

δΩW

ωo
and

δΩA

ωo
=
V a

c

 2
(
~t− ~u

V

)
|~rp(s)− ~ρ(s)|

· P(s)~µ′(s)

V
+
~µ′′(s)

V 2
· ~m(s)

 .
The results stated in this proposition are quite intuitive. When we combine the expressions of δTW and

δΩW with those of ∆τ(s) and Φ(s), given by (3.4), we see that equation (3.26) is the Wigner transform of

the range compressed echo from a target located at ~ρ(s) − ~µ(s) at the instant corresponding to the center

of the sub-aperture, and with velocity ~u− ~µ′(s). Similarly, (3.27) is the ambiguity function for target speed

~u − ~µ′(s) and acceleration −~µ′′(s). Since this is a relative motion between the target and the platform, it
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is not confined to the imaging plane, in general. In any case, only projections of the relative velocity and

acceleration determine the location of the peaks of the Wigner transform and ambiguity function of the data.

We conclude from Proposition 4 that the platform perturbations induce an error of the order ~µ(s)· ~m(s)/c

in the travel time estimation with the Wigner transform. As explained in the beginning of the previous

section, this perturbation is within the main lobe of the first sinc function in W, with resolution O(1/B). It

has therefore a small effect on the travel time estimation. However, the target motion estimation is affected

by the platform trajectory perturbations. Explicitly, we have the errors

cδΩW

V ωo
= O

(
|~µ′(s) · ~m(s)|

V
+
|~µ(s)|
L

)
= O

(
λoL

a2ε
+
µ

L

)
(3.28)

in the estimation of ~u/V · ~m(s), and errors

cδΩA

V aωo
= O

(∣∣∣∣P(s)
~µ′(s)

V

∣∣∣∣+
L|~µ′′(s) · ~m(s)|

V 2

)
∼ O

(
λoL

a2ε

)
(3.29)

in the estimation of |P(s)(~t(s)− ~u/V )|2. Recalling from Section 3.2 that λoL/a
2 is the error bound on the

estimated u/V with the unperturbed platform trajectory, we see that we can only approximate the target

speed ~u by ~uI , with an error

|∆~u|
V
.
λoL

a2ε
, where ∆~u = ~uI − ~u , (3.30)

and ε is defined by (3.25).

4. Autofocus with the Wigner transform and ambiguity function of the data.

As stated in Section 3.4, the SAR platform trajectory is known only approximately. The error in knowledge

of the trajectory results in a shift and blur of the target image. The goal of the autofocus process described

next is to estimate the phase errors, using the ambiguity function of data and its Wigner transform. Once we

have estimated the phase errors, we can go back and use them in the image formation to get better resolution

and to focus the image near the correct location. While Section 3.4 considered motion estimation in the

more general situation of both target motion and platform perturbations, in this section we will approach

the autofocus problem assuming that the target is stationary (~u = 0), and located at ~ρ = (ρ, 0).

4.1. Effect of platform perturbations on image.

Let us rewrite the imaging function (1.1) in terms of the range compressed data

I(ρI) =

∫ S

−S
ds

∫ ωo+πB

ωo−πB

dω

2π
D̂r(s, ω)e−

2iω
c (|~rp(s)−~ρI |−|~rp(s)−~ρo|), (4.1)

where ~ρ I = (ρI , 0) is the search point in the horizontal image plane. We take for convenience the origin of

the slow time at the center of the aperture. We also let, for simplicity, the reference point ~ρo in the data

range compression be at the target. The data model is given by (2.11).

The focusing of the preliminary image I(ρI) is described in Proposition 5. Its proof is similar to that

of Proposition 4 and we do not include it here. It involves approximation of phases by a second degree

polynomial in s, and careful justification of the approximations, using the scaling in Section 3.4.1, and the

same constraints on the aperture as in Proposition 2.
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Hereafter, we use the convention that when the arguments are missing, we evaluate the function at the

slow time s = 0 indexing the center of the aperture. Explicitly, we let ~rp = ~rp(0), ~m = ~m(0) =
~rp−~ρ
|~rp−~ρ| , and

so on.

Proposition 5. The image I(ρI) is given by

I(ρI) ∼
∫ ωo+πB

ωo−πB
dω exp

{
2iω

c

(
|~rp − ~ρ| − |~rp − ~ρ I |+ ϕ0

)}∫ S

−S
ds exp

{
2iωsV

c

[
~t · ( ~m− ~mI ) + ϕ1

]
+

iωo(sV )2

c

~t′
V
· ( ~m− ~mI ) +

∣∣∣P~t∣∣∣2
|~rp − ~ρ|

−

∣∣∣PI~t∣∣∣2
|~rp − ~ρI? |

+ ϕ2


 , (4.2)

where the symbol ∼ denotes approximate, up to a multiplicative constant. The focusing of I(ρI) is determined

by the phases

ϕo = ~m · ~µ, (4.3)

ϕ1 = ~m ·
~µ′

V
+~t · P~µ

|~rp − ~ρ|
, (4.4)

ϕ2 = ~m ·
~µ′′

V 2
+

2
(
~t + ~µ′

V

)
|~rp − ~ρ|

· P
~µ′

V
. (4.5)

Here we denote by ~ρI? = (ρI? , 0) the image peak and we let ~mI =
~rp−~ρI

|~rp−~ρI | , and PI = I − ~mI ( ~mI )T .

The Fresnel integral over s in (4.2) peaks when

~t · ( ~m− ~mI
? ) = −ϕ1, ~mI

? =
~rp − ~ρI?
|~rp − ~ρI? |

, (4.6)

and the integral over the bandwidth peaks when

|~rp − ~ρ| − |~rp − ~ρI? | = −ϕ0. (4.7)

Linearizing about the true target location, we get that the peak ~ρI? of the image is shifted in range and

cross-range by ∣∣∣ ~m · (~ρ− ~ρI? )
∣∣∣ = O(ϕ0) . O

( c
B

)
,

∣∣∣∣∣~t · P(~ρ− ~ρI? )

|~rp − ~ρ|

∣∣∣∣∣ = O(ϕ1) ∼ λoL

a2ε
. (4.8)

In the autofocus process we aim to estimate the phases ϕo, ϕ1, ϕ2, and then compensate the SAR platform

trajectory perturbations to improve the image. The phases ϕ0 and ϕ1 affect the location of the peak of the

image, as described in (4.8). The peak shift in range is small, within the resolution limits, but the shift in

cross-range may be large. Because ϕ2 appears in the quadratic part of the phase in (4.2), it only affects the

spread of the image in cross-range, around its peak. The quadratic phase in (4.2) also depends on the shift

~ρI? − ~ρ of the peak of the image from the true target location. The larger the shift, the larger the phase and

the more blur in the image.

