1. A space X is constructed from two disjoint copies of \mathbb{RP}^3 and a copy of the unit interval I by gluing one end of I to a point of one copy of \mathbb{RP}^3, and gluing the other end of I to the other copy of \mathbb{RP}^3.

(a) Describe the universal cover \tilde{X} of X.

(b) Compute the homology groups of \tilde{X}.

(a) Let T denote translation by 1 along the first axis of \mathbb{R}^4, so that

$$\tilde{X} \cong \bigcup_{n \in \mathbb{Z}} T^{3n}(S^3) \cup \bigcup_{n \in \mathbb{Z}} T^{3n+1}(I \times \{0\}^3).$$

(b) It is obvious that $\tilde{X} \cong \bigvee_{n \in \mathbb{Z}} S^3$, so

$$H_k(\tilde{X}) = \begin{cases}
\mathbb{Z} & \text{if } k = 0 \\
\mathbb{Z}^\omega & \text{if } k = 3 \\
0 & \text{else.}
\end{cases}$$

2. Let D denote the closed unit disk in the plane with boundary the unit circle S^1. Let $f : D \to D$ be a continuous map whose restriction to S^1 is the identity map. Show that f must be surjective.

Since D is contractible, f is nullhomotopic. Therefore if α is a simple loop around S^1, then the image of $f \circ \alpha$, namely S^1, is contractible in $f(D)$. The image of any homotopy between $S^1 = \partial D$ and a point in D must contain D, so in particular $D \subset f(D)$.

3. Let X denote the space $S^2 \cup A$, where $A = \{(x,0,0) \in \mathbb{R}^3 : 1 \leq x \leq 2\}$. Show that if $p : X \to Y$ is a covering map, then p must be a homeomorphism, i.e. X cannot cover anything except itself.

Suppose that $p : X \to Y$ is a covering map. Let U be an evenly covered neighborhood of $p(0,0,1)$ in Y, and let V be the sheet over U containing $(0,0,1)$. Notice that V is a union of a 1-dimensional manifold and a 2-dimensional manifold, while any neighborhood in $X \setminus V$ is either a 1-manifold or a 2-manifold. Since V is disjoint from and homeomorphic to each other sheet over U, it follows that V is the unique sheet over U. In particular, this implies that p is of degree 1, whence $Y \cong X$ necessarily.

4. Let K denote the Klein bottle. You may assume without proof that K is the union of two copies M and N of the Moebius band with boundaries glued by a homeomorphism. Compute $H_1(K,M)$ and $H_2(K,M)$.

If U is a neighborhood of the central circle of M, then $(K \setminus U, M \setminus U) \simeq (N, \partial N)$, so $H_*(K,M) = H_*(N, \partial N)$. The sequence

$$
H_2(N) \to H_2(N, \partial N) \to H_1(\partial N) \to H_1(N) \to H_1(N, \partial N) \to H_0(\partial N) \to H_0(N, \partial N) \to 0
$$

is exact. We have $N \simeq \partial N \cong S^1$, so $H_2(N) = 0$ and $H_1(N) = H_1(\partial N) = H_0(\partial N) = \mathbb{Z}$, so the sequence becomes

$$
0 \to H_2(N, \partial N) \to \mathbb{Z} \xrightarrow{z \to 2z} \mathbb{Z} \to H_1(N, \partial N) \to \mathbb{Z} \xrightarrow{\text{id} z} \mathbb{Z} \to H_0(N, \partial N) \to 0.
$$

A diagram-chase gives $H_1(N, \partial N) = \mathbb{Z}_2$ and $H_2(N, \partial N) = 0$.

5. Let X denote the quotient space \mathbb{R}/\mathbb{Q} of the real line obtained by identifying all the rationals to a single point. (This is not the group theoretic quotient.)

(a) Is X Hausdorff?

(b) Is X compact?

