1. Let \(M \) be a simply connected manifold, let \(\sim \) be an equivalence relation on \(M \) and let \(X = M/\sim \) be the quotient space. Suppose that

(i) Every equivalence class has exactly 2 points and

(ii) For every point \(x \in M \) there are open sets \(U(x), V(x) \) in \(M \) such that \(x \in U(x) \), \(U(x) \cap V(x) = \emptyset \), and for every \(u \in U(x) \) there is a \(v \) in \(V(x) \) with \(u \sim v \) and for every \(v \) in \(V(x) \) there is a \(u \in U(x) \) with \(v \sim u \).

Let \(x_0 \) be a point in \(X \) and compute \(\pi_1(X,x_0) \). Can you describe a generator of \(\pi_1(X,x_0) \)?

Define an action of \(\mathbb{Z}_2 \) on \(M \) by setting, for each \(x \in M \), \(0 \cdot x = x \) and \(1 \cdot x = y \), where \(y \neq x \) and \(x \sim y \). It follows that \(0 \cdot U(x) = U(x) \) and \(1 \cdot U(x) = V(x) \) for all \(x \in M \), so \((0 \cdot U(x)) \cap (1 \cdot U(x)) = \emptyset \). Hence \(\mathbb{Z}_2 \) is a covering space action in the language of Hatcher, i.e., \(X = M/\mathbb{Z}_2 \). Therefore \(\pi_1(X,x_0) = \mathbb{Z}_2 \). If \(\alpha \) is a simple path in \(M \) from \(x \) to \(y \), where \(x \neq y \) and \([x] = [y] = x_0 \), then \([\alpha] \) is a generator of \(\pi_1(X,x_0) \).

2. Let \(X \) be a compact Hausdorff space and let \(A_1, A_2, \ldots \) be a sequence of connected subspaces with \(\overline{A}_j - A_j \subset A_{j+1} \) for each \(j = 1, 2, \ldots \). Suppose also that for each \(x \) in \(X \) there is an open set \(U(x) \) containing \(x \) such that \(U(x) \cap A_j = \emptyset \) for all but a finite number of \(j \). Prove that \(\bigcup_{j=1}^{\infty} A_j \) is compact.

It suffices to show that \(X \setminus \bigcup A_j \) is open. Let \(x \in X \setminus \bigcup A_j \), and let \(J = \{ j : U(x) \cap A_j \neq \emptyset \} \). Further let \(V = U(x) \setminus \bigcup_{j \in J} \overline{A}_j \). We have

\[
V = U(x) \setminus \left(\bigcup_{j \in J} A_j \cup \left(\bigcup_{j \in J} \overline{A}_j \right) \right) \subset U(x) \setminus \left(\bigcup_{j \in J} A_j \cup A_{j+1} \right) \subset U(x) \setminus \bigcup_{j=1}^{\infty} A_j,
\]

so \(x \in V \). Since \(J \) is finite, \(V \) is open by construction, and we are done.

3. Let \(f : X \to Y \) be a differentiable map of smooth compact simply connected \(n \)-manifolds. Show that \(f \) is a submersion if and only if \(f \) is a diffeomorphism.

If \(f \) is a diffeomorphism, then it is a fortiori a submersion. If \(f \) is a submersion, then \(\text{rk } df_x = \dim T_{f(x)} Y = n = \dim T_x X \) for all \(x \in X \), so \(f \) is an immersion, hence a local diffeomorphism. Since \(X \) is compact and \(Y \) is Hausdorff, \(f \) is proper; since \(f \) is a local homeomorphism, it is a covering map. It follows that \(f \) is surjective, and moreover bijective, since \(Y \) is simply connected. A bijective local diffeomorphism is a diffeomorphism.
4. Let F be a free group and R be a normal subgroup. Assume that F is finitely generated and R is finitely normally generated, and put $\pi = F/R$.

(a) Construct a finite 2-dimensional complex X such that $\pi_1(X, x_0) = \pi$.

(b) If Y is a space such that $\pi_1(Y, y_0) = \pi$, prove that there is a map $f : (X, x_0) \to (Y, y_0)$ such that $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is an isomorphism.