We explain next how to estimate the phases ϕj , for j = 0, 1, 2, using the Wigner transform and ambiguity

function. The autofocus process consists in applying the correction

~µAF (s) =

[
ϕo + sV ϕ1 +

(sV )2

2
ϕ2

]
~m, (4.9)
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to the SAR platform trajectory

~rp(s) ~rp(s) + ~µAF (s), (4.10)

and forming the image

IAF (ρI) =

∫ S

−S
ds

∫ ωo+πB

ωo−πB

dω

2π
D̂r(s, ω)e−

2iω
c (|~rp(s)+~µAF (s)−~ρI |−|~rp(s)−~ρo|). (4.11)

We cannot estimate the trajectory perturbation

~µ(s) ≈ ~µ + s~µ′ +
s2

2
~µ′′

from the three phases. It is is only the combination of the perturbation location, speed and acceleration

that comes into play in (4.3-4.5) and affects the image. Thus, we compensate the effect of the trajectory

perturbations with (4.9), as if we could neglect the second terms in (4.4-4.5).

4.2. Autofocus with the Wigner transform and ambiguity function.

Setting ~u = 0 in Proposition 4, we obtain that the Wigner transform evaluated at ω = ωo takes the form

W(s = 0,Ω, ωo, T ) ∼ |f̂B(0)|4

|~rp − ~ρ|4
sinc

{
πB
[
T + δTW

]}
sinc

{
4πac(Ω + δΩW)

2λoV ωo

}
, (4.12)

where

δTW =
2~µ · ~m
c

,
cδΩW

2V ωo
= ~m ·

~µ′

V
+~t · P~µ

|~rp − ~ρ|
. (4.13)

We evaluate the Wigner transform at s = 0, because that is the convention for the center of the sub-aperture

assumed in this section. If we have overlapping sub-apertures, then the origin of the slow time s should be

shifted for each aperture. Using (4.13) and (4.3-4.4), we have the following two estimates from the peaks

(ΩW , TW) of the Wigner transform, in the phase space (frequency-time plane) (Ω, T ),

ϕo(s) = − c
2
TW(s) +O

( c
B

)
, ϕ1(s) = − λo

4πV
ΩW(s) +O

(
λo
a

)
. (4.14)

Proposition 4 also gives that the ambiguity function evaluated at s̃ = a/(2V ) has the form

A
(
s = 0,Ω,

a

2V
, T
)
∼ |f̂B(0)|4e−iωoδTA

|~rp − ~ρ|4
sinc

{
πB(T + δTA)

}
sinc

[
a(Ω + δΩA)

2V

]
, (4.15)

where

δTA = − a
V

δΩW

ωo
and

δΩA

ωo
=
V a

c

2
(
~t− ~u

V

)
|~rp − ~ρ|

· P
~µ′

V
+
~µ′′

V 2
· ~m

 .
Using (4.4-4.5) and letting (ΩA, TA) be the peaks of (4.15), we obtain that

ϕ1(s) =
c

2a
TA(s) +O

( c

aB

)
, ϕ2(s) = − λo

2πaV
ΩA(s) +O

(
λo
a2

)
. (4.16)

Similar to what we have seen in the motion estimation problem in Section 3.2, we get a redundant estimate

of ϕ1, with worse resolution than that in (4.13), because

c

aB
∼ λo

a

ωo
B
� λo

a
.
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The ambiguity function is useful for the estimation of ϕ2, and thus complements the Wigner transform in

the autofocus process.

As we remarked above, the Wigner transform and ambiguity function in (4.12) and (4.15) are for

the sub-aperture centered at slow time s = 0. The autofocus process involves working with overlapping

sub-apertures, with centers indexed by s̄. Each sub-aperture gives an estimate of the three phases, ϕj(s̄),

for j = 0, 1, 2, and they can be combined to improve the compensation (4.9) of the platform trajectory

perturbations. We illustrate this in Section 6, where we present numerical results.

5. Autofocus with centroids of the Wigner transform and ambiguity function

The peak selection used in the previous section for the autofocus process may be problematic in practice,

specially in noisy environments. It is also computationally expensive because accurate peak selection requires

a very fine sampling of the phase space (frequency-time plane) in which we evaluate the Wigner transform

and ambiguity function. We show in Section 5.2 that the centroids of the Wigner transform and ambiguity

function of data from an imaging scene with a strong target give in theory exactly the same information as

the peaks. Thus, we can do the autofocus with the centroids, which are more robust than the peak selection,

because they are given by smooth functionals (integrals) of the Wigner transform and ambiguity function.

When there are multiple strong targets at locations ~ρk and similar range from the SAR platform, we

cannot separate their pulse compressed echoes by time windowing, as we have assumed in the previous

section. Then, the Wigner transform and ambiguity function have multiple peaks in the phase space, even

when we neglect multiple scattering between the targets and write the data model as

D̂r(s, ω) ≈
N∑
k=1

ω2
o

c2

∣∣∣f̂B(0)
∣∣∣2 eiωoψ(0)

(4π|~rp(s)− ~ρk|)2
e

2iω
c (|~rp(s)+~µ(s)−~ρk|−|~rp(s)−~ρo|). (5.1)

Roughly speaking, there is one peak per target at locations similar to those described in Section 4.2, for

~ρ  ~ρk and k = 1, 2, . . . , N. There are also additional peaks coming from the cross-terms k 6= k′ in the

quadratic expressions of the Wigner transforms and ambiguity functions. It is not clear in such cases how

to select a particular peak in the phase space in order to carry out the autofocus process, but we may be

able to use the centroids. We show in Section 5.3 that the centroids are useful for estimating the platform

trajectory perturbations in the case of multiple targets that are not too spread out in the imaging plane.

We also illustrate the performance of the autofocus process with numerical simulations in Section 6.