(a) No; let $q : \mathbb{R} \to X$ be the given quotient map, and let U be a neighborhood of $[0]$ in X. If V is any other neighborhood in X, then $q^{-1}(V)$ is open and nonempty. Since \mathbb{Q} is dense in \mathbb{R}, the intersection $q^{-1}(V) \cap \mathbb{Q}$ is nonempty; but $\mathbb{Q} \subset q^{-1}(U)$, so $U \cap V = q(q^{-1}(U)) \cap q(q^{-1}(V))$ is nonempty.

(b) No; for each $n \in \mathbb{Z}$, let $U_n = \mathbb{R} \setminus \{k\pi\}_{k=-n}^{\infty}$. Each $q(U_n)$ is open in X, since $U_n = q^{-1}(q(U_n))$, and the collection $\{q(U_n)\}_{n \in \mathbb{Z}}$ covers X. However, for any finite subset $A \subset \mathbb{Z}$, we have $[\pi \max A] \notin \bigcup_{n \in A} q(U_n)$.

1. Identify the space of all 2×2 real matrices with \mathbb{R}^4 so that the matrix \[
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\] corresponds to (a, b, c, d). Show that the subspace Σ of all matrices with determinant 1 is a smooth 3-dimensional manifold. Let Π denote the hyperplane in \mathbb{R}^4 with equation $x_1 + x_2 + x_3 - x_4 = 0$. Does Π intersect Σ transversely [sic] at I?

Notice that $d \det(a, b, c, d) = (d, -c, -b, a)$ is surjective unless $a = b = c = d = 0$. Since $\det(0, 0, 0, 0) = 0$, it follows that 1 is a regular value of \det. Hence $\det^{-1}(1)$ is a smooth manifold of codimension 1 in \mathbb{R}^4.

Since $\dim \Pi + \dim \Sigma = 6 > 4$, the manifolds intersect transversally at I unless their tangent spaces coincide. Since Π has normal vector $(1, 1, 1, -1)$ and $T_I \Sigma$ has normal vector $(1, 0, 0, 1)$, this is not the case; the intersection is transversal. ■

2. The suspension of a space Y is the quotient space $Y \times I$ obtained by identifying $Y \times \{0\}$ to a point and separately identifying $Y \times \{1\}$ to a point. Let X denote the suspension of $\mathbb{R}P^2$.

(a) Compute $\pi_1(X)$.

(b) Compute all the homology groups of X.

(a) Let U be X minus one identified point, and let V be X minus the other identified point, so that $U \simeq V \simeq \ast$. Since $\pi_1(X)$ is the pushout of the diagram $0 \leftarrow \pi_1(U \cap V) \rightarrow 0$ by Seifert-van Kampen, we have $\pi_1(X) = 0$.

(b) Since X is a quotient of a connected space, it is connected, so $H_0(X) = \mathbb{Z}$. Part (a) gives $H_1(X) = \text{Ab} \pi_1(X) = 0$. Take U and V as above, so that Mayer-Vietoris gives the exact sequence

$$H_2(U) \oplus H_2(V) \rightarrow H_2(X) \rightarrow H_1(U \cap V) \rightarrow H_1(U) \oplus H_1(V).$$

We have $H_2(U) = H_2(V) = H_1(U) = H_1(V) = 0$. Furthermore, $U \cap V \simeq \mathbb{R}P^2$, so $H_1(U \cap V) = \mathbb{Z}_2$. The sequence becomes

$$0 \rightarrow H_2(X) \rightarrow \mathbb{Z}_2 \rightarrow 0,$$

giving $H_2(X) = \mathbb{Z}_2$. After another application of Mayer-Vietoris, we conclude that

$$H_k(X) = \begin{cases}
\mathbb{Z} & \text{if } k = 0 \\
\mathbb{Z}_2 & \text{if } k = 1 \\
0 & \text{else.}
\end{cases}$$

■
3. Let \(T = \{(z, w) \in \mathbb{C}^2 : |z| = |w| = 1\} \). Define a map \(f : T \to T \) by \(f(z, w) = (zw^3, w) \). Prove that \(f \) is a diffeomorphism. Choose a basis of \(H_1(T) \) and compute the matrix of \(f_* : H_1(T) \to H_1(T) \) with respect to this basis.

