
 MMOODDUULLEE 1100
MMIICCRROOCCOONNTTRROOLLLLEERRSS IIII

PPRREERREEQQUUIISSIITTEESS:: MODULE 09: MICROCONTROLLERS I.

OOUUTTLLIINNEE OOFF MMOODDUULLEE 1100::

What you will learn about in this Module:
 Additional information on using C compilers

Watch Dog Timer (WDT)
 How to write, compile, and debug your own source code

What you will build in the lab:

 You will modify the circuit you built in Module 09 to add a few components.
Then you will use a microcontroller to carry out the logic functions that you
studied in an earlier module (Module 07: Digital Circuits)

 You will then program your device to function as a “reaction timer”

IINNTTRROODDUUCCTTIIOONN::
 The versatility of microcontrollers is almost beyond belief. You can use them to
perform almost any task that can be done using other electronic components. In this
module, you will begin to learn more about programming the PIC16F84A
microcontroller (from Module 09), as well as how to interface the microcontroller with
switches from the outside world. You will then use the microcontroller to duplicate
the function of the logic circuit that you built in Module 07, but this time the logic will
be implemented in software, instead of hardware.

RREEAADDIINNGGSS FFRROOMM HHOORROOWWIITTZZ AANNDD HHIILLLL ((HH&&HH)):: AARRTT OOFF EELLEECCTTRROONNIICCSS
 11.13 (different types of microprocessors)
 11.14 (Emulators & development systems)

AADDDDIITTIIOONNAALL RREEAADDIINNGGSS && IINNTTEERRNNEETT RREESSEEAARRCCHH::
 You will be using the HELP files that are available with the PIC-C Compiler to
learn several very useful commands.

GGEENNEERRAALL NNOOTTEESS OONN WWRRIITTIINNGG CCOODDEE FFOORR AA MMIICCRROOCCOONNTTRROOLLLLEERR::
 Programming a microcontroller is actually quite easy if you have a compiler
handy (so that you can write your source code in a common language, like “C” or
“BASIC”, instead of having to write in the much more cryptic machine codes or
assembly languages). In general, when developing code for a microcontroller, you
will go through several stages. This is recommended to avoid wasted time trying to
fix code that was poorly designed in the first place. Here is an outline of how you
should proceed when developing microcontroller code:

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100

1- Define clearly what you want to accomplish. This could be a simple bulleted
list of things that the system must do.

2- Write “pseudo code”. This can take several forms, but it is essentially an
outline of the code you are about to write. It can be a flow chart, a block
diagram, or even an ordered list of actions, each with a specific line number
(see example below). The more detail you include in this step, the easier it
will be to write your source code in the next step.

3- Then, you write the source code. This is typically in a standard language like
“C” or “BASIC”

4- You compile the source code into HEX (hexadecimal) code. In this series of
modules this is done using the PIC-C compiler. Hexadecimal code is really
just a series of numbers in base 16 (with digits 0 – 9, then A, B, C, D, E, F).
So, the decimal number 15 can be represented as 1111 in binary (base 2) or
as the digit “F” in hexadecimal. The programmer just uses hexadecimal code
as a shorthand for binary (1’s and 0’s), that are burned onto the
microcontroller.

5- The programmer for the microcontroller understands HEX code, so you just
download the HEX code to the programmer (as in Module 09).

6- You burn the HEX code onto the microcontroller (as in Module 09).

An example of this process follows:

To begin with, assume you have three pushbutton switches attached to the
microcontroller circuit that you built for Module 09, as shown a few pages below.
You should go ahead and build this circuit, since you will be using it for the next part
of this Module. All you need to do is add three push button switches and five
resistors to the circuit you built for Module 09. Use a marker to label each switch on
your PC Board (SW1, SW2, and SW3). Each 1 kΩ resistor will hold the input to the
corresponding pin on the microcontroller at GROUND (0 volts, = logical FALSE),
until you press the switch. When you press the switch, the corresponding pin on the
microcontroller will be driven to +5V (logical TRUE). Since we are not using RA3
and RA4 in this module (pins 2 and 3 on the microcontroller), we will just pull those
down to GROUND using a 1 kΩ resistor on each.
Example: you wish to run a simple program that will perform the following functions:
if you press SW1 only, the LED connected to RB0 will turn ON; if you press only
SW2 the LED connected to RB1 will turn ON, if you press both switches at the same
time, all 8 LEDs will flash ON and OFF twice per second. No switches pressed = no
LEDs are turned ON.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
Step 1: Define what you want to accomplish (this is already stated clearly in the
above paragraph)
Step 2: Pseudo code
Set PORT B to all OUTPUTS (this will be used to control each LED)
Set PORT A to all INPUTS (this will be used to detect each switch)
Setup watch dog timer (WDT) (the internal timer prevents hang-ups)
Initially set output_B = 0b00000000 (explicitly set each bit of port B to zero)
 (This will turn off all LEDs)
Loop through the following cycle infinitely:
INPUT data from PORT A (this will check all switch states simultaneously)
x = Input A
if x = 0b00000000 then turn OFF all LEDs (no switches are pressed)
if x = 0b00000001 then turn ON RB0 (only SW1 is pressed)
if x = 0b00000010 then turn ON RB1 (only SW2 is pressed)
if x = 0b00000011 then flash all LEDs on and off (both switches are pressed)
restart WDT (restart the watch dog timer)
return to beginning of infinite loop

There are several ways to write pseudo code, this is just one example. Your choice
of approaches will depend upon the nature of the program: if the program always
just marches straight through a sequence of actions, then a bulleted or numbered list
is perfect, if your program will simply branch straight through a series of logical
decisions, then a logic tree might be the best way to go, if your program will
repeatedly cycle through a lot of conditional branches and complicated decisions
that could send the program execution in many different directions on each cycle,
depending on changing inputs, then you are better off using a flowchart or a block
diagram with arrows showing what to do for each possible input at each point that a
decision is made.

Step 3: Source Code (you write this using the C compiler)
Using the C compiler, you could write source code that would follow exactly what
you had outlined in the pseudo code above. I have written this source code for you.
It is on the following page in a program called “mod10a.c”. You can also find this
code on the course web page (just click on the link), so you can easily burn it onto a
microcontroller to test your circuit if you like.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
// mod10a.c RGD 1/4/03
// This is a simple test program for module 10 (ME499)

#include <16f84a.H>
// this tells the compiler that we will use a 4 MHz crystal
#fuses HS, WDT, NOPROTECT
// This sets up the internal device fuses: HS crystal, WDT ON, Code Protect OFF
#use delay (clock=4000000)
#byte PORTA = 5
#byte PORTB = 6

unsigned int x; // this defines an 8-bit unsigned integer variable, x

///////////////////////////////////////
// SUBROUTINES
void init_ports(void) {
 SET_TRIS_A(0b11111111); // PORTA = all outputs
 SET_TRIS_B(0b00000000); // PORTB = all inputs
// set Watch Dog Timer prescaler to 1152 ms:
 SETUP_COUNTERS(RTCC_INTERNAL, WDT_1152MS);
// Default output values:
 PORTB = 0b00000000; // turn off all LEDs
// Default variable values
 x = 0b00000000;
}

//////////////////////////////////////
// PIC16F84a microcontroller goes here at RESET

void main() {
 init_ports(); // Initialize ports
 restart_wdt(); // Reset the WDT

 CYCLE: // Run continuously
 x = input_a(); // read (input) all of the bits from port A into the variable x
 //NOTE: Port A only has five I/O pins, the remaining 3 bits are always = 0

 if(x == 0b00000000) OUTPUT_B(0b00000000);
 // No buttons are pressed, so turn off all LEDs
 // note also the use of == as opposed to a single =
 // two == signs means "are the two values equal?"
 // a single = sign means "set the left variable to equal the value on the right"

 if(x == 0b00000001) OUTPUT_B(0b00000001);
 // Only SW1 was pressed, so turn ON the LED connected to RB0

 if(x == 0b00000010) OUTPUT_B(0b00000010);
 // Only SW2 was pressed, so turn on the LED connected to RB1

 while(x == 0b00000011) { // if both SW1 and SW2 are being pressed...
 OUTPUT_B(0b11111111); // turn ON all LEDs
 delay_ms(250); // wait for 1/4 of a second
 OUTPUT_B(0b00000000); // turn OFF all LEDs
 delay_ms(250); // wait for 1/4 of a second
 // NOTE: the above 4 lines will cause all of the LEDs to flash
 // for as long as both SW1 and SW2 remain pressed
 restart_wdt();
 x = input_a(); // check to be sure both SW1 and SW2 are still pressed
 } // this is the end of the WHILE loop

 goto CYCLE; // go back and infinitely loop to the label CYCLE
} // main…this is the end of the program