5.1. Definition.

The centroid of the Wigner transform is the point
(

ΩW(s), TW(s)
)

in the phase space with coordinates

ΩW(s) =

∫∞
−∞ dΩ

∫∞
−∞ dT Ω W(s,Ω, ωo, T )∫∞

−∞ dΩ
∫∞
−∞ dT W(s,Ω, ωo, T )

,

TW(s) =

∫∞
−∞ dΩ

∫∞
−∞ dT T W(s,Ω, ωo, T )∫∞

−∞ dΩ
∫∞
−∞ dT W(s,Ω, ωo, T )

. (5.2)

With our notation convention, the aperture is centered at s = 0, and we let ΩW = ΩW(0) and TW = TW(0).

The centroid
(

ΩA, TA
)

of the ambiguity function A
(
s = 0,Ω, a

2V ,Ω
)

is defined similarly.
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To relate the centroids to the phases that arise in the autofocus process, we need the following result,

which we state for an arbitrary center s of the aperture, not just s = 0:

Lemma 1. The centroid of the Wigner transform of the range compressed data has the form

ΩW(s) =
i
[
∂
∂sD̂r (s, ωo) D̂r (s, ωo)− D̂r (s, ωo)

∂
∂sD̂r (s, ωo)

]
2|D̂r (s, ωo) |2

,

TW(s) = −
i
[
∂
∂ω D̂r (s, ω) D̂r (s, ωo)− D̂r (s, ωo)

∂
∂ω D̂r (s, ωo)

]
2|D̂r (s, ωo) |2

.

Similarly, the centroid of the ambiguity function satisfies, for s̃ = a/(2V ),

ΩA(s) =
i
[
∂
∂sD̂r

(
s+ s̃

2 , ωo
)
D̂r

(
s− s̃

2 , ωo
)

+ D̂r

(
s+ s̃

2 , ωo
)
∂
∂sD̂r

(
s− s̃

2 , ωo
)]

D̂r

(
s+ s̃

2 , ωo
)
D̂r

(
s− s̃

2 , ωo
) ,

TA(s) = −
i
[
∂
∂ω D̂r

(
s+ s̃

2 , ωo
)
D̂r

(
s− s̃

2 , ωo
)

+ D̂r

(
s+ s̃

2 , ωo
)
∂
∂ω D̂r

(
s− s̃

2 , ωo
)]

D̂r

(
s+ s̃

2 , ωo
)
D̂r

(
s− s̃

2 , ωo
) .

These expressions follow from the definition (5.2) of the centroids and definitions (3.1) and (3.10) of the

Wigner transform and ambiguity function. Explicitly, we have from (3.1) that∫ ∞
−∞

dΩ

∫ ∞
−∞

dT W(s,Ω, ωo, T ) = 4π2

∫ Ω̃

−Ω̃

dω̃

∫ S̃

−S̃
ds̃ D̂r

(
s+

s̃

2
, ωo +

ω̃

2

)
D̂r

(
s− s̃

2
, ωo −

ω̃

2

)
∫ ∞
−∞

dΩ

2π
eis̃Ω

∫ ∞
−∞

dT

2π
e−iω̃T

= 4π2 (Fs,ωo(s̃, ω̃), δ(s̃, ω̃)) .

Here δ(s̃, ω̃) = δ(s̃)δ(ω̃) is the Dirac delta distribution, acting on the test function Fs,ωo(s̃, ω̃) of arguments

s̃, ω̃, and parametrized by s and ωo. The test function is given by

Fs,ωo(s̃, ω̃) = χ(s̃, ω̃)D̂r

(
s+

s̃

2
, ωo +

ω̃

2

)
D̂r

(
s− s̃

2
, ωo −

ω̃

2

)
,

with χ(s̃, ω̃) an arbitrary, smooth window function with support in [−S̃, S̃] × [−Ω̃, Ω̃], that is equal to one

in the vicinity of the origin. Similarly,∫ ∞
−∞

dΩ

∫ ∞
−∞

dT ΩW(s,Ω, ωo, T ) = 4π2

∫ Ω̃

−Ω̃

dω̃

∫ S̃

−S̃
ds̃ D̂r

(
s+

s̃

2
, ωo +

ω̃

2

)
D̂r

(
s− s̃

2
, ωo −

ω̃

2

)
∫ ∞
−∞

dΩ

2π
Ω eis̃Ω

∫ ∞
−∞

dT

2π
e−iω̃T

= − 4iπ2 (Fs,ωo(s̃, ω̃), δs̃(s̃, ω̃)) ,

where δs̃(s̃, ω̃) = δ′(s̃)δ(ω̃). Thus, we have from the properties of the Dirac delta distribution that

ΩW =
i∂s̃Fs,ωo(0, 0)

Fs,ωo(0, 0)
,

and its expression given in Lemma 1 follows. The proof of the expressions of TW , ΩA and TA is similar.
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5.2. The case of a single target.

Lemma 1 and the model (2.11) of the range compressed data give that

ΩW =
2ωoV

c
Φ(s)− δΩW , TW = ∆τ(s)− δTW , (5.3)

where Φ and ∆τ are given by (3.4) and δΩW and δTW are defined in Proposition 4. The centroid of the

ambiguity function satisfies

ΩA(s) = − 2πV aΦ⊥(s)

λo|~rp(s)− ~ρ(s)|
− δΩA +O

(
V a2

λoL2

)
,

TA(s) = − a

c
Φ(s)− δTA +O

(
a3

cL2

)
, (5.4)

where Φ⊥ is given in (3.12) and δΩA and δTA are defined in Proposition 4. These equations follow from

Lemma 1 and the mean value theorem. The residuals come from estimates of the second derivatives of the

range compressed data model, for slow time offsets that do not exceed s̃ = a/(2V ).

When we discussed the autofocus in Section 4, we assumed a stationary target and took for simplicity

the reference point ~ρo in the range compression exactly at the target location ~ρ. Then, the phases Φ and

Φ⊥ vanish and we note that the centroids coincide with the peaks of the Wigner transform and ambiguity

function given in Section 4.2. Naturally, the equality of the centroids and the location of the peaks does hold

for a moving target and for ~ρo 6= ~ρ, as follows from a straightforward calculation. The conclusion is that we

can apply the results in the previous section, with the peaks replaced by the centroids, to do the autofocus

of imaging scenes with a strong target.