(a) Since F is finitely generated, so is π. Since R is finitely generated, π is finitely presented, say $\pi = \langle g_1, \ldots, g_n \mid r_1, \ldots, r_m \rangle$. Let X consist of one 0-cell $e^0 = x_0$; n 1-cells e^1_i, attached via constant maps $S^0_i \to e^0$; and m 2-cells e^2_j. By an abuse of notation, we treat each e^1_i as both the cell itself and the path in X that traverses its closure simply. With this in mind, if $r_j = g_{j_1} \cdots g_{j_k}$, we define the attaching maps from $S^1_{j_1}$ to the concatenation $e^1_{j_1} \ast \cdots \ast e^1_{j_k}$ via a suitable parametrization.

(b) We define $f : X \to Y$ on cells of increasing dimension. First, let $f(x_0) = y_0$. Since the fundamental groups of each pointed space are equal, they have identical presentations. There are obvious maps from the images of generators of $\pi_1(X, x_0)$ to the images of generators of $\pi_1(Y, y_0)$, given by $g_i(t) \mapsto g_i(t)$ for all $i = 1, \ldots, n$ and $t \in [0,1]$. Now, for each relation $r_j = g_{j_1} \cdots g_{j_k}$, there exists a homotopy H_j between $g_{j_1} \ast \cdots \ast g_{j_k}$ and the constant loop at y_0. By identifying e^2_j with $[0,1]^2$ via a suitable parametrization, we can set $f(e^2_j) = H([0,1]^2)$ in a manner consistent with our previous definition of f on the boundary 1-cells.

5.

(a) Compute the singular homology groups $H_*(S^n/S^k)$ where $S^k = \mathbb{R}^{k+1} \cap S^n$ and S^n is the unit sphere in \mathbb{R}^{n+1}.

(b) Prove carefully that $H_*(S^n - S^k) = H_*(S^n - T)$ where T is a small tubular neighborhood of S^k in S^n. Note that T is diffeomorphic to $S^k \times D^{n-k}$.

(c) Compute the singular homology groups $H_*(S^n - S^k)$.

(a) If $k = n$, then S^n/S^k is contractible, so $H_i(S^n/S^k) = \mathbb{Z}$ if $i = 0$ and is trivial otherwise. Suppose that $k < n$, and notice that $S^n/S^k = S^n/\partial D^{k+1} \cong S^n \cup D^{k+1}$, since D^{k+1} is contractible. Contracting this space about a $(k+1)$-cell $e_{k+1} \subset S^n$ whose boundary is ∂D^{k+1} reveals a homotopy $S^n \cup D^{k+1} \cong S^n \vee S^{k+1}$. Hence

$$H_i(S^n/S^{n-1}) = \begin{cases}
\mathbb{Z} & \text{if } i = 0 \\
\mathbb{Z}^2 & \text{if } i = n \\
0 & \text{else,}
\end{cases}$$

2
and for $k < n - 1$,

$$H_i(S^n / S^k) = \begin{cases} \mathbb{Z} & \text{if } i = 0, k + 1, \text{ or } n \\ 0 & \text{else.} \end{cases}$$

(b) We have $T \cong S^k \times D^{n-k} \cong S^k \times * \cong S^k$. The result follows now from homotopy invariance of singular homology.

(c) If $k = n$, then $S^n \setminus S^k = \emptyset$. If not, then $S^n \setminus S^k \cong (\mathbb{R}^{k+1})^* \cap S^n \cong \mathbb{R}^{n-k} \cap S^n = S^{n-k-1}$. Hence

$$H_i(S^n \setminus S^{n-1}) = \begin{cases} \mathbb{Z}^2 & \text{if } i = 0 \\ 0 & \text{else,} \end{cases}$$

and for $k < n - 1$,

$$H_i(S^n \setminus S^k) = \begin{cases} \mathbb{Z} & \text{if } i = n - k - 1 \\ 0 & \text{else.} \end{cases}$$

Afternoon Session, 2:00–5:00

1. Let X be \mathbb{R}^2 with the standard topology τ_1 and let Y be \mathbb{R}^2 with the topology τ_2 given by: C is closed in Y if $C \cap L$ is closed in L (standard topology) for every straight line L in \mathbb{R}^2.