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
Step 4: Compiled Code (this is in HEXADECIMAL, generated by the C compiler)
Once your source code is written, you press the “compile” button (see Module 09)
and the compiler will generate several files based on your source code. The most
important one for you to think about is the *.hex file, which you will import into the
chip programmer and burn onto the microcontroller, just as you did in Module 09.
The resulting *.hex code for this program will be called mod10a.hex, and it looks like
this:
:10 0000 0000 308A 0033 2800 00FF 3065 0000 3066 00B1
:10 0010 000E 308C 008C 1D14 2807 3081 0181 3084 0043
:10 0020 0000 08C0 390F 3880 0064 0081 3084 0000 0867
:10 0030 00C0 390C 0480 0086 018E 0137 280F 3084 00FF
:10 0040 0000 0803 1932 2801 308D 008C 018C 0B26 2802
:10 0050 008D 0B25 284A 308C 008C 0B2C 2800 0000 00CA
:10 0060 0080 0B23 2800 3484 011F 3083 0504 2864 009A
:10 0070 00FF 3083 1685 0083 1205 088E 008E 0803 1D4D
:10 0080 0046 2800 3083 1686 0083 1286 010E 0B4E 2808
:10 0090 0000 3083 1686 0001 3083 1286 000E 0802 3C71
:10 00A0 0003 1D58 2800 3083 1686 0002 3083 1286 0014
:10 00B0 000E 0803 3C03 1D75 2800 3083 1686 00FF 30B0
:10 00C0 0083 1286 00FA 308F 001E 2000 3083 1686 00CF
:10 00D0 0083 1286 01FA 308F 001E 2064 00FF 3083 16E1
:0E 00E0 0085 0083 1205 088E 0058 2838 2863 001A
:00 0000 01FF
;PIC16F84A

The above *.hex code should make absolutely no sense to you, but this is what you
will see when you import your program into MPLAB to burn the program onto the
microcontroller. You will see it appear in one of the windows when you import the
*.hex code.
At this point you just burn the code onto the microcontroller, then plug the
microcontroller into the circuit you built and test to see how well it functions.
To make changes, you change the source code, recompile to generate a new *.hex
file, then load the new *.hex file onto the microcontroller.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
Build the following circuit (just add a few components to your circuit from Module 09):

Debugging your microcontroller circuit:

The first thing you have to accept is that programming a microcontroller
introduces a whole new set of problems: you have to worry about problems with the
hardware as well as the software. This is usually not the case when programming a
regular computer, normally you just need to worry about the code you are writing.
When your microcontroller circuit fails to operate properly, you should ask the
following questions to narrow the search for the source of the problem:

1- Is it a problem with the hardware or with the software?

(it could be wired correctly (hardware is OK), but programmed incorrectly, or
vice versa, or even worse, BOTH could be wrong!)

2- If the hardware is correct, is it a problem with the logical flow of the software,
or is it a syntax error?

To help you with this, I suggest that whenever you are working with microcontrollers,
that you always take small steps, and check everything as you go, each step along
the way. Here is what I mean:

First, you decide what you want the microcontroller to do (write pseudo code).
Then you design the circuit (hardware).
Then you build the circuit.
Then you write a very short program that allows you to check the hardware.

This will seem like a waste of time, until the day that you spend countless hours
debugging the software for your microcontroller, only to discover, after much wasted

33 pF

PIC16F84A
R

A
0

R
A

1
R

A
2

R
A

3

R
A

4

G
N

D

R
B

0

R
B

1

R
B

2

R
B

3
R

B
4

R
B

5

R
B

6

R
B

7

+5
V

M
C

LR

O
S

C

O
S

C

4MHz 150

+5
V

10-segment red LED Bar Display
Black dot or chamfered corner on side
denotes pin 1. This side has all of the
diode anodes. NOTE: you should use a
20-pin IC Socket so that you can flip the
Bar Display around if you put it in
backwards!

