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Preface

This book arises out of a course I am teaching for a two-credit (26 hour) graduate-level
course Monte Carlo Methods being taught at the Department of Nuclear Engineering and
Radiological Sciences at the University of Michigan.

AFB, December 9, 2016
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Chapter 1

What is the Monte Carlo method?

The Monte Carlo method is a numerical solution to a problem that models objects inter-
acting with other objects or their environment based upon simple object-object or object-
environment relationships1. It represents an attempt to model nature through direct sim-
ulation of the essential dynamics of the system in question. In this sense the Monte Carlo
method is essentially simple in its approach—a solution to a macroscopic system through
simulation of its microscopic interactions.

A solution is determined by random sampling of the relationships, or the microscopic in-
teractions, until the result converges. Thus, the mechanics of executing a solution involves
repetitive action or calculation. To the extent that many microscopic interactions can be
modelled mathematically, the repetitive solution can be executed on a computer. However,
the Monte Carlo method predates the computer (more on this later) and is not essential to
carry out a solution although in most cases computers make the determination of a solution
much faster.

There are many examples of the use of the Monte Carlo method that can be drawn from
social science, traffic flow, population growth, finance, genetics, quantum chemistry, radiation
sciences, radiotherapy, and radiation dosimetry but our discussion will concentrate on the
simulation of neutrons, photons and electrons being transported in condensed materials,
gases and vacuum. We will make brief excursions into other kinds of Monte Carlo methods
when they they serve to elucidate some point or when there may be a deeper connection to
particle-matter interactions or radiation transport in general.

In some cases, the microscopic interactions are not well known. For example, a Monte Carlo
calculation of the seating patterns of the members of an audience in an auditorium may

1This presupposes that all uses of the Monte Carlo are for the purposes of understanding physical phe-
nomena. There are others uses of the Monte Carlo method for purely mathematical reasons, such as the
determination of multi-dimensional integrals, a topic that will be discussed later in Chapter 2. Often these
integrals are motivated by physical models. However, there are examples where the motivation is entirely
mathematical in which case our definition of the Monte Carlo method would have to be generalized somewhat.

1



2 CHAPTER 1. WHAT IS THE MONTE CARLO METHOD?

require that the researcher make assumptions about where an audience member would like
to sit and attempt to factor in other phenomena such as: a) for some type of performances,
people arrive predominantly in pairs, b) audience members prefer an unobstructed view of
the stage, c) audience members prefer to sit in the middle, close to the front, etc. Each
one of these assumptions could then be tested through measurement and then refined. The
Monte Carlo method in this case is an adjunct to the basic theory, providing a mechanism
to facilitate its development. An example is given in Figure 1.1.

Monte Carlo social study:
How is an auditorium filled by an audience?

Podium
Figure 1.1: Simulation of a seating arrangement in a partially filled small auditorium. An
occupied seat is represented by a solid circle and an empty seat by an open circle. The
audience members were given a preference to sit in the middle and towards the front with
the constraint that only one person could occupy a seat. (This constraint is what makes the
mathematical solution difficult but is easy to simulate using Monte Carlo methods.)

The important role that Monte Carlo methods have to play in this sort of study is illustrated
in Figure 1.2. Basic science attempts to understand the basic working mechanisms of a phe-
nomenon. The “theory” is a set of assumptions (with perhaps a mathematical formulation
of these assumptions) that can by a measured in an “experiment”. Ideally, the connection
between theory and experiment is direct so that the interpretation of the experiment in
unambiguous. This happens when the mathematical description of the microscopic interac-
tions and the macroscopic measurement involves no further approximation. When this is not
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Figure 1.2: The role of Monte Carlo methods in basic science.

possible, as in the example of Figure 1.1 where two people can not occupy the same seat, a
Monte Carlo simulation enters the picture in a useful way and can serve a two-fold purpose.
It can either provide a small correction to an otherwise useful theory or it can be employed
directly to verify or disprove the theory of microscopic interactions.

In some cases, the microscopic interactions are well-known as in the electromagnetic in-
teractions of high-energy electrons and photons and verified by experiment. Monte Carlo
techniques in this field are useful for predicting the trajectories of high-energy particles
through detectors and other complex assemblies of materials. As an example, consider the
experiment by MacPherson, Ross and Rogers [MRR95, MRR96] to measure the stopping
power of electrons. The stopping power is the differential amount of energy, dE deposited
in a differential pathlength dx through some material. Stopping power is a function of the
electron energy and the material. The experimental set-up is depicted in Figure 1.3.

Nearly-monoenergetic electrons from a linear accelerator (LINAC) are first scattered in the
forward direction by the thin exit window of the LINAC (this produces negligible energy
loss). The energy of the electrons are this point is known from a separate experiment.
The electron pass through a “thin” foil and are collected in a large NaI detector. The NaI
detector completely absorbs the electrons (except the occasional one that is backscattered)
although the bremsstrahlung photons produced in slowing down the electrons can escape.
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Figure 1.3: Experimental set-up of the MacPherson et al. stopping-power measurement.

The photon trajectories are represented by straight-line segments in the figure2. A close-up
of the electron and photon trajectories in the foil is represented in Figure 1.4. In this case,
20 MeV electrons passed through a thin plastic foil.

We can note several features: 1) the electron trajectories through the foil are nearly straight
(there is little elastic scattering) although the angular distribution following the accelerator’s
exit window is evident, 2) some electrons backscatter from the foil and the NaI detector,
3) some bremsstrahlung, which is produced in either the foil or the NaI detector, escapes
detection, 4) some electrons scatter into large angles in the foil and escape detection. Since
the amount of energy lost in the foil is determined by how much energy is captured by the
NaI detector less the known input energy, items 2)–4) are corrections to the experiment that
can be determined by Monte Carlo methods and the skewness of the electron trajectories in

2The trajectories depicted in Figure 1.3 and some subsequent ones were produced by the EGS4
code [NHR85, BHNR94] and the system for viewing the trajectories is called EGS Windows [BW91]. Color
renditions of this and subsequent figures make it easier to distinguish the particle species and color versions
may be viewed on the web at http://www-ners.engin.umich.edu/info/bielajew/EWarchive.html.
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Figure 1.4: A close up of the electron and photon trajectories in a thin foil in the MacPher-
son et al. stopping-power experiment.

the foil would have to be accounted for. However, these corrections are small in this case and
the Monte Carlo methods assist in the determination of the stopping power, a basic physics
parameter, and the scientific method outlined in Figure 1.2 still applies3.

If one makes the foil thicker and/or reduces the energy, the electron trajectories become
considerably more complicated. A close up of a tungsten foil irradiated by 10 MeV elec-
trons in the same experiment is depicted in Figure 1.5. The electrons develop very curved
trajectories owing to multiple Coulomb elastic scattering. Indeed, some of them even stop
in the foil! Since the corrections in this case would be large (The dx in the stopping power
is a measure of the electron pathlength, not the thickness of the foil.) and to some extent
circular, this measurement is not useful as a determination of the stopping power. However,
this does not mean that the energy deposition in the thick foil is not accurate! Assuming

3There is some circular logic in using Monte Carlo calculations to assist in the determination of stopping
power since the Monte Carlo calculations itself relies upon knowledge of the stopping power. However, if the
foil is thin enough, the sensitivity to the assumed stopping power in the Monte Carlo calculations is minimal.
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Figure 1.5: A close up of the electron and photon trajectories in a thick foil in the MacPher-
son et al. stopping-power experiment.

we believe the accepted value of the stopping power, the energy deposited in the foil may
be predicted with accuracy. However, the calculated result depends in a complicated and
coupled way on all the physics of electron and photon transport.

This use of the Monte Carlo method is depicted in Figure 1.6. In this case, theory can
not provide a sufficiently precise and entire mathematical description of the microscopic
and macroscopic physics. Theory can, however, provide intuition for the design of the
measurement. Monte Carlo methods are an adjunct to this process as well, serving in the
analysis of the experiment and verifying or invalidating the design.
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Figure 1.6: The role of Monte Carlo methods in applied science.

1.1 Why is Monte Carlo?

If Monte Carlo did not exist there would be strong motivation to invent it! As argued
previously, the products of both basic and applied science are dependent upon the trinity
of measurement, theory and Monte Carlo. Monte Carlo is often seen as a “competitor” to
other methods of macroscopic calculation, which we will call deterministic and/or analytic
methods. Although the proponents of either method sometimes approach a level of fanaticism
in their debates, a practitioner of science should first ask, “What do I want to accomplish?”
followed by “What is the most efficient way to do it?” Sometimes the correct answer will be
“Deterministic” and other times it will be “Monte Carlo”. The most successful scientist will
avail himself or herself of more than one avenue attack on a problem.

There are, however, two inescapable realities. The first is that macroscopic theory, particu-
larly transport theory, provides deep insight and allows one to develop sophisticated intuition
as to how macroscopic particle fields can be expected to behave. Monte Carlo can not com-
pete very well with this. In discovering the properties of macroscopic field behaviour, Monte



8 CHAPTER 1. WHAT IS THE MONTE CARLO METHOD?

Carloists operate very much like experimentalists. Without theory to provide guidance the
process of discovery is trial and error, guided perhaps, by some brilliant intuition.

However, when it comes to complexity of a problem, however that is measured, Monte Carlo
techniques become advantageous as the complexity of a problem increases. Later in this
book, in section 11, a mathematical proof is given. This “idea” is expressed in Figure 1.7.
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Complexity of problem (geometry)
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Monte Carlo vs deterministic/analytic methods

Monte Carlo

Analytic/

Real lifeModel problems

deterministic

Figure 1.7: Time to solution of Monte Carlo vs. deterministic/analytic approaches.

The other inescapable reality is that computers are getting faster and cheaper at an geometric
rate. This is known as Moore’s Law4.

A demonstration of Moore’s Law for the radiotherapy application has been maintained for
about 10 years now, through a timing benchmark of the XYZDOS code [BR92, Bie95], a “user

4Gordon E Moore (one of the co-founders of Intel) predicted in 1965 that the transistor density of semi-
conductor chips would double roughly every 12. This was based upon observation of silicon manufacturing
during the previous few years. Moore’s Law is not actually a law—it is a prediction based on the observation.
Computers doubled in speed/unit cost every 12 months from 1962–1970 and every 18 months thereafter.
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code” for the EGS4 Monte Carlo code system [NHR85, NBRH94, BHNR94]. The result for
Intel processors is shown in Figure 1.8.
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0.0

1.0

2.0

3.0

4.0

lo
g 10

 s
pe

ed
EGS4 radiotherapy benchmark results

Intel processors only

386

486

P5
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year 2000
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speed = 4600
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x 1.52 per year

P7?

P8?

Figure 1.8: An example of Moore’s “Law”.

The question as to when this geometric growth in computer speed will stop is a topic of some
hot debate. The increase in speed is achieved in two ways. As the technology advances,
computer circuits can be made smaller and smaller and it takes less time for signals to
move within a chip. Smaller size also allows chips to be placed closer together and interchip
communication times are proportionally less5. The problems associated with smaller size is
that heat becomes a problem. This is dealt with by driving these circuits at lower voltages
and by mounting these chips in elaborate heat-dissipating assemblies, sometimes with cooling
fans mounted directly on the assemblies. The other difficulty with small size is the “quantum
limit”. Circuit components can become so small that the state of a switch is no longer well-
defined (as in the classical case) and there is a probability that a switch, once thrown, could

5There’s an old joke in computer circles that goes like this: ”Company XYZ’s computer manufacturing
business has become so successful that they are relocating into smaller premises!”
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spontaneously revert back causing undesirable effects. This is a more difficult problem that
we may see as soon as 2005 or earlier.

Another benefit of small size is that more circuitry can be packed into the same silicon real
estate and more sophisticated signal processing algorithms can be implemented. In addition,
the design of these algorithms is undergoing continuing research resulting in more efficient
processing per transistor. All these effects combine to give us the geometric growth we see
in computer speed per unit cost.

Other skeptics argue that market forces do not favor the development of faster, cheaper
computers. Historically, the development fast computing was based upon the need for it
from science, big industry and the military. The growth of the personal computer industry is
related to its appeal to the home market and its accessibility to small business. So successful
has the personal computer been that the mainframe computer industry has been squeezed
into niche markets. Some predict that eventually consumers, particularly the home markets,
will stop driving the demand so relentlessly. How fast does a home computer have to be? is
a typical statement heard from this perspective. However, applications usually grow to keep
up with new technologies, so perhaps this argument is not well-founded. “Keeping up with
the Joneses” is still a factor in the home market.

One trend that should not be ignored in this argument is the emergence of new tech-
nologies, like semi-optical (optical backplane computers) or completely optical computers.
The widespread introduction of this technology might cause computer speeds to exceed the
present-day geometric growth!

Another factor weighing in favor of Monte Carlo is that the Monte Carlo technique is one
based upon a minimum amount of data and a maximum amount of floating-point operation.
Deterministic calculations are often maximum data and minimal floating-point operation
procedures. Since impediments to data processing are often caused by communication bot-
tlenecks, either from the CPU to cache memory, cache memory to main memory or main
memory to large storage devices (typically disk), modern computer architecture favors the
Monte Carlo model which emphasizes iteration and minimizes data storage.

Although the concluding remarks of this section seem to favor the Monte Carlo approach, a
point made previously should be re-iterated. Analytic theory development and its realiza-
tions in terms of deterministic calculations are our only way of making theories regarding the
behaviour of macroscopic fields, and our only way of modelling particle fluences in a sym-
bolic way. Monte Carlo is simply another tool in the theoretician’s or the experimentalist’s
toolbox. The importance of analytic development must never be understated.
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1.2 Some history

The usual first reference to the Monte Carlo method is usually that of Comte de Buf-
fon [dB77] who proposed a Monte Carlo-like method to evaluate the probability of tossing a
needle onto a ruled sheet. This reference goes back to 1777, well before the contemplation of
automatic calculating machines. Buffon calculated that a needle of length L tossed randomly
on a plane ruled with parallel lines of distance d apart where d > L would have a probability

p =
2L

πd
. (1.1)

A computer simulation of 50 needles (where L/d = 3
4
) on a finite grid of 5 lines is shown in

Figure 1.9.

