
 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

MMOOTTOORR CCOONNTTRROOLL TTUUTTOORRIIAALL

WWEEBB PPAAGGEE:: WWWWWW..UUMMIICCHH..EEDDUU//~~BBOOBBDDEENN//

MMOOTTOORR AANNDD SSOOLLEENNOOIIDD CCOONNTTRROOLL::

DC motors, step motors, and solenoids are all similar in the sense that they are
inductive loads that are difficult or impossible to drive directly using the low power
analog and digital ICs that are common in most devices (and common in this
Laboratory). A solenoid is just a coil of wire surrounding an iron core. The core can
generally slide in and out of the coil along the axis. When a current is applied, the
solenoid generates a force that tends to draw the iron core toward the center of the
solenoid. This is the stuff of introductory physics texts, so if you are interested in the
underlying physics, that�s where you�ll have to go for more information. From a
practical standpoint, you can cleverly arrange the coil and the iron core such that
when current is applied to the electric coil, a mechanical rod is either pushed away
from or pulled toward the solenoid. Thus, solenoids are a simple linear actuator:
they produce force and motion along a straight line, usually for very short distances,
typically less than 1 cm. In general, you either turn them ON or OFF to make
something happen. They are so useful that you can find then all over the place:
electric door locks on cars, water valves for washing machines and sprinkler
systems, pinball games, just about anywhere where you need to make a binary
mechanical movement. Thus, controlling a solenoid is simply a matter of turning a
relatively large electric current ON or OFF.

Electric motors, on the other hand, have much more sophisticated and interesting
control aspects. Stepper motors typically require at least two sets of pulses feeding
two coils within the motor. The sequence in which the coils are energized
determines the motor direction. The rate at which the pulses are applied determines
the motor speed (steps per second). Stepper motors are somewhat difficult to
control unless you have a microprocessor handy, so we will discuss those later. You
can find out more about stepper motors by reading the suggested primer on the web
(see above). DC Brush motors are the simplest and most common motors on the
planet. You will find these motors everywhere from slot cars (and many other toys),
to automobile components, to battery-powered appliances (e.g. screw drivers,
shavers). The control of DC motors basically boils down to two issues:

Control of direction (make the motor spin one direction or the other)
Control of current (depending on the type of load, this relates to speed, etc.)

Control of direction is easy: you arrange switches to route the current either of

two ways through the motor. This can be accomplished with what is known as a
double pole – double throw switch. This type of switch has two separate conducting
paths (double pole), and two possible output positions for each path (double throw).
A double pole � double throw switch is usually called DPDT for short. It can be
wired as shown:

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

The �+� and �-� terminals of the battery connect to the two conducting paths of the

DPDT switch (the �common� terminals on the switch). The two conducting paths in
the DPDT switch are mechanically coupled, so that the switch can be in one of two
positions: connected to �A� and �C�, or, alternatively, connected to �B� and �D�. The
switch is shown in the �A� and �C� position. With the switch in this position,
conventional electric current will flow from the �+� terminal of the battery, through the
DPDT switch to the �A� terminal, then through the motor from left to right (top arrow),
then to the �C� terminal on the switch, then back to the �-� terminal of the battery,
completing the electric circuit. Flip the switch to the opposite position, the current
will flow in the opposite direction through the motor, and the motor will turn in the
opposite direction. Simple as that.

So, to control motor direction, you simply control the direction of current flowing
through the motor. Doing this with a mechanical switch is easy, but it is slow, and it
is difficult or impossible to interface with a sophisticated controller. Modern motor
controllers do this much better by using power transistors instead of switches. The
transistors can be discrete parts, or they can all be built onto one large IC. When
they are built onto one large IC for this purpose, it is often called a �Full Bridge� or
�H-Bridge� motor controller, because the conductors and transistors are often
arranged around the DC motor on the schematic in the form of the letter �H�:

DC motor

Current through
the motor

Battery

B C D A

+ -

DPDT
Switch

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

Think of each of the 4 separate transistors as a switch: When you close �A� and

�C�, current will flow through the motor from left-to-right. When you close �DC and
�B�, electrical current will flow through the motor in the opposite direction (right-to-
left), so the motor will go in the reverse direction. BUT, you need to be sure to use
the transistors in a sensible manner: never activate �A� and �B� together (or �C� and
�D�), or you will short out the power supply!