1K

1

+5V

M
S

B

LS
B

1

1K
x 9

1 K Resistor Network. Pin 1 is the common terminal,
marked by a dot or line on the end of the chip.

1

SW1

SW2

SW3

1K

+5V

1K

1K 1K

1K

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
effort and anguish, that you had the microcontroller wired up incorrectly. Therefo
suggest that you always check your hardware

re, I
first by programming and running a

very simple program, like this one:

CHECK:

 delay_ms(250);

1, 1);

1, 0);

Of course, you need to add the header lines of the code, as you can see from

odule 09, but the code above is all that you will need to test the correct function of
d; is

 microcontroller in
e “main” section of the code and run the device. You can either use an

are

,
at

line-by-line explanation:

u to tell the

 to sit there and do absolutely nothing for exactly 250 milliseconds. You can

” to the register bit A1,
hich is pin #18 on the PIC16F84A microcontroller. TRUE means that the voltage on the

at

 OUTPUT_BIT(PIN_A

 delay_ms(250);

OUTPUT_BIT(PIN_A

restart_wdt();

goto CHECK;

M
the basic hardware of your circuit: does your IC have power correctly connecte
the oscillator correctly connected, is the chip correctly initializing

How do you use this simple program? Just program this onto the
th
oscilloscope, a voltmeter, or even an LED (as in Module 09) to check to see of pin
A1 is turning ON and OFF twice each second. If it is not, you have a hardw
problem you need to fix. Most often, you have not correctly wired the oscillator
crystal, or you have not applied power and ground to the correct pins. If it works
then you can confidently go ahead and write your real program code, knowing th
the hardware is probably OK. If you want to be very careful, after you have done
this very simple first test, you could then write a slightly longer bit of code, just to
check all of your hardware. For example, if you have 4 input switches going to the
microcontroller, and 8 output LEDs (sort of like the circuit in Module 09) you could
write a simple piece of code to check them all.

How does the simple program work? Here is a

CHECK: This is called a LABEL. It is a point in the code that you can go to.

delay_ms(250); This is a function that is built into the C compiler. It allows yo
microcontroller
change the value in the parenthesis: if it is a variable, it can be from 0 to 255, if you put it in
as a constant (as in this example), it can range from 0 to 65535

OUTPUT_BIT(PIN_A1, 1); This will output a logical “TRUE
w
pin will be set to the power supply voltage for the microcontroller, usually +5V. Note th
some microcontrollers (such as this one) can operate very well over a range of voltages, for

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
example, the Microchip microcontrollers that we use in this course can operate from about
2.8 to 6.0 volts. This depends on the exact chip you are using.

delay_ms(250); Just another 250 ms delay.

OUTPUT_BIT(PIN_A1, 0); Now note that we are setting bit A1 to a logical value of

ALSE. This will result in pin #18 being set to a voltage of 0 V.

e watchdog timer is an
ternal counter inside the microcontroller chip. You set it up at the beginning of your code

nts the

l

ow

 so the program runs in an
finite loop.

F

restart_wdt(); This is short for “restart the watch-dog timer”. Th
in
(see the source code for Module 09). This timer runs independently from the
microcontroller. When it counts all the way to the end (you set how long this should take), it
will automatically reset the microcontroller. This is a very good thing: it preve
microcontroller getting stuck somewhere. This is a particular problem with microcontrollers
in rugged applications since an electrical shock or other transient blast (such as a partia
power loss) from the environment can sometimes cause the microcontroller to lose it’s place
and get hung up without performing properly. The watch-dog timer (WDT) will only all
this to happen for a fixed, brief period of time (usually less than a few seconds), then it will
reset the device to the beginning of the program. For this reason, it is important to write your
code such that upon reset, the microcontroller will always get everything set up properly to
commence operation without any help from a human. You will therefore need to carefully
consider the startup conditions that are necessary for safe and robust operation of whatever
system you are designing, and then develop the code accordingly.

goto CHECK; This line just sends you back to the label CHECK,
in

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
Laboratory Projects:
Before doing the projects, you should read through the remainder of this module so
that you know more about the commands and functions available in the C compiler.