The Buffon needle simulation

Figure 1.9: A computer simulation of the Buffon needle problem.

Later, Laplace [Lap86] suggested that this procedure could be employed to determine the
value of π, albeit slowly. Several other historical uses of Monte Carlo predating computers
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are cited by Kalos and Whitlock [KW86]. The modern Monte Carlo age was ushered in by
von Neumann and Ulam during the initial development of thermonuclear weapons6. Ulam
and von Neumann coined the phrase “Monte Carlo” and were pioneers in the development
of the Monte Carlo technique and its realizations on digital computers7.

6The two books by Richard Rhodes, The making of the Atomic Bomb and Dark Sun are excellent historical
sources for this period.

7Despite its chequered history, thermonuclear weapons have never been deployed in conflict. So Monte
Carlo calculations have not been employed in a destructive way. In contrast, Monte Carlo calculations are
employed for beneficial purposes, such as in the prediction of dose in cancer treatments [Bie94] and should
be credited with saving lives.
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Chapter 2

Elementary probability theory

Fundamental to the understanding of the Monte Carlo method and interpretion of its results,
is a basic understanding of elementary probability theory. In this chapter we introduce some
elementary probability theory to facilitate later discussions, and establish some notation.

2.1 Continuous random variables

2.1.1 One-dimensional probability distributions

A probability distribution function on x, p(x), also known as a “pdf”, or “PDF”, is a measure
of the likelihood of observing x over some range, xmin ≤ x ≤ xmax. For example, if x
is the distance from its point of creation, at which a photon interacts via the Compton
interaction, the statement p(x1) = 2p(x2) means that an observation of x in a differential
interval x1 ≤ x ≤ x1+dx is twice as likely to be observed than in an interval x2 ≤ x ≤ x2+dx,
in the limit that dx goes to zero. An example pdf, p(x) = exp(−x), is shown in Figure 2.1.

A pdf has necessary properties:

• p(x) ≥ 0 ∀ xmin ≤ x ≤ xmax.
Negative probabilities have no interpretation in our context.

• p(x) must be normalizable, and is normalized in the following fashion:

∫ xmax

xmin

dx p(x) = 1 . (2.1)

• −∞ < xmin < xmax < +∞, that is, xmin and xmax can be any real number, including
±∞, so long as xmin < xmax.

15



16 CHAPTER 2. ELEMENTARY PROBABILITY THEORY
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example pdf, p(x) = exp(−x)

Figure 2.1: The pdf p(x) = exp(−x). p(ln 2) = 2p(ln 4)

These are the only restrictions on p(x). Note that the statement of normalization above
implies that p(x) is integrable over its range of definition. The pdf may be discontinuous
and even infinite. For example, p(x) = aδ(x − x1) + (1 − a)δ(x − x2) ∀ |x| < ∞, where δ()
is the Dirac delta function, is an example of a properly defined pdf.

Cumulative distribution functions

Associated with every pdf, is its cumulative distribution function, c(x), also known as the
“cdf”, or “CDF” The cdf is computed below:

c(x) =

∫ x

xmin

dx p(x) , (2.2)

and has the property:

c ′(x) = p(x) . (2.3)
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The cdf has a critical role to play in Monte Carlo methods. In this chapter we shall illustrate
by example.

Moments of probability distribution functions

Certain probability functions can be characterized in terms of their integer moments,

〈xn〉 =

∫ xmax

xmin

dx xnp(x) ∀ n ≥ 0 ∧ n ∈ N ,

〈x0〉 = 1 (by definition) . (2.4)

However, the existence of these moments is not guaranteed nor even necessary. When 〈x〉
does exist, it is given the symbol µ, the average value of the probability distribution. When
both 〈x〉 and 〈x2〉 exist, the variance associated with the probability function may be defined
to be:

var{x} = σ2 = 〈x2〉 − 〈x〉2 , (2.5)

where σ is a measure of the “width” of the probability distribution, measured in the same
units as µ. var{x} is zero for the Dirac delta function and greater than zero for all other
probability distribution functions, even combinations of delta functions.

Examples of probability distributions

The δ-function probability distribution

Consider the probability distribution,

p(x) = δ(x− x0) ∀ |x| <∞ . (2.6)

By definition of the delta function,

∫ ∞

−∞

dx p(x) = 1 ,

∫ ∞

−∞

dxxn p(x) = xn0 ∀ n ≥ 0

c(x) = Θ(x− x0) .

where Θ() is the Heaviside step function.
Note that µ = x0 and σ =

√

〈x2〉 − 〈x〉2 = 0 in this case. The pdf and cdf are shown in 2.2.
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Figure 2.2: The pdf p(x) = δ(x− x0) and its associated cdf.

The “true or false” probability distribution

Consider the “true or false” probability distribution,

p(x) = (1/2)[δ(x) + δ(x− 1)] ∀ |x| <∞. (2.7)

This could describe a coin-flip experiment where a result of zero (or false) corresponds to
“tails” and a result of one (or true) correspondes to “heads”.

By definition of the delta function,

∫ ∞

−∞

dx p(x) = 1 ,

∫ ∞

−∞

dxxn p(x) =
1

2
∀ n > 0 ,

c(x) =
1

2
[Θ(x) + Θ(x− 1)] .

Note that µ = 1
2
and σ =

√

〈x2〉 − 〈x〉2 = 1
2
in this case. The pdf and cdf are shown in 2.3.
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Figure 2.3: The pdf p(x) = (1/2)[δ(x) + δ(x− 1)] and its associated cdf.

The exponential probability distribution

Consider the exponential probability distribution,

p(x) = Σ exp(−Σx) for 0 ≤ x <∞ . (2.8)

This probability distribution is used in the decay of nuclides and determination of pathlength
distributions in particle interactions in matter. For interaction pathlength distributions, Σ
is the macroscopic cross section in an attenuating material.

Computing the characteristics of this distribution,

∫ ∞

0

dx p(x) = 1 ,

∫ ∞

0

dxxn p(x) =
n!

Σn
∀ n ≥ 0 ,

c(x) = 1− exp(−Σx) .

Note that µ = σ = Σ−1 in this case. The pdf and cdf are shown in 2.4.
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Figure 2.4: The pdf p(Σx) = exp(−Σx) and its associated cdf.

The Cauchy probability distribution

An example of a probability distribution function that has no moments is the Cauchy prob-
ability distribution, also known as the Lorentz, or Breit-Wigner distribution. In our context,
this distribution arises from an interesting application—the intrinsic probability distribution
of the energy of a quantum from an excited atomic state of finite lifetime.

The Cauchy probability distribution is

p(x) =
1

π

γ

γ2 + (x− x0)2
∀ |x| <∞ . (2.9)

The Cauchy distribution has no moments, but its mode and median are x0. The parameter
γ is the half width at half maximum, since p(x0 ± γ) = 1

2
p(x0), and serves as a measure of

the width of the pdf.

The mean value of the Cauchy/Lorentz distribution can be made to be x0 if the “principle
value” of the first moment is obtained in the following way:

〈x〉 =
γ

π
lim

a−→∞

∫ a−x0

−a−x0

dx
x

γ2 + (x− x0)2

=
γ

π
lim

a−→∞

∫ a−x0

−a−x0

dx
x0 + (x− x0)

γ2 + (x− x0)2

= x0 +
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘✿

0
γ

π
lim

a−→∞

∫ a

−a

du
u

1 + u2
(by antisymmetry) (2.10)
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but the second moment and hence the variance can not be defined in any fashion.

Of course, this procedure would cause a mathematician to have conniptions! However,
infinities in physical applications can usually be rationalized by physical argument.

The Cauchy pdf, being a proper probaility function, has the cdf:

c(x) =
1

2
+

arctan(x−x0

γ
)

π
. (2.11)

The Cauchy pdf and cdf for x0 = 0 and γ = 1 are shown in 2.5. The pdf was denormalized
for display purposes.

x

−γ 0 γ

p
(x
)
an

d
c
(x
)

0

1
4

1
2

3
4

1

πp(x)
c(x)

Figure 2.5: The Cauchy pdf and its associated cdf for x0 = 0 and γ = 1.

A generalized Cauchy probability distribution

A generalized Cauchy probability distribution1 is

pm(x) =
Γ(m)

γ
√
π Γ(m− 1/2)

[

γ2

γ2 + (x− x0)2

]m

∀ |x| <∞∧m >
1

2

cm(x) =
1

2
+

Γ(m)√
π Γ(m− 1/2)

(

x− x0
γ

)

2F1

[

1

2
, m;

3

2
;−
(

x− x0
γ

)2
]

, (2.12)

1A standard version of the generalized Cauchy distribution does not yet exist, though there is some
literature to be found on this topic. For this book, we will consider this form, and exploit it to illustrate
aspects of moments.
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where the properties of the gamma function that would be used in the evaluation of (2.12)
for m ≥ 1 and half-integral are:

Γ(m+ 1) = nΓ(n) recursive formula for Γ()

Γ(1/2) =
√
π

Γ(1) = 1

Γ(m) = (m− 1)!

Γ(m+ 1) = m!

Γ(2m− 1) =
√
π
1 · 3 · 3 · · · (2m− 1)

2m

(2m− 1)!! =
√
π
(2m− 1)!!

2m

The generalized Cauchy distribution has its mode and median are x0. There exist exactly
⌊2(m− 1)⌋ moments for this distribution.2 After centering the distribution, u = x− x0,

pm(u) =
Γ(m)

γ
√
π Γ(m− 1/2)

[

1

γ2 + u2

]m

∀ |u| <∞∧m >
1

2

cm(u) =
1

2
+

Γ(m)√
π Γ(m− 1/2)

(

u

γ

)

2F1

[

1

2
, m;

3

2
;−
(

u

γ

)2
]

〈un〉 =
γn[1 + (−1)n]Γ

(

n+1
2

)

Γ
(

m− n+1
2

)

2
√
π Γ
(

m− 1
2

) ∀ n < 2m− 1 (2.13)

(2.14)

From (2.14) one can readily compute the moments of x using:

〈un〉 = 〈(x− x0)
n〉 (2.15)

2⌊2(m− 1)⌋ rounds to an integer in the direction of −∞.
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The Rutherfordian probability distribution

Another interesting probability distribution function of great importance in the simulation
of electron transport is the screened Rutherford or Wentzel distribution function:

p(µ) =
a(2 + a)

2

1

(1− µ+ a)2
; − 1 ≤ µ ≤ 1, (2.16)

where µ is the cosine of the scattering angle, cosΘ.

The Rutherfordian probability distribution (small-angle form)

The conventional small-angle form of the screened Rutherford or Wentzel distribution func-
tion is:

p(Θ) = 4a
Θ

(Θ2 + 2a)2
; 0 ≤ Θ <∞, (2.17)

Its first moment exists, 〈Θ〉 = π
√

a/2 but its second moment is infinite! This strange
behavior, the nonexistence of an angular variance is responsible for the theory of electron
transport being so problematic. Of course, one could restrict the range of integration to
physical angles, 0 ≤ Θ ≤ π, but the problems persist.

2.1.2 Two-dimensional probability distributions

Consideration of two and higher-dimensional probability distributions follows from a gen-
eralization of one-dimensional distributions with the added features of correlation between
observables and conditional probabilities.

Consider a two-dimensional (or joint) probability function p(x,y). A tangible example is the
distribution in energy and angle of a photon undergoing an inelastic collision with an atom3.

Another example is the two-dimensional probability distribution presented in Figure 2.7.
The meaning of two-dimensional probability distributions is as follows: Hold one variable,
say x fixed, and the resulting distribution is a probability distribution function in the other
variable, y. It as if you cut through the two-dimensional probability distribution at a given
point in x and then displayed the “cross cuts”. Several examples of these cross cuts are
shown in Figure 2.8.

The notions of normalization and moments follow directly. Thus,

〈xnym〉 =
∫ ymax

ymin

∫ xmax

xmin

dxdy xnymp(x, y) , (2.18)

3“Inelastic” in this definition relates to the energy of the photon changing, not the energy of the atom.
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Figure 2.7: A two-dimensional probability function f(x, y)

with the normalization condition 〈x0y0〉 = 1, the only “moment” that must be defined.
Higher order moments may or may not exist. If they exist, we define the covariance:

cov{x, y} = 〈xy〉 − 〈x〉〈y〉 , (2.19)

which can be positive or negative. Note that cov{x, x} = var{x}.
The covariance is a measure of the independence of observing x or y. If x and y are inde-
pendent random variables, then p(x, y) = p1(x)p2(y) and cov{x, y} = 0. A related function
is the correlation coefficient:

ρ{x, y} =
cov{x, y}

√

var{x}var{y}
, (2.20)

where −1 ≤ ρ{x, y} ≤ 1.

Some interesting relations involving the variances and the covariances may be found. For
example,

var{x± y} = var{x}+ var{y} ± 2 cov{x, y} , (2.21)
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Figure 2.8: Cross cuts of the two-dimensional probability function given in Figure 2.7.

or simply var{x}+ var{y} if x and y are independent.

The marginal probabilities are defined by integrating out the other variables.

m(x) =

∫ ymax

ymin

dy p(x, y) ; m(y) =

∫ xmax

xmin

dx p(x, y) . (2.22)

Note that the marginal probability distributions are properly normalized. For the example
of joint energy and angular distributions, one marginal probability distribution relates to the
distribution in energy irrespective of angle and the other refers to the distribution in angle
irrespective of energy. This the joint probability distribution function may be written:

p(x, y) = m(x)p(y|x) , (2.23)

where the conditional probability is defined by

p(y|x) = p(x, y)

m(x)
. (2.24)
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The interpretation of the conditional probability is that given x, what is the probability
that y occurs. The appearance of m(x) in the denominator guaranteed the normalization of
p(y|x).

2.1.3 Cumulative probability distributions

Associated with each one-dimensional probability distribution function is its cumulative
probability distribution function

c(x) =

∫ x

xmin

dx′ p(x′) . (2.25)

Cumulative probability distribution functions have the following properties which follow
directly from its definition and the properties of probability distribution functions:

• p(x) and c(x) are related by a derivative:

p(x) =
dc(x)

dx
, (2.26)

• c(x) is zero at the beginning of its range of definition

c(xmin) = 0 , (2.27)

• and unity at the end of its range of definition

c(xmax) = 1 , (2.28)

• c(x) is a monotonically increasing function of x as a result of p(x) always being positive
and the definition of c(x) in Equation 2.25.