Advantages of using transistors over mechanical switches:

Transistors act very quickly (microseconds)
Transistors can be easily controlled by a microcontroller (or other interface)
Power transistors can be used (huge current)
In addition to controlling current (motor) direction, you can:
Control total current (i.e. motor power: torque and RPM)
 Modes for current control: PWM (Pulse Width Modulation), Chopper amp.
BRAKE: Activate �B� and �C� to short both motor terminals to ground:
 Motor acts as an electric generator with a huge load, so it acts as a BRAKE

DC motor

transistor

transistor transistor

transistor

+V +V

A

B C

D

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

CCOONNTTRROOLL OOFF MMOOTTOORR PPOOWWEERR::
 Basically, we control motor power (Torque and RPM) by controlling the amount
of electric current that passes through the motor. There are two common ways to
control the current flowing through a motor: PWM and Current Control using a
current amplifier (such as a �chopper amplifier�)

PWM (Pulse Width Modulation)
 PWM essentially amounts to turning a motor (or solenoid, or any other load) ON
and OFF very fast. You turn the load ON and OFF so fast that the system does not
have time to respond dynamically with the system. The trick here is to control how
long the relative ON and OFF times are. The ratio of ON time to Total time (Total
time = ON + Off time) is called the Duty Cycle, and is often expresses as a %
(%Duty Cycle, or %DC).

 To achieve PWM control of motor current, you simply control the amount of time
each pulse is ON during each pulse cycle. Note, generally the pulse period remains
constant, you only adjust (modulate) the width of each ON pulse. So, you get the
same number of pulses in any given time interval, but with increasing %DC, the
motor is ON more of the time, so it gets more power. You can implement PWM with
a microcontroller and discrete transistors (just use the microcontroller to control both
which transistors are active, and to control their %DC). Alternatively, you can get
pre-packaged integrated circuits (ICs) that have a built-in PWM function, such as the
L298 (made by ST-Microelectronics).

10 %DC

50 %DC

90 %DC

ON

ON

ON

OFF

OFF

OFF

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

Current Amplification & Control (using a �chopper� amplifier)
 Chopper current amplifiers can be packaged together with the transistors in an
�H� bridge configuration on a single IC to produce a motor driver chip, often called a
Full Bridge Motor Driver. One excellent example is the LMD18245, made by
National Semiconductor. Unlike
PWM, chopper amplifiers use internal
current monitoring and feedback to
control the electrical current flowing
through a motor coil. This is a bit
more sophisticated than PWM, but
the level of motor control that you can
achieve is superb. We will use the
LMD18245 for your laboratory
exercises. If you wish to read more
about how this IC functions, you can
download the datasheet by going to
the National Semiconductor web page
(www.national.com) and searching for
the chip using the part number and
their search engine.

 The Motor Driver Chip shown above has 15 pins, each of which is connected to
configure the chip to do what you want it to do. This will be done for you. The
resulting circuit will have the following features:

Current to motor = Vref D
 0.00025 Rg

So, if you set the Vref to +5.0 V and use the maximum value of D (15/16), you can
easily select the gain resistor Rg to set the maximum motor current (Imax) as:

Rg = 18750 / Imax

LMD18245T
motor

Rg

D = 4-bit control
 (0/16 � 15/16) br

ak
e

di
re

ct
io

n

Vref
+ 5 V
or
variable

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

MMIICCRROOCCOONNTTRROOLLLLEERRSS::
 Microcontrollers are just about everywhere because they are simple, robust,
inexpensive, and incredibly powerful.
Fortunately, they are also very simple to
program and to implement in
electromechanical designs. Shown at
right is the pinout diagram of a very
inexpensive microcontroller. They can
be purchased on-line for about $4.00
each. You will use one of these to
control the motor in your project.

Here is the basic external anatomy of
the PIC16F84A microcontroller:

Note that each pin is numbered on this diagram: 1-18
Pins 15 & 16 are the Oscillator. They set the clock speed (0-20 MHZ)
Each internal instruction executes in 4 clock cycles
Pin 14 is +5V positive power
Pin 5 is Ground
Pin 4 is the Master Clear (resets the microcontroller if it goes to GROUND)
Pins 17, 18, 1, 2, & 3 are Register A (RAx): They are just 5 bits of digital I/O
Pins 6-13 are Register B (RBx): This is a full 8-bit digital I/O (input/output) port

What can you do with this (or any other) microcontroller?
INPUT: You can read the digital state of any of the register pins (RAx or RBx).
OUTPUT: You can write a digital value to any or all of the register pins (RAx or RBx).
Logical Operations: conditional branching, time delays, simple mathematical
operations, etc., based on the input states or on internal numerical values.

This is pretty much how we control the entire world nowadays.

Programming the Microcontroller:
 Programming a microcontroller is remarkably simple once
you have everything set up. First you need the programmer
hardware (shown at right). This is a small device that plugs
into the serial port of a computer. Then you need the drivers
for the programmer hardware. Together, these two things will
�burn� your program onto the microcontroller. The program will
remain on the microcontroller, intact, whether or not the power
is turned on. This is because the program on the
microcontroller is stored in �non-volatile� memory, which is
retained regardless of the power applied to the microcontroller.