1- Program the microcontroller to perform exactly the same logic function that
you implemented using logic gates in Module 07. This time you will use
software to do the job instead of discrete logic gates. You can actually do any
or all of the logic projects from Module 07, but you should at least do the one
that you already built for Module 07.

2- Now you get to experience how much more flexible a microcontroller is than
just logic gates. Here is your next project: write a program that carries out the
following functions.
• If only SW1 is pressed, make the led bar graph count upwards (0 -> 255)
• If only SW2 is pressed, make the LED bar graph count downward (255 -> 0)
• If only SW3 is pressed, reset to zero (no LEDs are ON)
• If all three switches are depressed simultaneously, make all 8 segments of

the bar graph flash on and off three times per second.
• If no switches are pressed, the display should hold its current value.
• You should also add a short delay when detecting switches being pressed

so that the device correctly detects switch closure. Sometimes the switch
contacts “bounce”, sending a brief stream of spikes into a circuit. You can
deal with this in software by detecting the switch closure for a full 1/10 of a
second before you take any action. This also allows you to correctly
detect simultaneous switch closures, even if the human fingers pressing
the switches are not perfectly timed simultaneously.

3- Now for something a bit more complex. You can use the circuit you have
already built to make a “reaction timer”. The basic Idea is to have the micro-
controller give you a signal, then measure the amount of time it takes for you to
respond. Try to write some simple C code to perform the following functions:

- Turn OFF all of the LEDs.
- Wait until the person presses and holds SW1.
- Turn all LEDs ON for about 5-10 seconds (this is the signal for the

person to BE READY TO MOVE WHEN THE LEDs GO OFF).
- Turn all LEDs OFF and begin counting. Count up +1 every millisecond

until the person presses SW2 or SW3 (you decide which one). Once
the person presses SW2 or SW3, you can display the counted value
on the LEDs as a binary number that represents the reaction time in
milliseconds. You would need to read binary (it is easy), but it would
tell you your exact reaction time to the nearest millisecond.

- If you really want to make this interesting, you could try to add a
pseudo-random number generator to vary the delay times before each
reaction time test. The best way to do this might be to simply read the
value of the WDT register at the moment of the last response from the
person, and use this value times some constant to set the delay for the
next reaction time to a value from 2-10 seconds. This is kind of
challenging, but you can do it if you want to.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100

General troubleshooting tips for microcontroller software:
Here is a brief list of the most common mistakes you will encounter when
programming a microcontroller:

Missing semicolon at the end of a line.

Variable overflow (your data type is not large enough to handle the values)

Calculations using different data types as variables (example: int8 / float)
 (solution: always do calculations with data of the same type)

Device reset: failure to restart the watch-dog timer
 (solution: make sure to frequently call out “restart_wdt();”, especially inside loops)

Missing a bracket: (), { }

Case sensitivity: The compiler is supposed to be case insensitive by default, but do
not rely on this.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
SUMMARY OF PIC-C VARIABLES, STATEMENTS, AND EXPRESSIONS:

In general you can find a lot more information about the commands available in the
PIC-C compiler by using the HELP file that comes along with the compiler. The
compiler is available on the computer in the lab, and is also available for a few
hundred dollars from ccs@ccsinfo.com

Variables (Data Definition):
 int1 defines a 1 bit integer (0 or 1)
 int8 defines an 8 bit integer (range = -128 to 127)
 int16 defines a 16 bit integer (range = -32,768 to 32,767)
 int32 defines a 32 bit integer (-2,147,483,648 to 2,147,483,647)
 char defines an 8 bit character
 float defines a 32 bit floating point number
 short same as int1
 int same as int8
 long same as int16

You can modify the integer variables to be unsigned or signed. For example:

unsigned int x;
the variable “x” is defined as an unsigned 8 bit integer (range = 0 to 255)

signed int y;
the variable “y” is defined as a signed 8 bit integer (range = -128 to 127)

signed long z;
“z” is defined as a signed 16 bit integer (range = -32,768 to 32,767)

Although the compiler default is that variables are unsigned, I always explicitly state
“signed” or “unsigned” to make the distinction clear. You should refer to the HELP
file in the compiler software for examples of how to use these data type definitions,
or look at the sample code from Module 09.