Cumulative probability distribution functions can be related to uniform random numbers to
provide a way for sampling these distributions. We will complete this discussion in Chapter 4.

Cumulative probability distribution functions for multi-dimensional probability distribution
functions are usually defined in terms of the one-dimensional forms of the marginal and
conditional probability distribution functions.

2.2 Discrete random variables

A more complete discussion of probability theory would include some discussion of discrete
random variables. An example would be the results of flipping a coin or a card game. We
will have some small use for this in Chapter 5 and will introduce what we need at that point.
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Problems

1. Which of the following are candidate probability distributions? For those that are not,
explain. For those that are, determine the normalization constant N . Those that are
proper probability distributions, accompanied by mathematical proof, which contain
moments that do not exist?

(a) f(x) = N exp(−µx) 0 ≤ x <∞
(b) f(x) = N exp(−µx) 0 ≤ x < Λ/µ where µ,Λ are positive, real constants
(c) f(x) = N sin(x) 0 ≤ x < π
(d) f(x) = N sin(x) 0 ≤ x < 2π
(e) f(x) = N/

√
x 0 ≤ x < 1

(f) f(x) = N/
√
x 1 ≤ x <∞

(g) f(x) = Nx/(x2 + a2)3/2 0 ≤ x <∞

2. Verify that Equations 2.9, 2.16, and 2.17 are true probability distributions.

3. Consider the probability distribution,

p(x) = (1/2)[δ(x− a) + δ(x− b)] ∀ |x| <∞.

What are all the moments of this distribution?

4. Consider the probability distribution,

p(x) = N [Θ(x− a)−Θ(x− b)] . ∀ |x| <∞.

Can this be a proper pdf? If so, what is N . Does it matter what the relative values of
a and b are? What are all the moments of this distribution?

5. Prove Equation 2.21. Simplify in the case that x and y are independent.
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Chapter 3

Random Number Generation

Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.

John von Neumann (1951)

The “pseudo” random number generator (RNG) is the “soul” or “heartbeat” of a Monte
Carlo simulation. It is what generates the pseudo-random nature of Monte Carlo simulations
thereby imitating the true stochastic or random nature of particle interactions. Consequently,
much mathematical study has been devoted to RNG’s [Ehr81, Knu81, Jam88]. These three
references are excellent reviews of RNG theory and methods up to about 1987. The following
references contain more modern material [MZT90, MZ91, L9̈4, Jam94, Knu97]. It must also
be noted that random number generation is an area of active research. Information that
was given last year may be proven to be misleading this year. The best way to stay in tune
is to track the discussions concerning this topic on the web sites of organizations for which
random number generation is critical. A particularly good one is CERN’s site (www.cern.ch).
CERN is the European Laboratory for Particle Physics. Monte Carlo applications are quite
important in particle physics.

Sometimes one hears the opinion that Monte Carlo codes should be connected somehow to
a source of “true” random numbers. Such true random numbers could be produced by the
noise in an electronic circuit or the time intervals between decays of a radioactive substance.
There are two good reasons NOT to do this. Either a piece of hardware producing the
random numbers would have to be interfaced to a computer somehow, or an array contain-
ing enough random numbers would have to stored. Neither would be practical. However,
the most compelling reason for using mathematically-derived pseudo-random numbers is
repeatability—essential for code debugging. When a Monte Carlo code matures, error dis-
covery becomes less frequent, errors become more subtle and are revealed after the simulation
has run for a long time. Replaying the precise sequence of events that leads to the fault is
essential.
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We will not endeavor to explain the theory behind random number generation, merely give
some guidelines for good use. The operative phrase to be used when considering RNG’s
is “use extreme caution”. DO USE an RNG that is known to work well and is widely
tested. DO NOT FIDDLE with RNG’s unless you understand thoroughly the underlying
mathematics and have the ability to test the new RNG thoroughly. DO NOT TRUST
RNG’s that come bundled with standard mathematical packages. For example, DEC’s RAN
RNG (a system utility) and IBM’s RANDU (part of the SSP mathematical package) are known
to give strong triplet correlations. This would affect, for example, the “random” seeding of
an isotropic distribution of point sources in a 3-dimensional object. A picture of an artefact
generated by these RNG’s is given in Figure 3.1. This is known as the “spectral” property
of LCRNG’s.

The gathering of random numbers into planes is a well-known artefact of RNG’s. Marsaglia’s
classic paper [Mar68] entitled “Random numbers fall mainly in the planes”, describes how
random numbers gather into (n − 1)-dimensional hyperplanes in n-space. Good RNG’s ei-
ther maximise the number of planes that are constructed to give the illusion of randomness
or practically eliminate this artefact entirely. One must be aware of this behaviour in case
anomalies do occur. In some cases, despite the shortcoming of RNG’s, no anomalies are de-
tected. An example of this is the same data that produced the obvious artefact in Figure 3.1
but displayed with a 10◦ rotation about the z-axis does not exhibit the artefact. This is
shown in Figure 3.2.

3.1 Linear congruential random number generators

Most computer architectures support 32-bit 2’s-complement integer arithmetic1. The follow-
ing equation describes a linear congruential random number generator (LCRNG) suitable
for machines that employ 2’s-complement integer arithmetic:

Xn+1 = mod(aXn + c, 232) . (3.1)

This LCRNG generates a 32-bit string of random bits Xn+1 from another representation one
step earlier in the cycle, Xn. Upon multiplication or addition, the high-order bits (greater
than position 32) are simply lost leaving the low-order bits scrambled in a pseudo-random

1In 32-bit 2’s-complement integer arithmetic
00000000000000000000000000000000 = 0
00000000000000000000000000000001 = 1
00000000000000000000000000000010 = 2 · · ·
01111111111111111111111111111111 = 231 − 1 = 2147483647
10000000000000000000000000000000 = −231 = −2147483648
10000000000000000000000000000001 = −231 + 1 = −2147483647
10000000000000000000000000000010 = −231 + 2 = −2147483646 · · ·
11111111111111111111111111111111 = −1.
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Figure 3.1: The gathering of random numbers into two-dimensional planes when a three-
dimensional cube is seeded.
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XY

Z

z

0

1

x
0

1 y
0

1

Figure 3.2: The identical data in Figure 3.1 but rotated by 10◦ about the z-axis.



3.1. LINEAR CONGRUENTIAL RANDOM NUMBER GENERATORS 35

fashion. In this equation a is a “magic” multiplier and c is an odd number. The operations
of addition and multiplication take place as if Xn+1, Xn, a, and c are all 32-bit integers.

It is dangerous to consider all the bits as individually random. In fact, the higher-order bits
are more random than the lower-order bits. Random bits are more conveniently produced
by techniques we will discuss later.

The multiplier a is a magic number. Although there are guidelines to follow to determine a
good multiplier, optimum ones are determined experimentally. Particularly good examples
are a = 663608941 and a = 69069. The latter has been suggested by Donald Knuth as the
“best” 32-bit multiplier. It is also easy to remember!

When c is an odd number, the cycle length of the of the LCRNG is 232 (about 4 billion,
in effect, creating every integer in the realm of possibility and an artefactually uniform
random number when converted to floating point numbers. When c is set to zero, the
LCRNG becomes what is known as a multiplicative congruential random number generator
(MCRNG) with a cycle of 230 (about 1 billion) but with faster execution, saving a fetch and
an integer addition. The seed, X0 can be any integer in the case of an LCRNG. In the case
of a MCRNG, it is particularly critical to seed the RNG with an odd number. Conventional
practice is to use either a large odd number (a “random” seed) or a large prime number. If
one seeds the MCRNG with an even integer a reduced cycle length will be obtained. The
severity of the truncation is proportional to the number of times the initial seed can be
divided by two.

The conversion of the random integer to uniform on the range 0 to 1 contains its subtleties as
well and is, to some extent, dependent on architecture. The typical mathematical conversion
is:

rn = 1/2 +Xn/2
32 . (3.2)

One subtlety to note is that this should be expected to produce a range 0 ≤ rn < 1 because
the integer representation is asymmetric—it has one more negative integer than positive
integer.

One might code the initialization, generation and conversion in the following fashion:

:Initialisation: i = 987654321

:Iteration: i = i * 663608941

r = 0.5 + i * 0.23283064e-09

Some computers will generate one exact floating-point zero with this algorithm, others may
generate 2! One way out of this situation is to make the conversion factor slightly smaller, say
0.2328306e-09. This makes the range to be approximately 10−7 ≤ rn < 1−10−7 and appears
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to work on all computers. Another benefit of this is that it avoids an exact zero which can
cause problems in certain sampling algorithms. We will see more on this later. Although
the endpoints of the distribution are truncated, it usually has no effect. Moreover, if you are
depending upon good uniformity at the endpoints of the random number distribution, then
you probably have to resort to special techniques to obtain them.

3.2 Long sequence random number generators

For many practical applications, cycle lengths of one or four billion are just simply inade-
quate. In fact, a modern workstation just calculating random numbers with these RNG’s
would cycle them in just a few minutes!

One approach is to employ longer integers! The identical algorithm may be employed with
64-bit integers producing a sequence length of 264 or about 1.84 × 1019 in the case of the
LCRNG or 262 or about 4.61×1018 for the MCRNG. A well-studied multiplier for this purpose
is a = 6364136223846793005. This 64-bit RNG is an excellent choice for the emerging 64-bit
architectures (assuming that they support 64-bit 2’s complement integer arithmetic) or it
can be “faked” using 32-bit architectures [Bie86]. However, this latter approach is no longer
recommended since more powerful long-sequence RNG’s have been developed.

A new approach called the “subtract-with-borrow” algorithm was developed by George
Marsaglia and co-workers [MZT90, MZ91]. This algorithm was very attractive. It was
implemented in floating-point arithmetic and was portable to all machines. Initialization
and restart capabilities are more involved than for LCRNG’s but the long sequence lengths
and speed of execution make it worthwhile.

Tezuka, l’Ecuyer and Couture [TlC93, Tez94, Cl96] proved that Marsaglia’s algorithm is in
fact equivalent to a linear congruential generator but with a very big integer word length
which greatly reduced the “spectral” anomalies. Since LCRNG’s are so well-studied this is
actually a comfort since for a while the “subtract-with-borrow” algorithm were being em-
ployed with little theoretical understanding, something many researchers felt uncomfortable
with.

The spectral property of this new class of generator has been addressed by Lüscher [L9̈4] who
used Kolmogorov’s chaos theory to show how the algorithm could be improved by skipping
some random numbers.

A version of Lüscher’s algorithm [Jam94] will be distributed with the source library routines
associated with this course. However, keep in mind that the mathematics of random number
generation is still in its infancy. If you take up a Monte Carlo project at some time in the
future, make sure you become well-informed as to the “state-of-the-art”.

An example of Marsaglia and Zaman’s “subtract-with-borrow” algorithm is given as follows:
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C

C Declarations:

C =============

C These variables, 100 floating point numbers and 2 integers define the

C "state" of the RNG at any point

real u(97), c, cd, cm

integer ixx, jxx

C

C Initialisation:

C ===============

if((ixx.le.0).or.(ixx.gt.31328)) ixx = 1802 ! Sets Marsaglia default

if((jxx.le.0).or.(jxx.gt.30081)) jxx = 9373 ! Sets Marsaglia default

i = mod(ixx/177,177) + 2

j = mod(ixx, 177) + 2

k = mod(jxx/169,178) + 1

l = mod(jxx, 169)

do ii = 1,97

s = 0.0

t = 0.5

do jj = 1,24

m = mod(mod(i*j,179)*k,179)

i = j

j = k

k = m

l = mod(53*l + 1,169)

if(mod(l*m,64).ge.32) s = s + t

t = 0.5*t

end do

u(ii) = s

end do

c = 362436./16777216.

cd = 7654321./16777216.

cm = 16777213./16777216.

ixx = 97

jxx = 33

C
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C Iteration:

C ==========

rng = u(ixx) - u(jxx)

if (rng.lt.0.) rng = rng + 1.

u(ixx) = rng

ixx = ixx - 1

if(ixx.eq.0) ixx = 97

jxx = jxx - 1

if(jxx.eq.0) jxx = 97

c = c - cd

if (c.lt.0.) c = c + cm

rng = rng - c

if (rng.lt.0.) rng = rng + 1.

Although the initialization scheme is quite involved, it only has to be done once. The “state”
of the random number generator at any time is defined by the 100 floating point numbers,
u(97), c, cd, cm and the array indices ixx, jxx which are employed as pointers into the
u() array. ixx, jxx also serve a double role as initializing seeds. The sequence length is 2144

(about 2 × 1043), long enough for any practical calculation. A few years ago the prevailing
opinion was that a a unique set of the two starting seeds such that 0 < ixx ≤ 31328 and
0 < jxx ≤ 30081 would produce an independent random sequence. In view of the work by
Tezuka, l’Ecuyer and Couture this information must be regarded with some suspicion. In
fact, now provides 100 seedings for their version of the “subtract-with-borrow” algorithm
with a guaranteed subsequence length of at least 2× 109 (before running into the sequence
from another seeding).

At least for this course, existing RNG’s will suffice. For the purpose of large-scale, multi-
dimensional, massively parallel applications, it appears that there is still fundamental work
to be done.
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Problems

Using a computer, operating system, computing language and compiler of your choice (tell
me what you used), as long as it supports 32-bit 2’s complement integer arithmetic:

1. Assign or otherwise make an integer adopt the values 0, 1, 2, 231 − 2, 231 − 1, 231,
-(231 − 2), -(231 − 1), -(231) and have the computer output the integer values and the
floating-point representations after conversion r = 0.5 + i ∗ 0.23283064e− 09.

2. Write a computer code that simply performs the following:

:Initialisation: i = 987654321

:Iteration: i = i * 663608941

Verify that the sequence length is 230 by seeing that i returns to its original seed. How
much CPU time does it take to go through the whole sequence?



Chapter 4

Sampling Theory

Sir,
In your otherwise beautiful poem (The Vision of Sin) there is a verse which reads

“Every moment dies a man,
every moment one is born.”