5.3. Autofocus with Multiple Stationary Targets.

We study here the centroids of the Wigner transform and ambiguity function in the case of N stationary

targets. They are at similar ranges from the SAR platform, and thus their echoes cannot be separated by

time windowing. The data model is given by (5.1), and it neglects multiple scattering between the targets.

The assumption is that either the multiply scattered signals are weak, or that they arrive at a later time

and may be filtered out by time windowing.

To study the centroids, we obtain from the data model that

∂

∂s
D̂r(s, ωo) =

N∑
k=1

2iωo
c

[
V~t(s) · ( ~mk(s)− ~mo(s)) + ~µ′(s) · ~mk(s)

]
D̂k
r (s, ωo),

∂

∂ω
D̂r(s, ωo) =

N∑
k=1

2i

c
(|~rp(s) + ~µ(s)− ~ρk| − |~rp(s)− ~ρo|) D̂k

r (s, ωo),

where D̂k(s, ωo) is the Fourier transform of the range compressed echo from the k−th target at location ~ρk,

and ~mk(s) is the unit vector pointing form the platform at ~rp(s) to ~ρk. The results below are derived from

this equation and Lemma 1 by expanding around the reference point ~ρo.

We obtain that the centroid of the Wigner transform satisfies

ΩW(s) = ΩWo (s) +
ωoV

c
E1, TW(s) = TWo (s) +

1

B
E2, (5.1)

where
(

ΩWo , T
W
o

)
is the centroid of the Wigner transform for a single target at ~ρo, and the dimensionless
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residuals are given by

E1 = −
N∑

k,k′=1

(~ρk + ~ρk′ − 2~ρo) ·
P(s)

[
~t(s) + ~µ′(s)/V

]
|~rp(s)− ~ρo|

D̂k
r (s, ωo)Dk′

r (s, ωo)

|D̂r(s, ωo)|2
,

and

E2 =
B

c

N∑
k,k′=1

(~ρk + ~ρk′ − 2~ρo) · ~mo(s)
D̂k
r (s, ωo)Dk′

r (s, ωo)

|D̂r(s, ωo)|2
.

Let us denote by |∆~ρ| the typical distance of a target from ~ρo, and by |∆~ρ · ~mo| the typical distance along

the range direction ~mo. The estimates of the residuals are

|E1| . O
(
|∆~ρ|
L

)
, |E2| . O

(
|∆~ρ · ~mo|
c/B

)
. (5.2)

Similarly, we can estimate the centroid of the ambiguity function. We only need the result for ΩA(s),

because TA(s) gives basically the same information as TW(s), at worse resolution. We get

ΩA(s) = ΩAo (s) +
ωoV

c
E3, |E3| . O

(
|∆~ρ|
L

)
, (5.3)

where ΩAo (s) is the frequency coordinate of the centroid of the ambiguity function for a target at ~ρo.

We conclude that when the targets are not too spread out in the imaging plane, the centroids are

approximately as those for a single target at ~ρo. Explicitly, if we have

|∆~ρ|
L
� |

~µ′ · ~mo|
V

, (5.4)

we can estimate ~µ′ · ~mo from ΩW ≈ ΩWo . When we compensate this term in the image formation, we correct

the shift in cross-range. If in addition

|∆~ρ|
L
� L|~µ′′ · ~mo|

V 2
, (5.5)

we can estimate ~µ′′ · ~mo from ΩA ≈ ΩAo , and then use the estimate to reduce the blur in the image. When

we recall the assumptions in Section 3.4.1 on ~µ′ and ~µ′′, we see that basically, the bounds in (5.4-5.5) say

that the targets should be contained in a disk in the imaging plane of radius smaller than L, the range.

The second equations in (5.1) and (5.2) say that to determine the perturbation ~µ · ~mo from TW , the

projection of ∆~ρ in the range direction ~mo must not exceed the range resolution c/B,

|∆~ρ · ~mo| �
c

B
. (5.6)

This condition may appear stringent, but if there were a larger range spread, we could separate the targets

by simply time windowing the pulse compressed echoes.

Let us end this section with the remark that the results presented here extend naturally to the case of

multiple targets that move the same way, as a group, with speed ~u. Then, it is the relative motion of the

targets with respect to that of the SAR platform that is determined by the centroids of the Wigner transform

and ambiguity function.
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6. Numerical simulations.

We present in Section 6.1 results for target motion and no platform perturbations and in Section 6.2 results

for autofocus. The data is generated with models (2.11), (5.1), with parameters chosen as in the GOTCHA

Volumentric SAR regime described in Appendix A. The unperturbed SAR platform trajectory is circular,

at altitude H, and with center projected at the origin (0, 0) in the imaging plane.

To compute the Wigner transform W and ambiguity function A for each s in a small a small aperture

a, we need the range compressed data over a larger aperture ae = 2.5a. We use the two-dimensional fast

Fourier transform (FFT) to compute W and A. To avoid aliasing, we pad with zeroes the Ns ×Nω matrix

with entries

Ds,ω(s̃, ω̃) = D̂r

(
s+

s̃

2
, ω +

ω̃

2

)
D̂r

(
s− s̃

2
, ω − ω̃

2

)
.

Here s and ω are parameters, and Ns = 118 and Nω = 424 are the number of samples in s̃ and ω̃. The

padding creates a larger matrix, of size 256×1024, for each s in the slow time range and ω in the bandwidth.

The motion estimation and autofocus is carried out either by selecting the peaks of the Wigner transform

and ambiguity function, or by computing their centroids.

The preliminary images can be computed directly from (1.1), and the autofocused ones from (4.11).

However, because of the small sub-apertures, we can compute them more efficiently by linearizing the phases

and using the two dimensional FFT of the range compressed data.

6.1. Motion estimation without platform perturbations.

We consider here a target moving with constant velocity u = 28/
√

2(1, 1)m/s. The aperture is a = πR/180 ≈
124m. It corresponds to a one degree arc on the circular trajectory of radius R = 7.1km.

We show in Figure 2 the Wigner transform and ambiguity function evaluated at s = 0. Note the large

spread of A in the time variable T . This is consistent with the resolution results in Section 3.2. We obtained

there that the target speed projected in the range direction can be determined either form the peak ΩW of

the Wigner transform or the peak TA of the ambiguity function, but the resolution of the Wigner estimate

is better. This is illustrated in Figure 2 by the tighter peak of the Wigner transform.