Notice that \(f \) is smooth, and that

\[
df_{(z, w)} = \begin{pmatrix} w^3 & 3zw^2 \\ 0 & 1 \end{pmatrix}
\]

is invertible for all \((z, w) \in T\), since \(|\det df_{(z, w)}| = |w|^3 = 1\), proving that \(f \) is a local diffeomorphism. Moreover, \(f \) has smooth inverse \((x, y) \mapsto (xy^{-3}, y)\), so \(f \) is bijective, hence a diffeomorphism.

Consider \(T \) as \(S^1 \times S^1 \), and let \(\alpha = S^1 \times \{1\} \) and \(\beta = \{1\} \times S^1 \). With respect to the ordered basis \(\{\alpha, \beta\} \) of \(H_1(T) \), the induced map \(f_* \) has matrix representation

\[
f_* = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}.
\]

\[
\blacksquare
\]

4. Let \(L \) denote a triangulated 3-dimensional lens space, so that \(L \) is the quotient of \(S^3 \) by a free action of a finite cyclic group \(\mathbb{Z}_n \), and the projection map \(S^3 \to L \) is a covering map.

Suppose that \(L \) is the union of two connected subcomplexes \(H \) and \(K \). Show that \(H \cap K \) must be connected.

Mayer-Vietoris gives the exact sequence

\[
H_1(L) \to H_0(H \cap K) \to H_0(H) \oplus H_0(K) \to H_0(L) \to 0.
\]

Since \(S^3 \) is simply connected and the action of \(\mathbb{Z}_n \) on \(S^3 \) is free, we have \(\pi_1(L) = \mathbb{Z}_n \).

Since each of \(H \) and \(K \) is connected, we have \(H_0(H) = H_0(K) = \mathbb{Z} \). Since \(L \) is a quotient of a connected space, it is connected, so \(H_0(L) = \mathbb{Z} \). Letting \(k \) denote the number of connected components of \(H \cap K \), the sequence now becomes

\[
\mathbb{Z}_n \to \mathbb{Z}^k \to \mathbb{Z}^2 \to \mathbb{Z} \to 0.
\]

The image of \(\mathbb{Z}_n \) is a finite subgroup of \(\mathbb{Z}^k \), and is therefore trivial. A straightforward diagram-chase now gives \(k = 1 \), as desired.

\[
\blacksquare
\]
5. A topological space is countably compact if every countable open cover has a finite sub cover. Prove that a metric space is countably compact if and only if every infinite sequence in X has a convergent subsequence.

Suppose that every infinite sequence in X has a countable subsequence. Let $\{ U_n \}$ be a countably infinite open cover of X, and suppose that it has no finite subcover. For each n, let $x_n \in X \setminus \bigcup_{i=1}^n U_i$, and let x be the limit of a subsequence of $\{ x_n \}$. Since $\{ U_n \}$ covers X, there exists some k such that $x \in U_k$. However, this implies that U_k contains infinitely many terms of the subsequence, hence infinitely many terms of $\{ x_n \}$, a contradiction.

Conversely\(^1\), suppose that X is countably compact, and let $\{ x_n \}$ be an infinite sequence in X. If $\{ x_n \}$ contains no limit points, then each x_n has a neighborhood containing no other points in the sequence. This constitutes an open cover of $\{ x_n \}$ with no finite subcover, showing that $\{ x_n \}$ is not countably compact and therefore not closed in X. Hence the sequence has a limit point that it does not contain. Let x be a limit point of $\{ x_n \}$. For each k in \mathbb{N}, let n_k be such that $d(x, x_{n_k}) \leq \frac{1}{k}$. Since the set $\{ x_n : d(x, x_n) \leq \frac{1}{k} \}$ is infinite for each k, we may choose the sequence n_k to be strictly increasing. It is clear that $\{ x_{n_k} \}$ is a convergent subsequence of $\{ x_n \}$.

\(^1\)This argument is rather ungainly. If you know a more elegant one, let me know!