Be sure to always choose a data type that can handle the numbers you intend to
use. Otherwise, the variable may simply overflow and begin from the lowest value,
never reaching the value you had intended. For example, if you are planning to
count an event, and you will allow a value as high as 10,000, then you must count
the event using at least a 16 bit integer data type. In general, be sure to do all of
your calculations on variables of the same type, otherwise you can lose data or the
behavior of the microcontroller can be erratic. Also, be sure that any intermediate
calculations do not cause a data overflow.

Variable names can be up to 32 characters long, must start with a non-numeric
character, and can contain numeric digits and the underscore “_” character.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

mailto:ccs@ccsinfo.com

 MMOODDUULLEE 1100
CONSTANTS:

When you assign a value to a variable, you need to be sure the compiler knows
what number system you are using. The most common number systems you will
encounter when using a microcontroller are: binary, decimal, and hexadecimal
(HEX).

Binary: all 1’s and 0’s (base 2)
Decimal: the number system we use every day (base 10)
Hexadecimal: base 16 counting system, useful for efficiently representing code.

You should brush up on your number base systems if you have forgotten about
them. Here is an example of the three common number systems, when counting to
the decimal value 16, then on ahead to the value 255:

 Binary Decimal Hex
00000000 0 00
00000001 1 01
00000010 2 02
00000011 3 03
00000100 4 04
00000101 5 05
00000110 6 06
00000111 7 07
00001000 8 08
00001001 9 09
00001010 10 0A
00001011 11 0B
00001100 12 0C
00001101 13 0D
00001110 14 0E
00001111 15 0F
00010000 16 10
 . . .
 . . .
 . . .
11111111 255 FF

To define a number correctly, you should use the following rules when programming:

123 this would be viewed as a decimal number by default (no characters before the
numbers to define the number system, so decimal is used by default).
0x123 this is a HEX number because you added a “zero-x” in front of the constant.
0b11001101 this is binary, because you added a “zero-b” ahead of the constant.

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
STATEMENTS and FUNCTIONS:

You will want to familiarize yourself with the following Statements and Functions,
using the HELP file. First just search for and glance at these, then look these up as
you need them. The HELP file gives examples with correct syntax for each. There
are many more Statements and Functions available, but these are the most
commonly used ones:

if (expression); else statement;
while(expression) statement;
do statement while(expression);
for(expression 1; expression 2; expression3) statement;
switch(expression) {case…}
goto label
label: statement
break;

The built-in functions include:
OUTPUT_LOW();
OUTPUT_HIGH();
OUTPUT_FLOAT();
OUTPUT_BIT();
INPUT();
OUTPUT_X();
INPUT_X();
delay_us();
delay_ms();
delay_cycles();

setup_wdt();
restart_wdt();
setup_timer();
set_timer();
get_timer();
setup_counters();

bit_clear();
bit_set();
bit_test();

transcendental functions: sin(); cos(); tan(); asin(); acos(); atan();
other functions: abs(); log(); log10(); pow(); sqrt();

Also, have a look at the mathematical and logical OPERATORS in the HELP file.
// anything following the double slash mark is a REMARK, and is ignored
/* anything between a slash-asterisk and asterisk-slash is also a REMARK */

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
SSEELLFF QQUUIIZZ

1: When you first assemble your microcontroller circuit it does not work properly. How
would you go about checking the circuit, listing the first things you would check first, then
progressing down through the list in the order that you would troubleshoot. Draw this logical
process of debugging a microcontroller circuit as a logic diagram in the space provided
below, with branching to show how each test result would flow into the next logical step.

PLEASE ANSWER THE ABOVE QUESTIONS AND E-MAIL TO THE INSTRUCTOR
“I have neither given nor received aid on this examination, nor have I concealed any
violation of the Honor Code”

 X___

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

 MMOODDUULLEE 1100
FFEEEEDDBBAACCKK

Was this Module useful and informative?

Is there a topic that should get more or better coverage?

In what way can this Module be improved:

Content: ___

Depth of Coverage: ___

Style: __

Any additional comments that will help us to improve this course:

__

__

__

If you prefer, you may e-mail comments directly to Bob Dennis: yoda@umich.edu

Copyright © Robert G. Dennis, the University of Michigan, 2003 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please
send comments and suggestions to: yoda@umich.edu

mailto:yoda@umich.edu