We estimate the target speed u U(s) using equations (3.7) and (3.14). We move the target from one

center s of a sub-aperture to another s±∆s, with the estimated U(s). We plot in Figures 3 and 4 the actual

and estimated projections of the velocity as in equations (3.7), (3.13) and (3.14). The estimates are shown

in solid lines. The dotted lines indicate the resolution limits.

Because we assume that over a single aperture the target has a constant velocity, we average the

multiple estimates U(s), from the overlapping sub-apertures, to get uI . We use this estimated target speed

to compute an image using equation (4.1), with ~ρ I  ~ρ I + s(uI , 0). The pixels are squares of side 0.1 m,

and the image domain is 10m ×10m. The image is compared in Figure 6 with that computed with the exact

target velocity. We also show in Figure 7 the error between the true target trajectory and the estimated one.
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(b) Ambiguity function A(Ω, T )

Figure 2. The Wigner transform and Ambiguity function of the range compressed echoes from a single
target.
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Figure 3. Estimated velocity projected onto ~m(s). The Wigner estimate is in solid blue and the ambiguity
one in solid green. The tue value is in solid red. The blue dotted line indicates the theoretical resolution
limit for the Wigner estimates. The green dotted line shows the resolution limit for the estimates with the
ambiguity function.

6.2. Autofocus with stationary targets.

We begin with the case of a single stationary target at known location ~ρ = (ρ, 0). We take ρ at the origin

and use the simple SAR platform trajectory perturbation

~µ(s) =

(
5λ0s+

λ0

2

s2

2
+
λ0

20

s3

6
, 30λ0, 2λ0s−

λ0

2

s2

2
+
λ0

20

s3

6

)
,

that satisfies our assumptions in Section 3.4.1. The autofocus is done as described in Section 4, except that

we use the centroids of the Wigner transform and ambiguity function to estimate the platform trajectory

perturbation (4.9). The image before the autofocus is shown on the left in Figure 8. The peak is shifted
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Figure 4. The estimated projected velocity in the direction orthogonal to ~m(s), using the ambiguity
function. The true value is in solid red and the estimate in solid green. The dotted green line indicates the
resolution limits.
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Figure 5. The estimated travel time using the Wigner transform. The true value is in red and the estimate
is in solid blue. The dotted blue line denotes the resolution limits.

by 10m in cross-range from the target location. The autofocused image is shown on the right in Figure

8. It peaks near the target location, indicated with the black dot. It is also better focused in cross-range.

The improved resolution can be seen in Figure 9, where we plot cross-sections of the image in range and

cross-range. As expected from the theory, the range resolution is not affected by the SAR platform trajectory

perturbation. It is the focusing in cross-range that is improved significantly by the autofocus process.

Let us consider now a scene with 81 stationary scatterers, and a sinusoidal trajectory perturbation that

is more difficult to estimate. We show the perturbation along the range direction with the black solid line
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(b) Image compensated with motion estimation

Figure 6. Images of moving target computed with the true and estimated velocity.
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Figure 7. Error in meters between the true trajectory of the moving target and the trajectory estimated
from the data over a single small aperture.

in the top left plot in Figure 11, and the imaging scene in the bottom left plot. The estimated trajectory

perturbation is shown in blue in the top left picture. It is shifted from the true value, but this shift only

affects the range focusing within the resolution limit c/B, and it has little effect on the image. The Wigner

transform and ambiguity function are shown in Figure 10. The centroid is indicated with a black star. The

images before and after autofocus are on the top and bottom right in Figure 11. These images are computed

over an aperture of 1km, using the estimates from ten overlapping sub-apertures of 124m.

Figure 12 displays the results from another complex scene, created from a low-resolution aerial picture

of a Stanford flower garden. Each pixel is treated as a point scatterer with reflectivity equal to its pixel value

and the data is generated with the Born approximation. The aperture is as above, of 1km, consisting of ten

overlapping sub-apertures of 124m. The platform trajectory perturbation is less oscillatory here, as shown

with the black solid line in the top left plot. The estimated perturbation is shown in blue. The perfect image

is in the bottom left plot, and the unfocussed and autofocused images are in the top right and bottom right
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plots, respectively. The perfect image is for no SAR platform trajectory perturbations.
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(b) Autofocused Image

Figure 8. Images of a stationary target before and after autofocus. The image windows are the same size
but the left one is translated to be center at the peak of the unfocused image, which is not at the target
location. The autofocused image is on the right, and the tagret is indicated with a black dot.
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(b) Range Resolution

Figure 9. Cross-range and range resolution of images before and after autofocus. The platform
perturbations affect only the cross-range focus. The autofocus improves the cross-range resolution and
gives an image that is essentially identical to the ideal one, without any platform perturbations.

7. Summary and conclusions.

We have introduced and analyzed in detail from first principles a synthetic aperture radar (SAR) imaging

and target motion estimation approach that is combined with compensation for radar platform trajectory

perturbations. We have formulated an approach that implements the theory for a single target and a

single small aperture and extends it to autofocus for scenes with multiple scatterers. This approach can

deal with either target motion estimation or with SAR platform trajectory perturbation, but not with

both. Combined estimation requires multi-target scenes and multiple, overlapping apertures where the basic
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Figure 10. The Wigner transform and ambiguity function of the range compressed echoes from an 81
stationary scatterer scene. The asterisk indicates the location of the centroid.

algorithm presented here is used as a component in a broader estimation and imaging strategy. In addition

to providing detailed analytical error estimates for the approximations that we use, we verify that they

are appropriate for the regime that arises in the GOTCHA Volumetric SAR data set. We also assess the

performance of this approach with detailed numerical simulations, presented in Section 6.
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Appendices

Appendix A. The GOTCHA Volumetric SAR parameters.

The central frequency of the probing signal f(t) is ν0 = 9.6Ghz and the bandwidth is B = 622MHz. The

SAR platform trajectory is circular, at height H = 7.3km, with radius R = 7.1km and speed V = 250km/h

or 70m/s. One circular degree of trajectory is 124m. The pulse repetition rate is 117 per degree, which

means that a pulse is sent every 1.05m, and ∆s = 0.015s. A typical distance to a target is L = 10km,

and we take |u| ∼ 100km/h or 28m/sec. Then, we have from the basic image resolution theory [9], in ideal

scenarios with known target motion and SAR platform trajectory, that the range resolution of the image

(1.1) is c/B = 48cm, and the cross range resolution is λ0L/a = 2.5m, with one degree aperture a and central

wavelength λ0 = 3cm.
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Figure 11. Autofocus of a scene with 81 stationary point scatterers. Top left: The platform trajectory
perturbations along the range direction (black line) and the estimated perturbations (blue line). Bottom
left: Image computed over a 1km aperture, with no platform trajectory perturbations. Top right: Unfocused
image. Bottom right: Autofocused image.