Obviously, this cannot be true and I suggest that in the next edition you have
it read

“Every moment dies a man,
every moment 1 1

16
is born.”

Even this value is slightly in error but should be sufficiently accurate for poetry.

...Charles Babbage (in a letter to Lord Tennyson)

Now that we have tackled the essentials of elementary probability theory and random number
generation, it is now time to connect the two and demonstrate how random numbers may
be employed to sample from probability distributions.

We will consider three kinds of sampling techniques, the direct approach, the rejection tech-
nique and the mixed method that combines the two. Then, we we go through a small
catalogue of examples.

41
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4.1 Invertible cumulative distribution functions (direct

method)

A typical probability distribution function is shown in Figure 4.1. It is defined over the range

−1.2
0.0

a bx1 x2

0

p(x2)

p(x1)

p(x)

Figure 4.1: A typical probability distribution.

[a, b] where neither a nor b are necessarily finite. A probability distribution function must
have the properties that it is integrable (so that one can normalise it by integrating it over
its entire range) and that it is non-negative. (Negative probability distributions are difficult
to interpret.)
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We now construct its cumulative probability distribution function:

c(x) =

∫ x

a

dx′ p(x′) (4.1)

and assume that it is properly normalised, i.e. c(b) = 1. The corresponding cumulative
probability distribution function for our example is shown in Figure 4.2.

−1.2
0.0

a bdx1 dx2

1

dr1

dr2

c(x)

Figure 4.2: The cumulative probability distribution obtained by integrating the probability
distribution function in Figure 4.1.

By its definition, we can map the cumulative probability distribution function onto the range
of random variables, r, where 0 ≤ r ≤ 1 and r is distributed uniformly. That is, r = c(x).
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Now consider two equally spaced intervals dx1 and dx2, differential elements in x in the
vicinity of x1 and x2. Using some elementary calculus we see that:

dr1
dr2

=
(d/dx)c(x)|x=x1

(d/dx)c(x)|x=x2

=
p(x1)

p(x2)
. (4.2)

We can interpret this as meaning that, if we select many random variables in the range [0,1],
then the number that fall within dr1 divided by the number that fall within dr2 is equal
to the ratio of the probability distribution at x1 to x2. (Recall the interpretation of the
probability distribution as given in Chapter 2.)

Having mapped the random numbers onto the cumulative probability distribution function,
we may invert the equation to give:

x = c−1(r) . (4.3)

All cumulative probability distribution functions that arise from properly defined probability
distribution functions are invertible, numerically if not analytically1.

Then, by choosing r’s randomly over a uniform distribution and substituting them in the
above equation, we generate x’s according to the proper probability distribution function.

Example:

As we will discuss in Chapter 8, the distance, z, to an interaction is governed by the well-
known probability distribution function:

p(z)dz = µe−µzdz , (4.4)

where µ is the interaction coefficient. The valid range of z is 0 ≤ z < ∞ and this prob-
ability distribution function is already properly normalised. The corresponding cumulative
probability distribution function and its random number map is given by:

r = c(z) = 1− e−µz . (4.5)

Inverting gives:

z = −1

µ
log(1− r) . (4.6)

If r is uniformly distributed over [0, 1] then so is 1 − r. An equivalent form of the above
equation (that saves one floating point operation) is:

z = −1

µ
log(r) . (4.7)

1However, there are subtleties. Sampling the probability distribution function is a differentiation process.
Thus, if a cumulative probability distribution function is constructed numerically, differentiation leads to
minor difficulties. For example, if a cumulative probability distribution function is represented by a set of
linear splines, differentiation will lead to a step-wise continuous probability distribution function.
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0.0
−1.2

a

b

dx1

dx2

1dr1 dr2

c
−1

(x)

Figure 4.3: The inverse cumulative probability distribution obtained by inverting the cumu-
lative probability distribution function in Figure 4.2.
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This is exactly the form used to calculate a particle’s distance to an interaction in all Monte
Carlo codes. Recall, however, that if the random number generator provides an exact zero
as a possibility, the sampling implied by Equation 4.7 will cause a floating-point error. (It
is best to have a random number generator that does not provide exact zero’s unless you
really need them for something specific.)

4.2 Rejection method

While the invertible cumulative probability distribution function method is always possible,
at least in principle, it is often impractical to calculate c()−1 because it may be exceedingly
complicated mathematically or contain mathematical structure that is difficult to control.
Another approach is to use the rejection method.

In recipe form, the procedure is this:

1. Scale the probability distribution function by its maximum value obtaining a new dis-
tribution function, f(x) = p(x)/p(xmax), which has a maximum value of 1 which occurs
at x = xmax (see Figures 4.4 and 4.5). Clearly, this method works only if the probabil-
ity distribution function is not infinite anywhere and if it is not prohibitively difficult
to determine the location of the maximum value. If it is not possible to determine the
maximum easily, then overestimating it will work as well, but less efficiently.

2. Choose a random number, r1, uniform in the range [0, 1] and use it to obtain an x
which is uniform in the probability distribution function’s range [a,b]. (To do this,
calculate x = a + (b − a)r1.) (Note: This method is restricted to finite values of a
and b. However, if either a or b are infinite a suitable transformation may be found to
allow one to work with a finite range. e.g. x ∈ [a,∞) may be mapped into y ∈ [0, 1)
via transformation x = a[1− log(1− y)].)

3. Choose a second random number r2. If r2 < p(x)/p(xmax) (region under p(x)/p(xmax)
in Figure 4.5) then accept x, else, reject it (shaded region above p(x)/p(xmax) in Fig-
ure 4.5) and go back to step 2.

The efficiency of the rejection technique is defined as:

ǫ =
1

p(xmax(b− a))

∫ b

a

dx p(x) . (4.8)

This is the ratio of the expected number of random numbers pairs that are accepted to the
total number of pairs employed.

Remarks:
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−1.2
0.0

a b
0

p(xmax)

p(x)

xmax

Figure 4.4: A typical probability distribution.
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−1.2
0.0

a b
0

1

f(x) = p(x)/p(xmax)

Figure 4.5: The probability distribution of Figure 4.4 scaled for the rejection technique.
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This method will result in x being selected according to the probability distribution func-
tion. Some consider this method “crude” because random numbers are “wasted” unlike the
invertible cumulative probability distribution function method. It is particularly wasteful for
“spiky” probability distribution functions. However, it can save computing time if the c()−1

is very complicated. One has to “waste” many random numbers to use as much computing
time as in the evaluation of a transcendental function!

4.3 Mixed methods

As a final topic in elementary sampling theory we consider the “mixed method”, a combi-
nation of the previous two methods.

Imagine that the probability distribution function is too difficult to integrate and invert,
ruling out the direct approach without a great deal of numerical analysis, and that it is
“spiky”, rendering the rejection method inefficient. (Many probability distributions have
this objectionable character.) However, imagine that the probability distribution function
can be factored as follows:

p(x) = f(x)g(x) (4.9)

where f(x) is an invertible function that contains most of the “spikiness”, and g(x) is rela-
tively flat but contains most of the mathematical complexity. The recipe is as follows:

1. Normalise f(x) producing f̃(x) such that
∫ b

a
dx f̃(x) = 1.

2. Normalise g(x) producing g̃(x) such that g̃(x) ≤ 1 ∀ x ∈ [a, b].

3. Using the direct method described previously, choose an x using f̃(x) as the probability
distribution function.

4. Using this x, apply the rejection technique using g̃(x). That is, choose a random
number, r, uniformly in the range [0, 1]. If g̃(x) ≤ r, accept x, otherwise go back to
step 3.

Remarks:

With some effort, any mathematically complex, spiky function can be factored in this man-
ner. The art boils down to the appropriate choice of f̃(x) that leaves a g̃(x) that is nearly
flat. For two recent examples of this method as applied to a production-level code, see
References [BR86] and [BMC89].

The mixed method is also tantamount to a change in variables. Let

p(x)dx = f(x)g(x)dx = (f̃(x)dx)

(
∫ b

a

dx f(x)

)

g(x) , (4.10)
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where f̃(x) is now a properly normalized probability distribution function. Employing f̃(x)
as the function for the direct part, we let

u = c(x) =

∫ x

a

f̃(x′)dx′ , (4.11)

be a transformation between x and u. Note the limits of u, 0 ≤ u ≤
∫ b

a
f̃(x′)dx′ = 1. By

definition, the inverse exists so that x = c−1(u). As well du = f(x)dx. Thus, we can rewrite
Equation 4.10 as:

p(x)dx =

(∫ b

a

dx f(x)

)

g(u)du , (4.12)

which eliminates f(x) through a change in variables. Thus, one can sample g(u) using
rejection (or some other technique) and relate the selected u to x through the inverse relation
x = c−1(u).

If the rejection technique is employed for g(x), then the efficiency of is calculated in the same
way as in Equation 4.8.

4.4 Examples of sampling techniques

4.4.1 Circularly collimated parallel beam

The normalised probability distribution in this case is:

p(ρ, φ) dρ dφ =
1

πρ20
ρ dρ dφ 0 ≤ ρ ≤ ρ0 0 ≤ φ ≤ 2π (4.13)

where ρ is the cylindrical radius, ρ0 is the collimation radius and φ is the azimuthal an-
gle. ρdρdφ is a differential surface element in cylindrical coordinates. This is a separable
probability distribution of the form:

p(ρ, φ) dρ dφ = dp1(ρ) dp2(φ) (4.14)

where:

p1(ρ) dρ =
2

ρ20
ρ dρ 0 ≤ ρ ≤ ρ0 (4.15)

and

p2(φ) dφ =
1

2π
dφ 0 ≤ φ ≤ 2π (4.16)
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Direct method

The cumulative probability distribution functions in this case are:

c1(ρ) =
2

ρ20

∫ ρ

0

dρ′ρ′ =
ρ2

ρ20
(4.17)

c2(φ) = c2(φ) =
1

2π

∫ φ

0

dφ′ =
φ

2π
(4.18)

Inverting gives:

ρ = ρ0
√
r1 (4.19)

φ = 2πr2 (4.20)

where the ri are random numbers on the range [0, 1].

The code segment that would produce accomplish this looks like:

rho = rho_0 * sqrt(rng())

phi = 2e0 * pi * rng()

x = rho * cos(phi)

y = rho * sin(phi)

where rng() is a function that return a random number uniformly on the range [0, 1] [or
(0, 1] or [0, 1) or (0, 1)].

Rejection method

In this technique, a point is chosen randomly within the square −1 ≤ x ≤ 1;−1 ≤ y ≤ 1. If
this point lies within a circle with unit radius the point is accepted and the x and y values
scaled by the collimation radius, ρ0. The code segment that would accomplish this looks
like:

1 x = 2e0 * rng() - 1e0

y = 2e0 * rng() - 1e0

IF (x**2 + y**2 .gt. 1e0) goto 1

x = rho_0 * x

y = rho_0 * y
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Which is better?

Actually, both methods are equivalent mathematically. However, one or the other may have
advantages in execution speed depending on other factors in the application. If the geometry
is not cylindrically symmetric or all the scoring that is done does not make use of the inherent
cylindrical symmetry, then the rejection method is about twice as fast as the direct method
because the trigonometric functions are not employed in the rejection method.

If the geometry is cylindrically symmetric and the scoring takes advantage of this symmetry,
then the direct method is about 2–3 times faster because symmetry reduces the calculation
to:

x = rho_0 * sqrt(rng())

y = 0

Many computers now have hardware square root capabilities. With this capability the direct
method may be advantageous, whether or not one makes use of the cylindrical symmetry.

4.4.2 Point source collimated to a planar circle

The normalised probability distribution in this case is:

p(θ, φ)dθdφ =
dφ

2π

sin θ dθ

1− cos θ0
0 ≤ θ ≤ θ0 0 ≤ φ ≤ 2π (4.21)

where θ is the polar angle and φ is the azimuthal angle. sin θ dθ dφ is a differential solid
angle element in spherical coordinates. θ0 is the collimation angle. In terms of the distance
to the collimation plane z0 and the diameter of the collimation circle on this plane ρ0,
cos θ0 = z0/

√

z20 + ρ20.

This is a separable probability distribution of the form:

p(θ, φ)dθdφ = p1(θ)dθ p2(φ)dφ (4.22)

where:

p1(θ)dθ =
sin θdθ

1− cos θ0
0 ≤ θ ≤ θ0 (4.23)

and

p2(φ)dφ =
1

2π
dφ 0 ≤ φ ≤ 2π (4.24)

The cumulative probability distribution functions in this case are:

c1(θ) =
1

1− cos θ0

∫ θ

0

sin θ′dθ′ =
1− cos θ

1− cos θ0
(4.25)
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c2(φ) = c2(φ) =
1

2π

∫ φ

0

dφ′ =
φ

2π
(4.26)

Inverting gives:
cos θ = 1− r1[1− cos θ0] (4.27)

φ = 2πr2 (4.28)

where the ri are random numbers on the range [0, 1].

The code segment that would accomplish this looks like:

cos_theta = 1e0 - rng() * (1e0 - cos_theta_0)

theta = acos(cos_theta)

sin_theta = sin(theta)

phi = 2e0 * pi * rng()

u = sin_theta * cos(phi) ! u is sin(theta)*cos(phi),

! the x-axis direction cosine

v = sin_theta * sin(phi) ! v is sin(theta)*sin(phi),

! the y-axis direction cosine

w = cos_theta ! w is cos(theta),

! the z-axis direction cosine

x = z_0 * u/w ! x = z_0 * tan(theta)*cos(phi)

y = z_0 * v/w ! y = z_0 * tan(theta)*sin(phi)

In terms of the cylindrical coordinates on the collimation plane, Equation 4.27 becomes:

z0
√

ρ2 + z20
= 1− r1

[

1− z0
√

ρ20 + z20

]

(4.29)

which yields a value for ρ on the collimation plane.

In the small angle limit, θ0 −→ 0, the circularly collimated parallel beam result should be
recovered. If one employs the small angle approximation, ρ≪ z0 and ρ0 ≪ z0, Equation 4.29
obtains the result of Equation 4.19, i.e. ρ = ρ0

√
r1.