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

Programming: We will use a �C� compiler, which is actually very simple. The
compiler is made by Custom Computer Services, Inc. It is called PIC-C. The initial
motor control program will be posted on Prof. Dennis� web page, and will be already
burned onto the microcontrollers, so everything should work when you first hook it
up.

�C� Programming: The list of statements in PIC-C language is shown below to the
left. The numerical constants that you can use are shown to the right.

The mathematical operators and built-in functions are shown below:

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

SSCCHHEEMMAATTIICC FFOORR TTHHEE MMOOTTOORR DDRRIIVVEERR BBOOAARRDD::

NC = no connection
M4, M3, M2, M1: 4 bit data for current control (M4 = MSB)

R1 = 20K, C1 = 1000 pF: sets the monostable chopper period to ~1.1 RC ~ 20 µs
R2 = 4.7K, C2 = 2200 pF, sets peak current at 3.75 Amps
Alternatively, add a parallel resistor to R2 to increase the output current:
 Rg = 18750/Imaxincrease
Thus, to set Imax = 6.0 Amps, add a parallel resistor = ~9.3K to R2

LMD18245T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R1 C1
1µF

+5V

33 pF

VDAC
REF

N
C

R2 C2

M
4

M
3

M
2

M
1

400µF

+

1K

br
ak

e

di
re

ct
io

n

PIC16F84A

R
A0

R
A1

R

A2

R
A3

R
A4

G
N

D

R
B0

R
B1

R
B2

R
B3

R

B4

R
B5

R
B6

R
B7

+5
V

M
C

LR

O
SC

O
SC

M
1

M
2

M
3

M
4

Power:
+12V to
+55V

4MHz 150

MCP3202

C
LK

+5
V

C
S

C
H

-0

C
H

-1

G
N

D

D
O

U
T

D
IN

NC

50Ω

13
12

+5
V 10 11

m
ot

or
 1

R
B1

R
B0

R
A3

R
A2

br
ak

e

di
re

ct
io

n

D
in

D
ou

t

C
LK

C
S

1K 1K

8 9

Ye
llo

w
 L

ED

R
ed

 L
ED

1

2

3

4

1

6

2

3

4

5

CH-0

CH-1

1 1

+5V

10K

Panasonic ON1111
Photo interrupter (Top View):

3

4

2

1

+5V

Limit Switch Inputs
(pins 5 & 6)

Analog Inputs
(pins 3 & 4)

Limit
Switch
Signal

LM2940T
+5V Regulator

I G O

3 Amp
resettable

+5V
M

SB

M
SB

LS
B

LS
B

Input:
+12 to +26 VDC
4 Amps or more

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

Sample �C� code for the microcontroller:

// mot-lmd1.c RGD 8/15/02

#include <16F84a.H>
#use delay (clock=4000000) // 4 MHz crystal
#byte PORTA = 0x05
#byte PORTB = 0x06

unsigned int i; // buffer variable for the detected state of PORTb
unsigned int j;
unsigned int k;
unsigned int address;
unsigned int step; // this is the counter for keeping track of which step is
current

short int flip; // variable for flashing LED

///////////////////////////////////////
// SUBROUTINES

void init_ports(void) {

 SET_TRIS_A(0b00000000); // PORTA = all outputs
 SET_TRIS_B(0b00000000); // PORTB = all outputs
 SETUP_COUNTERS(RTCC_INTERNAL, WDT_1152MS); // set Watch Dog
Timer prescaler to 1152 ms

 // Default output values:
 PORTA = 0b00000000; // all bits are OUTPUTs
 PORTB = 0b00000000; // all bits are OUTPUTs

 // Default variable values
 step = 0;
 flip = 0;
 i = 0;
 j = 0;
 k = 0;
 address = 0;
}

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

///

void step_0(void) { // this is the first of 16 steps
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b00001111; // set the chopper amp values for motors 1 & 2
}

///

void step_1(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b01101110; // set the chopper amp values for motors 1 & 2
}

///

void step_2(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b10111011; // set the chopper amp values for motors 1 & 2
}

///

void step_3(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b11100110; // set the chopper amp values for motors 1 & 2
}

///

void step_4(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b11110000; // set the chopper amp values for motors 1 & 2
}

///

void step_5(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b11100110; // set the chopper amp values for motors 1 & 2
}

///

void step_6(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b10111011; // set the chopper amp values for motors 1 & 2
}

///

void step_7(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 1); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b01101110; // set the chopper amp values for motors 1 & 2
}

///

void step_8(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b00001111; // set the chopper amp values for motors 1 & 2
}