Appendix B. Derivation of the data model in Proposition 1.

We begin with D(s, t) ≈ p(t,~rp(s+ t)), where p(t,~r) is the Born approximation of the wavefield due to signal

f(t) emitted at t = 0 from a point source at ~rp(s),

p(t,~r) = −
∫
dt′
∫
dx

δ(t− t′ − |~x−~r|/c)
4π|~x−~r|

R(t′,x)
1

c2
∂2
t f(t′ − |~x−~rp(s)|/c)

4π|~x−~rp(s)|
, (B.1)24
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Figure 12. Autofocus of a scene created using pixel values from a low-resolution aerial picture of a garden
at Stanford University. Top left: The platform trajectory perturbations along the range direction (black
line) and the estimated perturbations (blue line). Bottom left: Image computed over a 1km aperture, with
no platform trajectory perturbations. Top right: Unfocused image. Bottom right: Autofocused image.

where ~x = (x, 0). Using (2.2) and approximation ~rp(s+ t) ≈ ~rp(s) + ~V(s)t, we get

D(s, t) ≈ (ωo/c)
2

(4π|~rp(s)− ~ρ(s)|)2

∫
dt′δ

(
t− t′ − |~rp(s) + ~V(s)t− ~ρ(s)− ~u(s)t′|/c

)
×

f (t′ − |~rp(s)− ~ρ(s)− ~u(s)t′|/c) (B.2)

25



in narrow-band regimes πB � ωo, where ∂2
t f(t) ≈ −ω2

of(t) = −ω2
oe
−iωotfB(t). The data model follows from

(B.2) and approximations

|~rp(s) + ~V(s)t− ~ρ(s)− ~u(s)t′| ≈ |~rp(s)− ~ρ(s)|+ (t~V(s)− t′~u(s)) · ~m(s),

|~rp(s)− ~ρ(s)− ~u(s)t′| ≈ |~rp(s)− ~ρ(s)| − t′~u(s) · ~m(s),

with error of the order |~V(s)t|2/L. We obtain from the support of the δ distribution

t′
[
1−

~u(s)

c
· ~m(s)

]
≈ t

[
1−

~V(s)

c
· ~m(s)

]
− |

~rp(s)− ~ρ(s)|
c

,

with negligible error O
[
t2|~V|2
cL

]
� 1 over the interval t ∈ (0,∆s). Thus,

D(s, t) ≈ (ωo/c)
2

(4π|~rp(s)− ~ρ(s)|)2
f

{
t

[
1 +

(
2~u(s)

c
−
~V(s)

c

)
· ~m(s)

]
−

2|~rp(s)− ~ρ(s)|
c

[
1 +

~u(s)

c
· ~m(s)

]}
,

where we neglected the error that is of the order |~u(s)|2
c2 . |

~V(s)|2
c2 � 1. Now, Fourier transform in t

D̂(s, ω) ≈ (ωo/c)
2

(4π|~rp(s)− ~ρ(s)|)2
f̂B

 ω

1 +
(

2~u(s)
c −

~V(s)
c

)
· ~m(s)

− ωo


exp

{
iω

2|~rp(s)− ~ρ(s)|
c

[
1 +

(
~V(s)

c
−
~u(s)

c

)
· ~m(s)

]}
, (B.3)

and use that the support of f̂B is of order πB to write f̂B(·) = F̂
( ·
πB

)
, with F̂ supported in [−1, 1]. This

implies

f̂B

 ω

1 +
(

2~uc −
~V
c

)
· ~m
− ωo

 ≈ F̂ (ω − ωo
πB

− ω

πB

(
2
~u

c
−
~V

c

)
· ~m

)
≈ f̂B(ω − ωo)

because by (2.5),

ω

πB

|2~u− ~V(s)|
c

∼ νo
B

|~V(s)|
c
� 1.

Proposition 1 follows.

Appendix C. Proof of Proposition 2.

For a small enough time offset bound S̃ we can neglect s̃ in the amplitudes of D̂r

(
s± s̃

2 , ω ±
ω̃
2

)
and obtain

W(s,Ω, ωo, T ) ∼ |f̂B(0)|4

|~rp(s)− ~ρ(s)|4

∫ 2πB

−2πB

dω̃

∫ S̃

−S̃
ds̃ eiΨ(ω̃,s̃,s,ωo),

with phase given by

Ψ(ω̃, s̃, s, ωo) =
2ωo
c
T1(s, s̃) +

ω̃

c
T2(s, s̃) + s̃Ω− ω̃T. (C.1)

Here we let

T1(s, s̃) =
∑

q=1,−1

q

[∣∣∣∣~rp(s+
qs̃

2

)
− ~ρ

(
s+

qs̃

2

)∣∣∣∣− ∣∣∣∣~rp(s+
qs̃

2

)
− ~ρo

∣∣∣∣] ,
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T2(s, s̃) =
∑

q=1,−1

[∣∣∣∣~rp(s+
qs̃

2

)
− ~ρ

(
s+

qs̃

2

)∣∣∣∣− ∣∣∣∣~rp(s+
qs̃

2

)
− ~ρo

∣∣∣∣] .
Now let us note that∑

q=1,−1

q

∣∣∣∣~rp(s+
qs̃

2

)
−~ρ
(
s+

qs̃

2

)∣∣∣∣ ≈ s̃(~V(s)− ~u
)
· ~m(s) +

s̃3

24

d3 |~rp(s)− ~ρ(s)|
ds3

,

because
d|~rp(s)−~ρ(s)|

ds =
(
~V(s)− ~u

)
· ~m(s), with ~V(s) = V~t(s).