4.4.3 Mixed method example

Consider the probability function:

p(x)dx = Ne−x2 2xdx

(1 + x2)2
0 ≤ x <∞ , (4.30)
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where N is the normalization factor such that
∫∞

0
p(x)dx = 1. Although p(x) is integrable

analytically2, it can not be inverted analytically. Therefore, we consider the ”spiky” part
that we can integrate analytically:

f(x)dx =
2xdx

(1 + x2)2
dx 0 ≤ x <∞ , (4.32)

which can be integrated directly,

r = c(x) = 1− 1

1 + x2
, (4.33)

and inverted,

x =

√

r

1− r
. (4.34)

This is equivalent to a the change of variables,

u = 1− 1

1 + x2
x =

√

u

1− u
, (4.35)

and we must now sample,

g(x)dx = exp

(

− u

1− u

)

du 0 ≤ u ≤ 1 . (4.36)

If we apply rejection to g(x) directly, it can be shown that the “efficiency”, ǫ = 0.404.

Interestingly enough, we can choose to do this example the other way! We can choose as our
direct function:

f(x)dx = 2xe−x2

dx 0 ≤ x <∞ , (4.37)

which can be integrated directly,

r = c(x) = 1− e−x2

, (4.38)

and inverted,
x =

√

− log(1− r) . (4.39)

2The cumulative probability function can be written

c(x) = 1− e−x2

+ e
(

1 + x2
)

Ei(−1− x2)

(1 + x2) (1 + eEi(−1))
(4.31)

where Ei(z) is the exponential integral [AS64].
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This is equivalent to a the change of variables,

u = 1− e−x2

x =
√

− log(1− u) , (4.40)

and we must now sample,

g(x)dx =
1

[1− log(1− u)]2du
0 ≤ u ≤ 1 . (4.41)

This approach has the same efficiency as the previous approach. However, it is more costly
because is involves the use of more transcendental functions.

4.4.4 Multi-dimensional example

Consider the joint probability function:

p(x, y) dx dy = (x+ y) dx dy 0 ≤ x, y ≤ 1 . (4.42)

The marginal probability in x is:

m(x) =

∫ 1

0

dy (x+ y) = x+
1

2
, (4.43)

the conditional probability of y given x is:

p(y|x) = p(x, y)

m(x)
=
x+ y

x+ 1
2

, (4.44)

so that
p(x, y) = m(x)p(y|x) . (4.45)

First we sample the marginal probability distribution in x. The cumulative distribution
function and its associated random number map is:

r1 = c(x) =

∫ x

0

dx′
(

x′ +
1

2

)

=
x2

2
+
x

2
, (4.46)

which is a quadratic relation that can be inverted to give:

x =
−1 +

√
1 + 8r1
2

. (4.47)

The choice of the plus sign in the inversion of the quadratic relation was made based on the
having x = 0 when r1 = 0 and x = 1 when r1 = 1.
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Now that x is determined, we form the conditional cumulative probability distribution,
c(y|x), and its associated random number mapping:

r2 = c(y|x) =
∫ y

0

dy p(y|x) = y2 + 2xy

2x+ 1
, (4.48)

which itself can be inverted using quadratic inversion:

y = −x+
√

x2 + r2(2x+ 1) , (4.49)

which again involved a choice of sign based upon the expected limits, y = 0 when r2 = 0
and y = 1 when r2 = 1. For intermediate values of r2, y depends upon the choice of x.
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Problems

The following problems are to be solved on paper. Computer verification of the sampling
methods developed is not necessary (but would be neat to try.)

1. Form the cumulative probability distribution for the Cauchy distribution:

p(x) =
1

π

1

1 + x2
−∞ < x <∞. (4.50)

Invert it to indicate how x would be determined from a random number.

2. Form the cumulative probability distribution for the small angle form of the Ruther-
fordian distribution:

p(x) =
2x

(x2 + 1)2
0 ≤ x <∞, (4.51)

Invert it to indicate how x would be determined from a random number.

3. Normalize

f(x, y) = sin(x+ y) 0 ≤ x <
π

2
, 0 ≤ y <

π

2
(4.52)
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converting it to a probability distribution. Develop a sampling technique by forming a
marginal and a conditional probability distribution. (Hint: You will probably have to
use 4 random numbers to sample this probability distribution.)



Chapter 5

Error estimation

In this chapter we consider the question of evaluating the results of one’s Monte Carlo
calculation. Without proper evaluation of the results, the numbers aremeaningless. Without
a doubt, the development of this evaluation process is one of the most immature in Monte
Carlo and it is something that is often neglected by Monte Carlo practitioners, often to the
chagrin of journal Referees!

Let us imagine that we are tallying1 something called T (x) over some range of x, say,
x0 ≤ x ≤ X . For concreteness, imagine that T (x) dx is the pathlength (or tracklength) dis-
tribution of particles in some volume region of space for a differential spread of dx centered
around x. Pathlength (or tracklength) distributions are central to particle transport prob-
lems as one interpretation of fluence (and a very practical one from the standpoint of Monte
Carlo calculation) is pathlength per volume [Chi78]. In reality, however, our computer tallies
would have to be discretized. That is, we would have to set up a computer “mesh” or “grid”
in x, say, (x0, x1, x2 · · ·xN−1, xN = X) with N tallying “bins” numbered 1, 2 · · ·N and N +1
tally “mesh-points” bounded by N + 1 tally “mesh-points” (x0, x1, x2 · · ·xN−1, xN = X).

Note that the choice of the mesh points assumes that the Monte Carlo practitioner knows
something about the nature of the tally, both its endpoints, x0 and X and a general idea of
the shape of T (x). Ideally one would like to arrange that the tallying bins are populated in
an equiprobable way! Generally, this knowledge is not known a priori and is determined in
an iterative fashion.

Let us consider our photon pathlength distribution example in a model where there is no
scattering, just a volume in space where we wish to tally the pathlength distribution from
some source of photons. In this case, we could safely assume that x0 = 0 corresponding

1“Tallying” is Monte Carlo jargon for “measuring” something, as one would do in an experiment. A tally
is that which is measured. There are many similarities between the handling of measured and tallied data,
except that the tallies in Monte Carlo can be unambiguous, not obfuscated by extraneous physical detail.
Monte Carlo analysis also allows the deeper investigation into the statistical nature of the tally, something
that experiment is often not able to accomplish.
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to a grazing trajectory of a photon on the volume of interest and xN = xmax where xmax

corresponds to the maximum chord length in the volume. The details of the shape of T (x)
could be determined from the geometry and orientation of the volume with respect to the
source. Indeed, it could be determined analytically and sometimes quite simply without
resorting to Monte Carlo—depending on the complexity of the geometry.

Now let us consider a more interesting problem, one in which we have scattering within the
volume of interest. There would be a finite probability that a photon could enter the volume
and scatter many times producing very long x’s compared to xmax, the maximum chord
length in the volume! The “safe” choice is xN = ∞. How do we choose the mesh points in a
situation where xN = ∞? This is where the “trial-and-error” process enters. You would set
up your mesh points (0, x1, x2 · · ·xN−1,∞) and the last bin xN−1 −→ ∞) would “catch” all
the long pathlength contributions to the pathlength distribution. The subtlety here would
then be choosing xN−1 large enough so that the preceding points xN−1, xN−2, xN−3 · · · are
sufficient to characterize the asymptotic nature of the tally T (x) in the large x regime. Why
is this important? This is important for the accurate calculation of the moments of the
distribution, assuming that the moments do, in fact, exist. We will discuss this more below.

Characterization of the asymptotic nature of the tally T (x) in the large x regime would
give indication whether or not the moments exist and will determine what sort of statistical
analyses we perform.

Let us say that we are interested in the total pathlength distribution, T , in the volume
per source particle. If we knew what the pathlength distribution function was, the total
pathlength would correspond to:

T =

∫ xmax

x0

dx T (x) . (5.1)

However, this underlying distribution is unknown to us, so we do a simulation. We would
execute a loop i = 1, 2, 3 · · ·Nh over Nh Monte Carlo histories and accumulate the pathlength
in an accumulator called tin. That is, if the particle’s pathlength in the volume corresponding
to the ith history falls within the range xn−1 and xn we accumulate x in tin. Now we define

Tn =
1

Nh

Nh
∑

i=1

tin , (5.2)

which provides an estimate of the pathlength distribution as follows:

Tn ≈
∫ xn

xn−1

dx T (x) . (5.3)

Now we define

T i =

N
∑

n=1

tin , (5.4)
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which is an estimate of the pathlength distribution from the ith history, summed over all
pathlength contributions. Now we can estimate the total pathlength distribution

T ≈ T̃ =
1

Nh

Nh
∑

i=1

T i , (5.5)

How good is our estimate for T ? Fortunately, there are some fundamental mathematical
proofs that come to the aid of our analysis.

First of all, we realize that our interpretation for T (x) dx as the pathlength distribution of
particles in some volume region of space for a differential spread of dx centered around x
can be rewritten as T (x) dx = xp(x) dx where p(x) is a probability distribution associated
with the observation of the pathlength x. Moreover, the estimate expressed in Equation 5.5
is an estimate of the mean of the distribution associated with the probability distribution.

First of all, we assume that p(x) is a properly defined probability distribution. It may not be
in which case our estimate expressed in Equation 5.5 is meaningless. There are examples of
a tallies with no mean, such as the fluence distribution in time of neutrons in a super-critical
nuclear reactor but we will not consider them in this course.

Let us assume that the mean of the distribution does indeed exist. We give it a special name
µ defined as follows:

µ =

∫ xmax

x0

dx T (x) =

∫ xmax

x0

dx xp(x) . (5.6)

The “law of large numbers” proven by Khintchine in 1929 [Khi29] states:

P

{∣

∣

∣

∣

T 1 + T 2 + · · ·+ TNh

Nh

∣

∣

∣

∣

− µ > ǫ

}

−→ 0 , (5.7)

in the limit of largeNh, where ǫ is a vanishingly small. There is no assumption in Khintchine’s
proof about the existence of any higher moments other than the first-order one which yields
the mean. It should be noted that this is a limiting theorem, one that does not guarantee
that the mean is approached “nicely”. It may fluctuate wildly for finite values of Nh and the
practical use of Khintchine theorem, insofar as Monte Carlo applications are concerned is
the verification of the intuitive concept, “If you compute long enough, you should converge
to the expected mean.”

Stronger and more meaningful statements about the rate of convergence can be made and
they depend upon the existence of the variance which we may write as:

σ2 =

∫ xmax

x0

dx x2p(x)− µ2 =

∫ xmax

x0

dx xT (x)− µ2 . (5.8)

If the variance exists, then the Central limit Theorem [Lin22, Fel67] states:

P

(

T̃ − µ

σ/
√
Nh

< β

)

−→ ℜ(β) (5.9)
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in the limit of large Nh, where ℜ(β) is the normal distribution. That is, T̃ follows a normal
distribution centered at µ with a Gaussian width σ/

√
Nh that narrows as increases! In other

words, there is a 0.67 chance that T̃ ± σ/
√
Nh will include µ and a probability of 0.95 that

T̃ ± 2σ/
√
Nh will include µ. Note that this makes no assumptions about the shape of the

probability distribution p(x), only that its second moment exists. Irrespective of the shape
of p(x), the estimate of its mean will be normally (Gaussian) distributed and that the width
of this distribution narrows with increased sampling. It is truly one of the most remarkable
results in mathematics!

We remark that it is an asymptotic theorem, one that only applies in the limit, Nh → ∞.
How large Nh has to be depends on the details of the simulation and the characteristics of
the underlying distribution function. However, Kalos and Whitlock [KW86] suggest that if
one obtains the third moment of p(x):

〈x3〉 =
∫ xmax

x0

dx x3p(x) , (5.10)

then the condition
Nh ≫ σ6/〈x3〉2 , (5.11)

should be sufficient.

This section ends with a warning. The rest of this chapter continues with the standard
cookbook recipes for estimating errors. Many Monte Carlo practitioners quote these numbers
without investigating the characteristics of the underlying distributions. While this has
become standard practice, be aware that these conclusions are based on the distributions
having certain well-behaved characteristics. Sometimes ignoring this can lead you to faulty
conclusions.

5.1 Direct error estimation

Assume that x is a quantity we calculate during the course of a Monte Carlo simulation, i.e.
a scoring variable or simply a “score” or a “tally”. The output of a Monte Carlo calculation
is usually useless unless we can ascribe a probable error to it.

The conventional approach to calculating the estimated error is as follows:

• Assume that the calculation calls for the simulation of N particle histories.

• Assign and accumulate the value xi for the score associated with the i’th history, where
1 ≤ i ≤ N . Assign as well the square of the score x2i for the i’th history.

• Calculate the mean value of x:

x =
1

N

N
∑

i=1

xi (5.12)
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• Estimate the variance associated with the distribution of the xi:

s2x =
1

N − 1

n
∑

i=1

(xi − x)2 =
1

N − 1

n
∑

i=1

(x2i − x2) (5.13)

• The estimated variance of x is the standard variance of the mean:

s2x =
s2x
N

(5.14)

It is the error in x we are seeking, not the “spread” of the distribution of the xi.

• Report the final result as x = x± sx.

Remarks:

The true mean and variances are not available to us, however. We must estimate them. The
estimated mean x calculated in eq. 5.12 is an estimate for the true mean µ and the estimated
variance s2x calculated in eq. 5.13 is an estimate for the true variance σ2

x. The appearance
of the N − 1 in the denominator in the expression for the estimated variance for the mean
implicit in eq. 5.14 is often introduced as a “degrees of freedom” arguments. However, it can
be derived by considering the difference between “sample” variance and its relation to the
true variance. A derivation is given at the end of this chapter.

5.2 Batch statistics error estimation

In many cases, the estimation of means and variances using the methods described in the
previous section is not feasible. A score may be a complicated object or there may be many
geometrical volume elements to consider. It may require a lot of effort to stop after each
history and compute the xi’s and x

2
i ’s. The “direct error estimation” should be considered

first and if it is not feasible, then an alternative that is nearly as good is “batch statistics
error estimation”. We present a “cook book” recipe as before.

• Split the N histories into n statistical batches of N/n histories each. Note that n must
be “large enough” as discussed earlier. A standard choice is n = 30. The accumulated
quantity for each of these batches is called xj =

∑n
i=1 xi for the j’th statistical batch.