(a) Show that, in fact, τ_2 is a topology on \mathbb{R}^2.

(b) Are the topologies τ_1 and τ_2 comparable? Are they equal?

(a) Let $\{F_a\}_{a \in A}$ be a closed collection in Y. For any straight line $L \subset \mathbb{R}^2$, it is clear that $(F_a \cup F_{a'}) \cap L = (F_a \cap L) \cup (F_{a'} \cap L)$ is a finite union of closed sets in L, hence closed. Also, $L \cap \bigcap_{a \in A} F_a = \bigcap_{a \in A} (F_a \cap L)$ is an intersection of closed sets in L, hence closed. Clearly $\emptyset \cap L = \emptyset$ and $Y \cap L = L$ are closed in L, so τ_2 is indeed a topology.

(b) We claim that $\tau_1 \subset \subset \tau_2$. If A is not closed in Y, then there exists a line L and a sequence $\{a_n\} \subset L \cap A$ such that $a_n \to a$ in $Y \setminus A$. But $a_n \to a$ in $X \setminus A$ as well, so A is not closed in X. However, $S^1 \setminus \{(1,0)\}$ is not closed in X, but is closed in Y, since $|L \cap (S^1 \setminus \{(1,0)\})| \leq 2$ for any straight line L.

■
2. Consider two embedded circles in the solid torus $M = S^1 \times D^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \times \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}; \alpha = S^1 \times \{(0, 0)\} \text{ and } \beta = \{(0, 1)\} \times \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1/2\}$.

Let T_α, T_β be small open tubular neighborhood [sic] of α, β such that they are disjoint from each other and the boundary of M. Prove or disprove that $M \setminus T_\alpha, M \setminus T_\beta$ are homeomorphic.

The spaces are not homeomorphic. There are obvious homotopies $M \setminus T_\alpha \simeq S^1 \times S^1$ and $M \setminus T_\beta \simeq S^2 \vee S^1 \vee S^1$. Hence $\pi_1(M \setminus T_\alpha) = \mathbb{Z}^2 \neq \mathbb{Z} \ast \mathbb{Z} = \pi_1(M \setminus T_\beta)$.

3. Let X denote the union of two circles meeting at one point x_0. Find a suitable connected 3-fold covering space of X and use the cover to prove that $\pi_1(X, x_0)$ is not abelian.

Consider the covering $p : Y \rightarrow X$, where Y is illustrated by

![Diagram of covering space]

and p takes each vertex of X to the wedge point of Y. No deck transformation takes an outer vertex to the center vertex, since each outer vertex is self-adjacent, while the center vertex is not. Hence p is not regular, i.e., $p_*(\pi_1(Y))$ is not normal in $\pi_1(X)$. If $\pi_1(X)$ were Abelian, every subgroup would be normal.

4. Prove that there is no submersion of a smooth nonempty compact manifold into Euclidean space.

Suppose that $f : M \rightarrow \mathbb{R}^n$ is such a submersion. Since f is a submersion, it is an open map, so $f(M)$ is open; since f is continuous, $f(M)$ is compact. Hence $f(M) = \emptyset$, a contradiction.

5. Let M be the smooth manifold given by $M = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 = 1, z^2 + w^2 = 1\}$ and let $f : M \rightarrow \mathbb{R}$ be given by $f(x, y, z, w) = x + z$. Find all the critical points of f and the associated critical values.

We have $df_{(x,y,z,w)} = (1 \ 0 \ 1 \ 0)$ identically on M, and $TM = S^1 \times S^1$. The critical points of f are precisely the set of points in M whose tangent planes are orthogonal to the span of $(1, 0, 1, 0)$, i.e., all vectors in $S^1 \times S^1$ parallel to $(1, 0, 1, 0)$. This is

$$\{ (x, y, x, w) \in \mathbb{R}^4 \mid y^2 = w^2 = 1 - x^2 \},$$

whose associated critical values are $\{2x \in \mathbb{R} \mid |x| \leq 1\} = [-2, 2]$. ■