We shall assume that both ~u, and the tangential platform speed V change slowly in s. Then, the second

and third derivatives of |~rp(s)− ~ρ(s)| are approximated by

d2 |~rp(s)− ~ρ(s)|
ds2

≈ V~t′(s) · ~m(s) +
(
V~t(s)− ~u

)
· ~m′(s),

d3 |~rp(s)− ~ρ(s)|
ds3

≈ V~t′′(s) · ~m(s) + 2V~t′(s) · ~m′(s) +
(
V~t(s)− ~u

)
· ~m′′(s)

and we obtain∑
q=1,−1

q

∣∣∣∣~rp(s+
qs̃

2

)
−~ρ
(
s+

qs̃

2

)∣∣∣∣ ≈ s̃(~V(s)− ~u
)
· ~m(s) +

s̃3

24

[
V~t′′(s) · ~m(s)+

2V~t′(s) · ~m′(s) +
(
V~t(s)− ~u

)
· ~m′′(s)

]
. (C.2)

Similarly,∑
q=1,−1

q

∣∣∣∣~rp(s+
qs̃

2

)
−~ρo

∣∣∣∣ ≈ s̃ ~V(s) · ~mo(s) +
s̃3

24

[
V~t′′(s) · ~mo(s)+

2V~t′(s) · ~m′o(s) + V~t(s) · ~m′′o(s)
]
. (C.3)

Thus,

2ωo
c
T1(s, s̃) ≈ −2ωos̃~u

c
· ~m(s) +

2ωos̃V

c
~t(s) · ( ~m(s)− ~mo(s)) +

ωos̃
3V 3

12c
E1(s), (C.4)

with scaled remainder

V 2E1 = −
~u

V
· ~m′′ +~t′′ · [ ~m− ~mo] + 2~t′ · [ ~m′ − ~m′o] +~t · [ ~m′′ − ~m′′o ] . (C.5)

The derivatives of ~t(s) are determined by the differential geometry relations

~t′(s) = −V
R
~n(s), ~t′′(s) = −V

R
~n′(s) = −V

2

R2
~t(s), (C.6)

with ~n(s) the unit vector orthogonal to ~t(s), in the flight plane defined by ~t(s) and the center of curvature,

at distance R from ~rp(s). The derivative of ~m(s) is

~m′(s) =
P(s)

(
V~t(s)− ~u

)
|~rp(s)− ~ρ(s)|

, P(s) = I − ~m(s) ( ~m(s))
T
, (C.7)

and

~m′′(s) =
P(s)V~t′(s) + P′(s)

(
V~t(s)− ~u

)
|~rp(s)− ~ρ(s)|

−
P(s)

(
V~t(s)− ~u

)
|~rp(s)− ~ρ(s)|2

(
V~t(s)− ~u

)
· ~m(s)

is a vector orthogonal to ~m′(s), with norm ∼ V 2/L2. The derivatives of ~mo(s) are similar. Now, we can

write

~m(s) = ~mo(s)−
Po(s) (~ρ(s)− ~ρo)
|~rp(s)− ~ρo|

+ ~E , |~E| = O

(
|~ρ(s)− ~ρo|2

L2

)
,
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| ~m′(s)− ~m′o(s)| = O
( u
L

)
, | ~m′′(s)− ~m′′o(s)| = O

(
V u

L2

)
,

and obtain from (C.4)

2ωo
c
T1(s, s̃) = −2ωos̃~u

c
· ~m(s) +

2ωos̃V

c
~t(s) · ( ~m(s)− ~mo(s)) +

ωos̃
3V 3

12c
E1(s),

with negligible remainder E1(s) = O
(

u
V L2

)
, when we chose the aperture S̃V = a/2 so that (a/2)3 �

λoL
2V/u. This is the second assumption in (3.2).

The approximation of T2(s, s̃) is similar. We get∑
q=1,−1

∣∣∣∣~rp(s+
qs̃

2

)
− ~ρ

(
s+

qs̃

2

)∣∣∣∣ = 2 |~rp(s)− ~ρ(s)|+ s̃2

8

[
V~t′(s) · ~m(s)+

(
V~t(s)− ~u

)
· ~m′(s)

]
+O

(
s̃4

4!

d4|~rp(s)− ~ρ(s)|
ds4

)
,

∑
q=1,−1

∣∣∣∣~rp(s+
qs̃

2

)
− ~ρo

∣∣∣∣ = 2 |~rp(s)− ~ρo|+
s̃2

8

[
V~t′(s) · ~m(s) + V~t(s) · ~m′(s)

]
+

+O

(
s̃4

4!

d4|~rp(s)− ~ρ(s)|
ds4

)
,

aand therefore

ω̃

c
T2(s, s̃) =

2ω̃

c
(|~rp(s)− ~ρ(s)| − |~rp(s)− ~ρo|) +

ω̃s̃2

8c
E2(s, s̃), (C.8)

with scaled remainder

E2(s, s̃) = O

(
V 2|~ρ(s)− ~ρo|

L2

)
+O

(
V u

L

)
, (C.9)

that can be neglected if (a/2)2

λoL
� νoV

Bu . This is the first assumption in (3.2). Note that the other term in the

remainder E2 is small because

ω̃s̃2V 2|~ρ(s)− ~ρo|
c|~rp(s)− ~ρo|2

∼ B

νo

(a/2)2

λoL

|~ρ(s)− ~ρo|
L

� V

u

|~ρ(s)− ~ρo|
L

� 1.

Gathering all the results we obtain the phase approximation

Ψ ≈ s̃ωo
[

Ω

ωo
− 2~u

c
· ~m(s) +

2V

c
~t(s) · ( ~m(s)− ~mo(s))

]
+ ω̃ [τ(s, ~ρ(s))− τ(s, ~ρo)− T ] ,

and Proposition 2 follows after substituting Ψ in the expression of the Wigner transformW(s,Ω, ωo, T ), and

integrating over s̃ and ω̃.

When we relax the first assumption in (3.2) to (3.6), the remainder E2 in (C.8) is no longer negligible,

and we obtain a Fresnel integral in s̃. The method of stationary phase [5] tells us that the quadratic term

in (C.8) does not affect the location of the peak of this integral, which is the information used in the target

motion estimation.

Appendix D. Proof of Proposition 4.