• Calculate the mean value of x:

x =
1

N

n
∑

j=1

xj (5.15)
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• Estimate the variance associated with the distribution of the xi:

s2x =
1

n− 1

n
∑

j=1

(xj − x)2 =
1

n− 1

n
∑

j=1

(x2j − x2) (5.16)

• The estimated variance of x is the standard variance of the mean:

s2x =
s2x
n

(5.17)

• Report the final result as x = x± sx.

Remarks:

We use eqs. 5.15–5.17 with n fixed (at say, 30) because it gives a reasonable estimate of the
error in x. Any large number will do, as long as we are within the range of applicability
of the Central limit theorem. In reality, decisions based upon the error in x are usually
subjective in nature. There is some evidence that the calculated statistic depends weakly on
the choice of n. Therefore, it is important to report how your statistics were done when you
publish your Monte Carlo results.

5.3 Combining errors of independent runs

For m independent Monte Carlo runs, it is easy to derive the following relation:

x =
m
∑

k=1

(

Nk

N

)

xk (5.18)

where xk is the value of x for the kth run and Nk is the number of histories in the kth run.
The total number of histories is given by:

N =
m
∑

k=1

Nk (5.19)

Then, assuming 1st-order propagation of independent errors, it is also easy to derive:

s2x =

m
∑

k=1

(

Nk

N

)2

s2xk (5.20)

where s2xk is the estimated variance in xk.

Example: For m = 2:

x =

(

N1

N

)

x1 +

(

N2

N

)

x2 (5.21)
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N = N1 +N2 (5.22)

sx =

√

(

N1

N

)2

s2x1
+

(

N2

N

)2

s2x2 (5.23)

Remarks:

This method of combining errors effectively increases the value of n, the number of sta-
tistical batches used in the calculation. In view of the fact that the calculated statistics
are thought to depend weakly on n, it is preferable (but only marginally so for the sake
of consistency) to combine the xi’s (the raw data) into the standard number of statistical
batches. This is easy to do by initialising the data arrays to the results of the previous run
before the start of a new run.

5.4 Error estimation for binary scoring

In the special case where the scoring quantity is binary (e.g. a particle enters a detector’s
sensitive region or not, e.g. a particle backscatters or not) there is a significant simplification.
Consider N events where the scoring variable xi is either 0 or 1. The mean is calculated
according to eq. 5.12. Starting from eqs. 5.12–5.14 it is easy to show that:

s2x =
x(1− x)

N − 1
. (5.24)

Hence, knowing the mean value gives one knowledge of its estimated variance! One is not
required to gather these events in statistical bins.

Combining the results of independent runs is particularly simple. The mean is calculated
from eq. 5.12 but the use of the variance combination relation, eq. 5.20, is inaccurate unless
the Nj are all “large” (Nj ≫ 1). It is best to resort to eq. 5.24 which has no such restriction.

5.5 Relationships between S2
x and s2x, S

2
x and s2x

Consider N independent measurements of x, xi : i = 1, 2, · · ·N . The xi are distributed
according to some parent probability distribution, p(x) with a mean µ and a variance σ2,
over a domain a ≤ x ≤ b, where, in principle, a or b may be infinite, so long as µ and σ2 exist.
Generally the mathematical expression of p(x) is inaccessible except is test cases, suggesting
that Monte Carlo methods may be used to calculate moments and other averages through
stochastic sampling. The true mean and variance,

µ =

∫ b

a

dxx p(x) (5.25)
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and true variance,

σ =

∫ b

a

dx (x− µ)2 p(x) , (5.26)

are unknown. Hence, we estimate them.

The estimated mean x and the estimated variance s2x are approximations (lower-case letters)
that are made from a finte data set for the true mean µ and the true variance σ2. What is
the connection?

The estimated mean is:

x =
1

N

N
∑

i=1

xi , (5.27)

that obtains the true mean in the limit:

µ = lim
N→∞

1

N

N
∑

i=1

(xi − µ)2 (5.28)

In the nomenclature of statistics, σ is also known as the “population” variance. The estimate
of the population variance is:

s2x =
1

N

N
∑

i=1

(xi − µ)2 , (5.29)

that obtains the true variance in the limit:

σ = lim
N→∞

1

N

N
∑

i=1

(xi − µ)2 (5.30)

However, the above is computed assuming that we have knowledge of µ. Let us defer that
discussion, but only briefly.

Let us first consider the question of the estimated variance of x. Since the xi are independent,
their errors combine in quadrature:

s2x =
N
∑

i=1

(

∂x

∂xi

)2

σ2 ≈
N
∑

i=1

(

∂x

∂xi

)2

s2x . (5.31)

From Equation 5.27, we see that

∂x

∂xj
=

1

N

N
∑

i=1

∂xi
∂xj

=
1

N

N
∑

i=1

δij = 1 . (5.32)

Therefore,

s2x =
1

N2

N
∑

i=1

σ2 =
1

N
σ2 ≈ 1

N
s2x , (5.33)
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which relates the estimated error of the mean to the estimated variance of the population.

Another interpretation for s2x can be obtained as follows. Suppose we have M different
estimates of x. Then

s2x =
1

M

M
∑

m=1

(xm − µ)2 . (5.34)

In particular, for M = 1,

s2x = (x− µ)2 . (5.35)

Now we may answer the question, “What is the relationship between the “sample” variance
S2
x and the estimate for σ2, s2x?

The sample variance is abtained complety from the data, with x as an estimate for µ:

S2
x =

1

N

N
∑

i=1

(xi − x)2 =
1

N
(

N
∑

i=1

x2i )− x2 , (5.36)

while the estimated variance is:

s2x =
1

N

N
∑

i=1

(xi − µ)2 =
1

N
(

N
∑

i=1

x2i )− 2µx+ µ2 . (5.37)

Thus,

s2x − S2
x = x2 − 2µx+ µ2 = (x− µ)2 = s2x =

s2x
N

. (5.38)

Or,

s2x =
N

N − 1
S2
x . (5.39)

Hence, the estimate variance, s2x, is obtained from the sample variance variance, S2
x, by a

N/(N − 1) factor.

Thus the estimated variance is:

s2x =
1

N − 1

N
∑

i=1

(xi − x)2 , (5.40)

and the estimated variance of the mean is:

s2x =
1

N(N − 1)

N
∑

i=1

(xi − x)2 . (5.41)
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5.6 Variance of the variance

I’ll put a discussion and proofs in later.

Var(s2x) =
(N − 1) [(N − 1)〈(x− x)4〉 − (N − 3)〈(x− x)2〉2]

N3
(5.42)

Var(s2〈x〉) = Var(s2x)/N
2 (5.43)
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Problems

Using a computer, operating system, computing language and compiler of your choice (tell
me what you used):

1. Write a code to sample the Cauchy probability distribution:

p(x) =
1

π

1

1 + x2
−∞ < x <∞. (5.44)

As a function of the number of histories, Nh, over the range 1 ≤ Nh ≤ 10, 000, plot x
and s2x. Discuss.

2. Write a code to sample the small angle form of the Rutherfordian probability distri-
bution:

p(x) =
2x

(x2 + 1)2
0 ≤ x <∞, (5.45)

As a function of the number of histories, Nh, over the range 1 ≤ Nh ≤ 10, 000, plot x
and s2x. Discuss.
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3. Write a code to sample the probability distribution:

p(x) =
4x

(x2 + 1)3
0 ≤ x <∞, (5.46)

As a function of the number of histories, Nh, over the range 1 ≤ Nh ≤ 10, 000, plot x
and s2x. Discuss.

4. Write a code to sample the probability distribution:

p(x) = e−x 0 ≤ x <∞, (5.47)

As a function of the number of histories, Nh, over the range 1 ≤ Nh ≤ 10, 000, plot x
and s2x. Discuss.



Chapter 6

Oddities: Random number and
precision problems

Now that we understand about random number generators, sampling and error estimation,
it is time for a brief respite to consider some of the oddities one might encounter during
Monte Carlo calculations. These oddities are related to artefacts associated with random
number generation and machine precision.

6.1 Random number artefacts

Consider the determination of the value of π one obtains by throwing random “darts” at a
circle inscribed within a square. This is depicted in Figure 6.1. The ratio of the number of
darts within the circle to the total number of darts within the square should be π/4.

For a small number of iterations, the result converges as expected. This is shown in Figure 6.2
where the ratio 4Nin/(Nπ) is plotted up to 104 cycles along with the 1-σ error bars predicted
by the “binary statistics” method. The estimated mean goes over and under the theoretical
prediction, takes an excursion in the overprediction direction and eventually begins to settle
down.

However, some difficulties are evident for large cycles as shown in Figures 6.3. and 6.4

There are some classic signals indicated in Figure 6.3 that the random number generator
is cycling. The first piece of evidence is that the result exhibits a periodic structure. The
random number generator employed in this study is a multiplicative congruential random
number generator (MCRNG) with a sequence length of 230 = 1, 073, 741, 824. Since two ran-
dom numbers are employed, the periodic structure occurs over a period of 229 = 536, 870, 912.
Another curious anomaly is that the result is close to unity (actually to within a few parts
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Determination of π
 by throwing darts at an inscribed circle

Figure 6.1: Random darts are thrown at a square with an inscribed circle. The ratio of the
number of darts within the circle to the total number of darts within the square should be
π/4.
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Monte Carlo determination of π

Figure 6.2: Random darts are thrown at a square with an inscribed circle. The Monte Carlo
prediction divided by the theoretical prediction with the associated 1± σ prediction.
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Figure 6.3: Random darts are thrown at a square with an inscribed circle. Large cycle
behaviour of the Monte Carlo π experiment. The vertical lines are drawn where the random
number generator begins a new cycle.
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Figure 6.4: A zoom-in on the large cycle behaviour of previous figure.
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in 107) at the point where the cycle restarts1. As a result, the calculated value appears to
be well below the 1σ bounds predicted by the Central Limit theorem in the range shown.
These are all strong signals that the random number has been “looped”. It is never wise
to use more than a fraction, say 1/10th of the sequence. Note that the latter half of the
sequence anti-correlates with the first half. This could lead to spurious results if a sequence
is exhausted.

It is also false to conclude: “Despite the periodic structure, the result converges to the correct
answer.” Wrong! We just happened to be lucky in this case! The result converged to about
1+ 5× 10−7 after one complete cycle, nearly the correct answer but not the correct answer.
The “error term” after one cycle just happens to be very small for this application. If we ran
this application for about 12×109 cycles, we would note a “false convergence” to 1+5×10−7

whereas the 1σ bounds would be smaller and converging on unity.

An example of “false convergence” is given in Figure 6.5 which is the same example except
that a large number of random numbers were thrown away after each sample of π, as if
to simulate many random numbers being employed in a different aspect of a calculation.
Although the example is somewhat extreme, it depicts clearly an anomalous result that will
never converge to the correct answer.

The object of this lesson is to warn against using random number generators beyond a
fraction of their sequence length.

The signals that you have cycled the random number generator are:

• The tally exhibits a period structure.

• The tally converges in a way that is contrary to Central Limit predictions, assuming
that the second moment of the tally exists.

• The presence of false convergence, which may be very difficult to detect.

1This is due to 2D space being nearly uniformly filled by this MCRNG.
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Figure 6.5: An example of false convergence.
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6.2 Accumulation errors

Consider the summation:

s =
N
∑

i=1

(1/N) . (6.1)

Of course, mathematically the result is s ≡ 1. Numerically, however, it is a different story.
The result of s vs. N is give in Figure 6.6.
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single: s = Σi (1/N)
single: s = Σi ξ i(1/N) (ξ i is a random number 0<ξ<2 )
double: s = Σi (1/N)

Figure 6.6: An example of constant and random accumulation errors in single-precision
arithmetic.

We note that an accumumulation error is seen starting from about 106 iterations when the
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accumulation is done using single precision Fortran, a 32-bit representation of floating-point
numbers. The shape of this curve is the result of constant accumulated round-off error, can
be positive or negative, but eventually underestimates due to truncation error. The precise
shape of the artefact is probably machine dependent. The reason for the underestimate at
large value of N is because 1 + 10−8 ≡ 1 in single precision arithmetic.

Another expression of the similar thing is:

s =
N
∑

i=1

(2r/N) . (6.2)

where r is a random number uniformly distributed on [0, 1]. Since 〈r〉 = 1/2, s ≡ 1 mathe-
matically as well. However, a numerical evaulation exhibits some accumulation error starting
from about 107 iterations. This is also seen in Figure 6.6. The shape of this curve is the result
of random accumulation error and is probably common to all single-precision architectures. A
double precision accumulation is shown as well. For double precision, 1+10−8 = 1.00000001
and no accumulation error is evident. Double precision errors would start at about 1015 to
1016 iterations, a realm where no application has dared to go (yet).

The obvious solution to this problem is: Use double precision! However, there are good
reasons for using single precison numbers. On some architectures, single precision arithmetic
is faster than double precision. (There are counter examples to this as well!) Double precision
numbers also take more computer storage. Fetching and storing them can take longer than
for single precision numbers. A good rule is to develop your application in double precision.
Then, if fast exacution or computer storage become critical to your application, consider
single precision for some, if not all of your calculation. However, you must be aware of the
shortcomings (pun intended!) of single precision variables and use them with caution.



80 CHAPTER 6. ODDITIES: RANDOM NUMBER AND PRECISION PROBLEMS



Bibliography

81



82 BIBLIOGRAPHY



Chapter 7

Ray tracing and rotations

In this chapter, we begin to enter into a specialization of Monte Carlo methods for particle
transport. We discuss how particles are “ray-traced” or “displaced” in space. We also
discuss coordinate transformations and rotations. Ray-tracing is related to moving a particle
around a medium and/or a geometry. Rotations occur at interaction sites where particles
are deflected by scattering angles. These scattering angles are usually expressed in terms of
“laboratory coordinates” where the particle was assumed to be travelling along the positive
z-axis. Coordinate transformations are useful for specifying geometrical elements in some
easy-to-describe coordinate system. Coordinate transformations maybe applied to situate
these geometrical elements in the position appropriate to the application.