///

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

void step_9(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b01101110; // set the chopper amp values for motors 1 & 2
}

///

void step_10(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b10111011; // set the chopper amp values for motors 1 & 2
}

///

void step_11(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 0); // set motor 1 direction
 PORTB = 0b11100110; // set the chopper amp values for motors 1 & 2
}

///

void step_12(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b11110000; // set the chopper amp values for motors 1 & 2
}

///

void step_13(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b11100110; // set the chopper amp values for motors 1 & 2

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

}

///

void step_14(void) { //
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b10111011; // set the chopper amp values for motors 1 & 2
}

///

void step_15(void) { // this is the last of 16 steps
 restart_wdt(); // Reset the WDT
 OUTPUT_BIT(PIN_A0, 0); // set motor 2 direction
 OUTPUT_BIT(PIN_A3, 1); // set motor 1 direction
 PORTB = 0b01101110; // set the chopper amp values for motors 1 & 2
}

///

void dwell(void) { // this is what the controller does while waiting between
steps
 restart_wdt(); // Reset the WDT
 delay_us(i); // delay between steps sets motor speed
 delay_us(i); // delay between steps sets motor speed
}

///

//////////////////////////////////////
//////////////////////////////////////
//////////////////////////////////////

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

// PIC16F84A goes here at RESET

void main() {

 restart_wdt(); // Reset the WDT
 init_ports(); // Initialize ports
 i = 255;
 j = 0;

 CYCLE: // Run continuously
 restart_wdt(); // Reset the WDT

 switch(step) {
 case 0: step_0();
 break;
 case 1: step_1();
 break;
 case 2: step_2();
 break;
 case 3: step_3();
 break;
 case 4: step_4();
 break;
 case 5: step_5();
 break;
 case 6: step_6();
 break;
 case 7: step_7();
 break;
 case 8: step_8();
 break;
 case 9: step_9();
 break;
 case 10: step_10();
 break;
 case 11: step_11();
 break;
 case 12: step_12();
 break;
 case 13: step_13();
 break;
 case 14: step_14();
 break;
 case 15: step_15();
 break;
 }

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

 dwell(); // delay between steps to set motor speed

 step = step + 1;
 if(step >= 16) step = 0; // set upper limit for step counter
 if(step == 0) i = i - 5; // speed up the step rate

 if(i <= 15) i = 15; // set maximum step rate

 goto CYCLE;

} // main

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

PPHHOOTTOO IINNTTEERRRRUUPPTTEERRSS::
 Photo interrupters are extremely common devices that are used in many

places, including detectors for people
passing through doorways, and to detect
the movement of the ball within a computer
mouse. A photo interrupter is just a paired
optical emitter and detector. The emitter is
usually an LED, which emits infrared light
(so you can not see it). The detector is
usually just a phototransistor, pointed
directly at the output of the LED. The LED
is left ON continuously, so it is always
detected by the phototransistor. When an
object passes between the emitter and
detector, the light beam is interrupted and
the phototransistor can no longer detect the
light from the LED. This results in a loss of
current through the phototransistor, which
we can easily detect.

For your laboratory exercise, we will use
the photo interrupter shown at the right: the
Panasonic CNZ1111. The pin connections
are shown at the lower right of the top
figure. In the bottom figure you can see the
simple electrical circuit that will be used to
hook up the photo interrupter. The output
signal (Sig. OUT) will be used as a logic
level signal (ON or OFF) to tell the
microcontroller when your device has
reached the end of travel. Thus, we will use
two photo interrupters as limit switches.
When the microcontroller detects that the
light path has been interrupted, it will reverse the direction of the DC motor that is
powering your system. Since you are using a microcontroller, you can do many
more sophisticated things than just changing direction: you can gradually slow the
system by ramping the power down; you can stop for a fixed delay then reverse or
continue; you can stop the motor and activate the BRAKE function on the motor
driver IC until you receive another command; or you can do just about anything else
you can think of.

 MMOOTTOORR CCOONNTTRROOLL && SSEENNSSIINNGG

Copyright © Robert G. Dennis, the University of Michigan, 2002 ☺
This material may be freely copied and distributed for any educational purpose, but may not be sold for profit. Please send
comments and suggestions to: yoda@umich.edu

What you will do:
Locate this tutorial on the web and download it
 (http://www-personal.umich.edu/~bobden/bob_me350.html)

Get the Motor Controller from Prof. Dennis
Get two photo interrupters from Prof. Dennis

Design and build your Project, including the photo interrupters as limit switches

Connect the Motor Controller as directed to the motor and sensors in your project
(It should operate�the crude software will already be on the microcontroller)

Improve the performance of your system by making modifications to the control
algorithm that is programmed on your microcontroller.