The perturbation of the phase Ψ of the Wigner transform of the range compressed data is given by

δΨ(ω̃, s̃, s, ωo) =
2ωo
c
δT1(s, s̃) +

ω̃

c
δT2(s, s̃), (D.1)
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where

δT1 =
∑

q=1,−1

q

[∣∣∣∣~rp(s+
qs̃

2

)
+ ~µ

(
s+

qs̃

2

)
− ~ρ
(
s+

qs̃

2

)∣∣∣∣−∣∣∣∣~rp(s+
qs̃

2

)
− ~ρ
(
s+

qs̃

2

)∣∣∣∣]
δT2 =

∑
q=1,−1

[∣∣∣∣~rp(s+
qs̃

2

)
+ ~µ

(
s+

qs̃

2

)
− ~ρ
(
s+

qs̃

2

)∣∣∣∣−∣∣∣∣~rp(s+
qs̃

2

)
− ~ρ
(
s+

qs̃

2

)∣∣∣∣] .
Proceeding as in Appendix C, we write

δT1(s, s̃) ≈ s̃
(
V~t(s) + ~µ′(s)− ~u

)
· ~mµ(s)− s̃

(
V~t(s)− ~u

)
· ~m(s) +

s̃3

24

∣∣∣∣d3 [~rp(s) + ~µ(s)− ~ρ(s)|
ds3

− d3 |~rp(s)− ~ρ(s)|
ds3

]
,

where

~mµ(s)=
~rp(s) + ~µ(s)− ~ρ(s)

|~rp(s) + ~µ(s)− ~ρ(s)|
= ~m(s) +

P(s)~µ(s)

|~rp(s)− ~ρ(s)|
+ ~E , |~E| = O

(
|~µ(s)|2

|~rp(s)− ~ρ?|2

)
(D.2)

and

d2 |~rp(s) + ~µ(s)− ~ρ(s)|
ds2

=
(
V~t′(s) + ~µ′′(s)

)
· ~mµ(s) +

(
V~t(s) + ~µ′(s)− ~u

)
· ~m′µ(s).

Here

~m′µ(s) =
Pµ
(
V~t(s) + ~µ′(s)− ~u

)
|~rp(s) + ~µ(s)− ~ρ(s)|

, Pµ(s) = I − ~mµ(s) ( ~mµ(s))
T
, (D.3)

and furthermore,

d3 |~rp(s) + ~µ(s)− ~ρ(s)|
ds3

≈
(
V~t′′(s) + ~µ′′′(s)

)
· ~mµ(s) + 2

(
V~t′(s) + ~µ′′(s)

)
· ~m′µ(s) +(

V~t(s) + ~µ′(s)− ~u
)
· ~m′′µ(s). (D.4)

The second derivative of ~mµ(s) follows by differentiation in (D.3) and it satisfies

∣∣ ~m′′µ(s)
∣∣ = O

(
V 2

L2

)
+O

(∣∣~µ′′(s)∣∣
L

)
, (D.5)

because |~µ′(s)| � V . This gives

2ωos̃

c
δT1 =

2ωos̃

c
~µ′(s) · ~m(s) +

2ωos̃V

c

(
~t(s)−

~u

V

)
· P~µ(s)

|~rp(s)− ~ρ(s)|
+
ωoV s̃

c
E4(s),

with scaled remainder

ωoV s̃

c
E4(s) = O

[
ωo
c

a~µ′

V
· P
~µ

L
+
a|~µ|2

λoL2
+

a3

λoL2
+

a

λoL

a2|~µ′′|
V 2

+
a3|~µ′′′ · ~mµ|

V 3λo

]
.

The first term in the remainder is negligible by (3.21),

ωo
c

a

V
~µ′(s) · P(s)~µ(s)

L
∼ 1

λo

λoL

aδ

µ

L
=

µ

aδ
� 1.

The second term is negligible because

a|~µ(s)|2

λoL2
∼ µ2

a2

a3

λoL2
� 1,

by (3.2) and u . V , and the fourth term is negligible by assumption (3.22)

a2|~µ′′(s)|
V 2

∼ λo
γ
,
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for all γ � a/L, not only γ ∼ δ, as assumed in (3.30). Finally, the last term in the remainder is negligible

by assumption (3.23).

We have now shown that

2ωos̃

c
δT1(s, s̃) ≈ 2ωos̃

c
~µ′(s) · ~m(s) +

2ωos̃V

c

(
~t(s)−

~u

V

)
· P(s)~µ(s)

|~rp(s)− ~ρ(s)|
. (D.6)

Similarly, we get

ω̃

c
δT2(s, s̃) =

2ω̃

c
~µ(s) · ~m(s) + E5(s, s̃) (D.7)

with remainder

E5(s, s̃) = O

(
ω̃

c

µ2

L

)
+O

(
ω̃

c

a2

V 2

[
d2|~rp(s) + ~µ(s)− ~ρ(s)|

ds2
− d2|~rp(s)− ~ρ(s)|

ds2

])
.

The first term in this remainder is negligible by (3.2) and the assumption |~µ| ∼ µ� a. Note that the second

term in E5 is similar to the remainder E2 estimated in Appendix C, and that all terms but

ω̃

c

a2

V 2
~µ′′(s) · ~mµ(s) ∼ B

νoγ

are negligible under our assumptions. Therefore, we get

ω̃

c
δT2(s, s̃) ≈ 2ω̃

c
~µ(s) · ~m(s) +

ω̃

c

s̃2

2
~µ′′(s) · ~mµ(s) (D.8)

and the perturbation of the phase in the Wigner transform is given by

δΨ(ω̃, s̃, s, ωo) ≈
2ωos̃V

c

[
1

V
~µ′(s) · ~m(s) +

(
~t(s)−

~u

V

)
· P(s)~µ(s)

|~rp(s)− ~ρ(s)|

]
+

2ω̃

c
~µ(s) · ~m(s) +

ω̃

c

s̃2

2
~µ′′(s) · ~mµ(s). (D.9)

The last term in δΨ is of order B/(νoγ), and can be neglected when γ ∼ δ � B/νo. Equation (3.26) follows

after introducing the phase (D.9) in the Wigner transform and integrating in s̃ and ω̃.

When γ . B/νo, we obtain a more complicated expression of W, involving a Fresnel integral in s̃.

However, the quadratic phase ω̃
c
s̃2

2
~µ′′(s) · ~mµ(s) does not affect the location of the peak of the resulting

integral in s̃ [1], which means that the velocity estimation described in Section 3.4.2 should work for γ . B/νo,

as well.

The derivation of equation (3.27) is similar, and we do not include it here.
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