First we introduce the concept of a particle’s phase space. For the meantime we will assume
it takes the following form:

{~x, ~u} . (7.1)

The particle’s phase space is simply a collection of dynamic variables that describe the
particle’s absolute location in space referred back to the origin of some laboratory coordinate
system, ~x, and its direction, ~u, referred back to a fixed set of axes in the same laboratory
coordinate system. The laboratory coordinate system is usually the one where the fixed
components of the experiment resides. ~x represents the 3-vector ~x = (x, y, z) and ~u represents
the 3-vector ~u = (u, v, w) the direction cosines. The direction cosines may also be expressed
in terms of the angles ~u = (u, v, w) = (sin θ cosφ, sin θ sin φ, cos θ), where θ and φ are the
polar and azimuthal angles respectively.

The phase space can be much more descriptive. It can include the particle’s energy, its
particle type (in a mixed particle simulation), an identifier that indicates which geometrical
element it is in, its spin, the time, or anything that the application may demand. We may
even include information that physically would not be available such as, for example, the
number of Compton interactions that a photon has undergone. For now, however, we keep
it as simple as possible.
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7.1 Displacements

Transport is carried out using some very simple geometrical constructs. Given that a particle
has a position ~x0 and direction ~u0 and distance to travel s, the new position, ~x, is given by:

~x = ~x0 + ~u0s, (7.2)

or

x = x0 + u0s

y = y0 + v0s

z = z0 + w0s (7.3)

where ~x0 = (x0, y0, z0), ~x = (x, y, z). That is, transport effects the following change in the
particle’s phase space:

T ({~x0, ~u0}, s) = {~x0 + ~u0s, ~u0} = {~x, ~u0} , (7.4)

in operator notation.

The displacement s in this development is a geometric measure of |~x − ~x0|. There may be
other measures such as v∆t where v is the velocity (assumed to be constant) and ∆t is the
time over which the transport takes place. Sometimes, s may be more difficult to obtain.
For example, a charged particle in an electric or magnetic field will be deflected as it moves
and the determination of s may be quite involved. For the present, we keep it simple.

7.2 Rotation of coordinate systems

Let us consider the problem of the representation of a 3-vector in a coordinate system where
the axes are rotated. Figure 7.1 shows the connection between the 3-vector as measured in
the laboratory system ~x with respect to another system ~x′ where there has been a rotation
by an angle φ in the positive sense (right hand rule) about positive z axis. By inspection,





x
y
z



 =





cosφ − sinφ 0
sinφ cos φ 0
0 0 1









x′

y′

z′



 (7.5)

Another rotation of the coordinates in the ~x′ system by an angle θ about the y′ axis as shown
in Figure 7.2 gives:





x′

y′

z′



 =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ









x′′

y′′

z′′



 (7.6)
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Combining the rotations by matrix multiplication gives the coordinates of the 3-vector as
measured in the laboratory system ~x with respect to the rotated system system ~x′′.





x
y
z



 =





cos θ cosφ − sin φ sin θ cosφ
cos θ sin φ cosφ sin θ sinφ
− sin θ 0 cos θ









x′′

y′′

z′′



 (7.7)

We define the rotation matrix

ℜ(θ, φ) =





cos θ cos φ − sinφ sin θ cos φ
cos θ sinφ cos φ sin θ sinφ
− sin θ 0 cos θ



 (7.8)

that transforms 3-vectors from their description in a rotated coordinate systems to that of
the laboratory system.

Rotation matrix has some special properties. The determinant of the rotation matrix is
unity, i.e.

‖ℜ(θ, φ)‖ = 1 . (7.9)

The inverse of the rotation matrix, ℜ−1(θ, φ) is its transpose, ℜT(θ, φ), that is

ℜ−1(θ, φ) = ℜT(θ, φ) , (7.10)

or
ℜ−1

ij (θ, φ) = ℜji(θ, φ) . (7.11)

The inverse matrices are important! They express vectors in local coordinate systems when
they are expressed originally in laboratory coordinate systems. We will make use of this in
the following section.

7.3 Changes of direction

Returning now to the deflection of particles, imagine that a particle with direction ~u0 =
(u0, v0, w0) = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) is scattered by angles Θ and Φ with respect
to the particle’s ~u0 direction. The new direction is given by:

~u = ℜ(θ0, φ0)ℜ(Θ,Φ)ℜ−1(θ0, φ0)~u0 . (7.12)

The explanation is as follows:

• ℜ−1(θ0, φ0)~u0 rotates the vector ~u0 in laboratory coordinates to a local coordinate
system where the particle is going along the z axis. In fact,
ℜ−1(θ0, φ0)~u0 = ẑ = (0, 0, 1).
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• ℜ(Θ,Φ)ẑ effects a rotation of the coordinate system such that the new direction cosines
are given by the angles of the scatter. The result of ℜ(Θ,Φ)ẑ is familiar,
ℜ(Θ,Φ)ẑ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ).

• Finally, ℜ(θ, φ)ℜ(Θ,Φ)ẑ rotates the coordinate system from the particle’s local coordi-
nates system in which had it travelling along the positive z axis before the scattering to
the laboratory system where is was travelling in the direction ~u0 before the scattering
event.

The whole process can be written out explicitly by performing the matrix multiplications:

u = sin θ cosφ = u0 cosΘ + sinΘ(w0 cosΦ cos φ0 − sinΦ sinφ0)

v = sin θ sin φ = v0 cosΘ + sinΘ(w0 cosΦ sin φ0 + sinΦ cosφ0)

w = cos θ = w0 cosΘ− sinΘ sin θ0 cosΦ (7.13)

Returning now to our operator and phase-space notation, rotation effects the following
change in the particle’s phase space:

R({~x0, ~u0},Θ,Φ) = {~x0,ℜ(θ0, φ0)ℜ(Θ,Φ)ℜ−1(θ0, φ0)~u0} = {~x0, ~u} . (7.14)

7.4 Putting it all together

Imagine that a simulation provides us with a set of pathlengths, (s1, s2, s3 · · ·) and an asso-
ciated set of deflections, ([Θ1,Φ1], [Θ2,Φ2], [Θ3,Φ3] · · ·) we have now built up the complete
mathematical mechanism for transporting particles. Translation is a well defined mathemat-
ical (and computational process) accomplished in Equations 7.2 and 7.3. Rotation is also a
well-defined mathematical and computational process described by Equations 7.12 and 7.13.
The mechanism by which the set of s’s or scattering angles are determined is left to later
chapters. For the moment, let us assume that they are given.

The other important realization is that T and R do not commute. For example.

R({T ({0, ẑ}, 1)}, π/2, 0) = {ẑ, x̂} , (7.15)

whereas
T ({R({0, ẑ}, π/2, 0)}, 1) = {x̂, x̂} . (7.16)

So, the ordering of the operations of transport and scattering are important.

The process of repeated transport and scattering can be written mathematically as:



7.4. PUTTING IT ALL TOGETHER 89

{~x1, ~u0} = T ({~x0, ~u0}, s1)
{~x1, ~u1} = R({~x1, ~u0},Θ1,Φ1)

{~x2, ~u1} = T ({~x1, ~u1}, s2)
{~x2, ~u2} = R({~x2, ~u1},Θ2,Φ2)

{~x3, ~u2} = T ({~x2, ~u2}, s3)
{~x3, ~u3} = R({~x3, ~u2},Θ3,Φ3)

... (7.17)

A picture of this process is given in Figure 7.3.

We can now invent a scattering scattering scheme and a way of generating the pathlengths
s and begin doing Monte Carlo calculations in infinite media!

For example, we can specify as isotropic scattering law:

p(Θ,Φ) =
sin(Θ)

4π
. (7.18)

and a fixed pathlength, say s = 1 in some units and make a realistic simulation of a random
walk or Brownian motion in the absence of gravity.



90 CHAPTER 7. RAY TRACING AND ROTATIONS



Bibliography

Problems

Using a computer, operating system, computing language and compiler of your choice (tell
me what you used):

1.
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Chapter 8

Transport in media, interaction
models

In the previous chapter it was stated that a simulation provides us with a set of pathlengths,
(s1, s2, s3 · · ·) and an associated set of deflections, ([Θ1,Φ1], [Θ2,Φ2], [Θ3,Φ3] · · ·) that enter
into the transport and deflection machinery developed there. In this chapter we discuss how
this data is produced and give some indication as to its origins. We also present some basic
interaction models that are facsimiles of the real thing, just so that we can have something
to model without a great deal of computational effort.

8.1 Interaction probability in an infinite medium

Imagine that a particle starts at position ~x0 in an arbitrary infinite scattering medium and
that the particle is directed along an axis with unit direction vector ~µ. The medium can
have a density or a composition that varies with position. We call the probability that a
particle exists at position ~x relative to ~x0 without having collided , ps(~µ ·(~x−~x0)), the survival
probability. The change in probability due to interaction is characterized by an interaction
coefficient (in units L−1) which we call µ(~µ · (~x−~x0)). This interaction coefficient can change
along the particle flight path. The change in survival probability is expressed mathematically
by the following equation:

dps(~µ · (~x− ~x0)) = −ps(~µ · (~x− ~x0))µ(~µ · (~x− ~x0))d(~µ · (~x− ~x0)) . (8.1)

The minus sign on the right-hand-side indicates that the probability decreases with path-
length and the proportionality with ps(~µ · (~x− ~x0)) on the right-hand-side means the proba-
bility of loss is proportional to the probability of the particle existing at the location where
the interaction takes place.

To simplify the notation we translate and rotate so that ~x0 = (0, 0, 0) and ~µ = (0, 0, 1). (We
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can always rotate and translate back later if we want to.) However, the more complicated
notation reinforces the notion that the starting position and direction can be arbitrary and
that the interaction coefficient can change along the path of the particle’s direction. In the
simpler notation with a small rearrangement we have:

dps(z)

ps(z)
= −µ(z)dz . (8.2)

We can integrate this from z = 0 where we assume that p(0) = 1 to z and obtain:

ps(z) = exp

(

−
∫ z

0

dz′µ(z′)

)

. (8.3)

The probability that a particle has interacted within a distance z is simply 1 − ps(z). This
is also called the cumulative probability:

c(z) = 1− ps(z) = 1− exp

(

−
∫ z

0

dz′µ(z′)

)

. (8.4)

Since the medium is infinite, c(∞) = 1 and ps(∞) = 0.

The differential (per unit length) probability for interaction at z can be obtained from the
derivative of the cumulative probability c(z):

p(z) =
d

dz

[

1− exp

(

−
∫ z

0

dz′µ(z′)

)]

= µ(z) exp

(

−
∫ z

0

dz′µ(z′)

)

= µ(z)ps(z) . (8.5)

There is a critical assumption in the above expression! It is assumed that the existence of
a particle at z means that it has not interacted in any way. ps(z) is after all, the survival
probability. Why is this important? The interaction coefficient µ(z) may represent a number
of possibilities. Choosing which interaction channel the particle takes is independent of
whatever happened along the way so long as it has survived and what happens is only
dependent on the local µ(z). There will be more discussion of this subtle point later.

8.1.1 Uniform, infinite, homogeneous media

This is the usual case where it is assumed that µ is a constant, independent of position
within the medium. That is, the scattering characteristic of the medium is uniform. (The
interaction can depend on the energy ofthe incoming particle, however.) In this case we have
the simplification:

ps(z) = e−µz , (8.6)

which is the well-known exponential attenuation law for the survival probability of particles
as a function of depth. The cumulative probability is:

c(z) = 1− ps(z) = 1− e−µz , (8.7)
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and the differential probability for interaction z is:

p(z) =
d

dz
[1− e−µz] = µe−µz = µps(z) . (8.8)

The use of random numbers to sample this probability distribution was given in Chapter 4.

8.2 Finite media

In the case where the medium is finite, our notion of probability distribution seems to break
down since:

c(∞) = 1− ps(∞) = 1− exp

(

−
∫ ∞

0

dz′µ(z′)

)

< 1 . (8.9)

That is, the cumulative probability at infinity is less than one because either the particle
escapes a finite geometry or µ(z) is zero beyond some limit. (These are two ways of saying
the same thing!)

We can recover our notion of probability theory by drawing a boundary at z = zb at the end
of the geometry and rewrite the cumulative probability as:

c(z) = 1− ps(z) = 1− exp

(

−
∫ z

0

dz′µ(z′)

)

+ exp

(

−
∫ zb

0

dz′µ(z′)

)

θ(z − zb) , (8.10)

where we assume that µ(z) = 0 for z ≥ zb. The probability distribution becomes:

p(z) = µ(z) exp

(

−
∫ z

0

dz′µ(z′)

)

+ ps(zb)δ(z − zb) . (8.11)

The interpretation is that once the particle reaches the boundary, it reaches it with a cu-
mulative probability equal to one minus its survival probability. Probability is conserved.
In fact, this is exactly what is done in a Monte Carlo simulation. If a particle reaches the
bounding box of the simulation it is absorbed at that boundary and transport discontinues.
If this were not the case, an attempt at particle transport simulation would put the logic
into an infinite loop with the particle being transported elsewhere looking for more medium
to interact in. In a sense, this is exactly what happens in nature! Particles escaping the
earth go off into outer space until they interact with another medium or else they transport
to the end of the universe. It is simply a question of conservation of probability!

8.3 Regions of different scattering characteristics

Let us imagine that our “universe” contains regions of different scattering characteristics
such that it is convenient to write:

µ(z) = µ1(z)θ(z)θ(b1 − z)
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µ(z) = µ2(z)θ(z − b1)θ(b2 − z)

µ(z) = µ3(z)θ(z − b2)θ(b3 − z)
... (8.12)

Typically, the µ’s may be constant in their own domains. However, the analysis about to
be presented is much more general. Note also that there is no fundamental restriction to
layered media. Since we have already introduced arbitrary translations and rotations, the
notation just means that along the flight path the interaction changes in some way at certain
distances that we wish to assign a particular status to.

The interaction probability for this arrangement is:

p(z) = θ(z)θ(b1 − z)µ1(z)e
−

∫ z
0
dz′µ1(z′)

+ θ(z − b1)θ(b2 − z)µ2(z)e
−

∫ b1
0

dz′µ1(z′)e
−

∫ z
b1

dz′µ2(z′)

+ θ(z − b2)θ(b3 − z)µ3(z)e
−

∫ b1
0

dz′µ1(z′)e
−

∫ b2
b1

dz′µ2(z′)e
−

∫ z
b2

dz′µ3(z′)

... (8.13)

Another way of writing this is:

p(z) = θ(z)θ(b1 − z)µ1(z)e
−

∫ z
0
dz′µ1(z′)

+ ps(b1)θ(z − b1)θ(b2 − z)µ2(z)e
−

∫ z
b1

dz′µ2(z′)

+ ps(b2)θ(z − b2)θ(b3 − z)µ3(z)e
−

∫ z
b2

dz′µ3(z′)

... (8.14)

Now consider a change of variables bi−1 ≤ zi ≤ bi and introduce the conditional survival
probability ps(bi|bi−1) which is the probability that a particle does not interact in the region
bi−1 ≤ zi ≤ bi given that it has not interacted in a previous region either. By conservation
of probability:

ps(bi) = ps(bi−1)ps(bi|bi−1) . (8.15)

Then Equation 8.14 can be rewritten:

p(z) = p(z1, z2, z3 · · ·) = p(z1) + ps(b1)[p(z2) + ps(b2|b1)[p(z3) + ps(b3|b2)[· · · (8.16)

What this means is that the variables z1, z2, z3 · · · can be treated as independent. If we
consider the interactions over z1 as independent, then from Equation 8.11 we have:

p(z1) = µ1(z1) exp

(

−
∫ z1

0

dz′µ1(z
′)

)

+ ps(b1)δ(z − b1) . (8.17)

If the particle makes it to z = b1 we consider z2 as an independent variable and sample from:

p(z2) = µ2(z2) exp

(

−
∫ z2

0

dz′µ2(z
′)

)

+ ps(b2|b1)δ(z − b2) . (8.18)
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If the particle makes it to z = b2 we consider z3 as an independent variable and sample from:

p(z3) = µ3(z3) exp

(

−
∫ z3

0

dz′µ3(z
′)

)

+ ps(b3|b2)δ(z − b3) , (8.19)

and so on.

A simple example serves to illustrate the process. Consider only two regions of space on
either side of z = b with different interaction coefficients. That is:

µ(z) = µ1θ(b− z) + µ2θ(z − b) . (8.20)

The interaction probability for this example is:

p(z) = θ(b− z)µ1e
−µ1z + θ(z − b)µ2e

−µ1beµ2(z−b) (8.21)

Now, treat z1 as independent, that is

p(z1) = µ1e
−µ1z + e−µ1bδ(z − b) (8.22)

If the particle makes it to z = b we consider z2 as an independent variable and sample from:

p(z2) = µ2e
−µ2z2 (8.23)

which is the identical probability distribution implied by Equation 8.21.

The importance of this proof is summarized as follows. The interaction of a particle is de-
pendent only on the local scattering conditions. If space is divided up into regions of locally
constant interaction coefficients, then we may sample the distance to an interaction by con-
sidering the space to be uniform in the local interaction coefficient. We sample the distance
to an interaction and transport the particle. If a boundary demarcating a region of space
with different scattering characteristics interrupts the particle transport, we may stop at that
boundary and resample using the new interaction coefficient of the region beyond the bound-
ary. The alternative approach would be to invert the cumulative probability distribution
implied by Equation 8.4,

∫ z

0

dz′µ(z′) = − log(1− r) , (8.24)

where r is a uniform random number between 0 and 1. The interaction distance z would
be determined by summing the interaction coefficient until the equality in Equation 8.24 is
satisfied. In some applications it may be efficient to do the sampling directly according to the
above. In other applications it may be more efficient to resample every time the interaction
coefficient changes. It is simply a trade-off between the between the time taken to index the
look-up table for µ(z) and recalculating the logarithm in a resampling procedure.
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8.4 Obtaining µ from microscopic cross sections

A microscopic cross section is the probability per unit pathlength that a particle interacts
with one scattering center per unit volume. Thus,

σ =
dp

n dz
, (8.25)

where dp is the differential probability of “some event” happening over pathlength dz and
n is the number density of scattering centers that “make the event happen”. The units of
cross section are L2. A special quantity has been defined to measure cross sections, the barn.
It is equal to 10−24 cm2. This definition in terms of areas is essentially a generalization of
the classical concept of “billiard ball” collisions.

Consider a uniform beam of particles with cross sectional area Ab impinging on a target of
thickness dz as depicted in Figure 8.1. The scattering centers all have cross sectional area
σ. The density of scattering centers is n so that there are nAbdz scattering centers in the
beam. Thus, the probability per unit area that there will be an interaction is:

dp =
nAbdzσ

Ab
, (8.26)

which is just the fractional area occupied by the scattering centers. Hence,

dp

dz
= nσ , (8.27)

which is the same expression given in Equation 8.25. While the classical picture is useful for
visualizing the scattering process it is a little problematic in dealing with cross sections that
can be dependent on the incoming particle energy or that can include the notion that the
scattering center may be much larger or smaller than its physical size. The electromagnetic
scattering of charged particles (e.g. electrons) from unshielded charged centers (e.g. bare
nuclei) is an example where the cross section is much larger than the physical size. Much
smaller cross sections occur when the scattering centers are transparent to the incoming par-
ticles. An extreme example of this would be neutrino-nucleon scattering. On the other hand,
neutron-nucleus scattering can be very “billiard ball ” in nature. Under some circumstances
contact has to be made before a scatter takes place.

Another problem arises when one can no longer treat the scattering centers as independent.
Classically this would happen if the targets were squeezed so tightly together that their cross
sectional areas overlapped. Another example would be where groups of targets would act
together collectively to influence the scattering. These phenomena are treated with special
techniques that will not be dealt with directly in this book.

The probability per unit length, dp dz is given a special symbol µ. That is,

µ =
dp

dz
, (8.28)
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which we have been discussing in the previous sections.

The cross section, σ can also depend on the energy, E, of the incoming particle. In this case
we may write the cross section differential in energy as σ(E). The symbol σ is reserved for
total cross section. If there is a functional dependence it is assumed to be differential in that
quantity.

Once the particle interacts, the scattered particle can have a different energy, E ′ and direc-
tion, Θ,Φ relative to the initial z directions. The cross section can be differential in these
parameters as well. Thus,

σ(E) =

∫

dE ′ σ(E,E ′) =

∫

dΩσ(E,Θ,Φ) =

∫

dE ′

∫

dΩσ(E,E ′,Θ,Φ) , (8.29)

relates the cross section to its differential counterparts. The interaction coefficient µ can
have similar differential counterparts.

Now, consider a cross section differential both in scattered energy and angle. We may write
this as:

µ(E,E ′,Θ,Φ) = µ(E)p(E,E ′,Θ,Φ) , (8.30)

where p(E,E ′,Θ,Φ) is a normalized probability distribution function, which describes the
scattering of particle with energy E into energy E ′ and angles Θ,Φ. We are now ready to
specify the final ingredients in particle transport.

Given a particle with energy E and cross section σ(E,E ′,Θ,Φ):

• Form its interaction coefficient,

µ(E) = n

∫

dE ′

∫

dΩσ(E,E ′,Θ,Φ) . (8.31)

• Usually the number density n is not tabulated but it can be determined from:

n =
ρ

A
NA . (8.32)

where ρ is the mass density, A is the atomic weight (g/mol) and NA is Avogadro’s
number, the number of atoms per mole (6.0221367(36)× 1023 mol−1) [C. 98]1.

• Assuming µ(E) does not depend on position, provide the distance to the interaction
point employing (now familiar) sampling techniques:

s = − 1

µ(E)
log(1− r) , (8.33)

where r is a uniformly distributed random number between 0 and 1. Provide this s and
execute the transport step ~x = ~xo + ~µs. (Do not confuse the direction cosine vector ~µ
with the interaction coefficient µ!)

1The latest listing of physical constants and many more good things are available from the Particle Data
Group’s web page: http://pdg.lbl.gov/pdg.html
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• Form the marginal probability distribution function in E ′:

m(E,E ′) =

∫

dΩ p(E,E ′,Θ,Φ) , (8.34)

and sample E ′.

• Form the conditional probability distribution function in Θ,Φ:

p(E,Θ,Φ|E ′) =
p(E,E ′,Θ,Φ)

m(E,E ′)
, (8.35)

sample from it and provide [Θ,Φ] to the rotation mechanism that will obtain the new
direction after the scattering.

8.5 Compounds and mixtures

Often our scattering media are made up of compounds (e.g. water, H2O) or homogeneous
mixtures (e.g. air, made up of nitrogen, oxygen, water vapor and a little bit of Argon). How
do we form interaction coefficients for these?

We can employ Equations 8.27 and 8.28 and extend them to include partial fractions, ni of
atoms each with its own cross section σi:

µ(E) =
∑

i

niσi . (8.36)

Often, however, compounds are specified by fractional weights, wi, the fraction of mass due
to one atomic species compared to the total. From Equation 8.36 and 8.32:

µ(E) =
∑

i

ρ̃i
Ai
NAσi . =

∑

i

ρ̃i

(

µi

ρi

)

= ρ
∑

i

wi

(

µi

ρi

)

, (8.37)

or
µ(E)

ρ
=
∑

i

wi

(

µi

ρi

)

. (8.38)

where ρi is the “normal” density of atomic component i (very often it is µi/ρi, called the
mass attenuation coefficient, that is provided in numerical tabulations), ρ̃i is the “actual”
mass density of the atomic species in the compound, ρ is the mass density of the compound
and the fractional weight of atomic component i in the compound is wi = ρ̃i/ρ.
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8.6 Branching ratios

Sometimes the interaction coefficient represents the compound process:

µ(E) =
∑

i

µi(E) . (8.39)

For example, a photon may interact through the photoelectric, coherent (Rayleigh), inco-
herent (Compton) or pair production processes. Thus, from Equation 8.5 we have:

p(z) =
∑

i

pi(z) =
∑

i

µi(E)e
−zµ(E) =

∑

i

µi(E)ps(z) , (8.40)

where we assume (a non-essential approximation) that the µi(E)’s do not depend on position.
Thus the fractional probability for interaction channel i is:

Pi =
pi(z)

p(z)
=
µi(E)

µ(E)
. (8.41)

In other words, the interaction channel is decided upon the relative attenuation coefficients
at the location of the interaction, not on how the particle arrived at that point.

This is one of the few examples of discrete probability distributions and we emphasize this
by writing an uppercase P for this probability. The sampling of the branching ratio takes
the form of the following recipe:

1. Choose a random number r. If r ≤ µ1(E)/µ(E), interact via interaction channel 1.
Otherwise,

2. if r ≤ [µ1(E) + µ2(E)]/µ(E), interact via interaction channel 2. Otherwise,

3. if r ≤ [µ1(E) + µ2(E) + µ3(E)]/µ(E), interact via interaction channel 3. Other-
wise...and so on.

The sampling must stop because
∑

i µi(E)/µ(E) and a random number must always satisfy
one of the conditions along the way.

Note that this technique can be applied directly to sampling from the individual atomic
species in compounds and mixtures. The fractional probabilities can be calculated according
to the discussion of the last section and the sampling procedure above adopted.

8.7 Other pathlength schemes

For complete generality it should be mentioned that there are other schemes for selecting
pathlengths. We shall see this in the later chapter on electron transport. In many applica-
tions, electron transport steps are provided in a pre-prescribed, non-stochastic way, such as
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the pathlength for which a certain average energy loss would be obtained, or a pathlength
that produces a given amount of angular deflection. Deeper discussion would invoke a long
discussion that we will defer until later, after we have built up all the basic of the Monte
Carlo technique that we will need to solve a broad class of problems.

8.8 Model interactions

In this section we will introduce several model interactions and employ them to study some
basic characteristics of Monte Carlo results.

8.8.1 Isotropic scattering

The scattering of low to medium-energy neutrons (before resonances begin to appear) is
nearly isotropic in the center-of-mass. Therefore the scattering of low to medium-energy
neutrons from heavy nuclei is very nearly isotropic. Isotropic scattering is sampled from the
distribution function:

p(Θ,Φ) dΘdΦ =
1

4π
sin Θ dΘdΦ . (8.42)

The sampling procedure is:

cosΘ = 1− 2r1

Φ = 2πr2 (8.43)

where the ri are uniform random numbers between 0 and 1.

8.8.2 Semi-isotropic or P1 scattering

The first order correction to isotropic scattering of low to medium-energy neutrons, a cor-
rection that becomes increasingly important for scattering from lighter nuclei is the semi-
isotropic cross angular distribution:

p(Θ,Φ) dΘdΦ =
1

4π
(1 + a cosΘ) sinΘ dΘdΦ |a| ≤ 1 . (8.44)

The sampling procedure is:

cosΘ =
2− a− 4r1

1 +
√

1− a(2− a− 4r1)

Φ = 2πr2 (8.45)

where the ri are uniform random numbers between 0 and 1.
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8.8.3 Rutherfordian scattering

A reasonable approximation to the elastic scattering of charged particles is the Rutherfordian
distribution:

p(Θ,Φ) dΘdΦ =
a(2 + a)

4π

sinΘ dΘdΦ

(1− cosΘ + a)2
0 ≤ a <∞ . (8.46)

The sampling procedure is:

cosΘ = 1− 2a
1− r1
a+ 2r1

Φ = 2πr2 (8.47)

where the ri are uniform random numbers between 0 and 1. An interesting feature f the
Rutherfordian distribution is that it becomes the isotropic distribution in the limit a −→ ∞
and the “no-scattering” distribution δ(1− cosΘ) in the limit a −→ 0.

8.8.4 Rutherfordian scattering—small angle form

One approximation that is made to the Rutherfordian distribution in the limit of small a is
to make the small-angle approximation to Θ as well. The distribution then takes the form:

p(Θ,Φ) dΘdΦ =
2a

π

ΘdΘdΦ

(Θ2 + 2a)2
0 ≤ a <∞ , 0 ≤ Θ <∞ . (8.48)

The sampling procedure is:

Θ =

√

2ar

1− r
Φ = 2πr2 (8.49)

If Θ > π is sampled in the first step, it is rejected and the distribution in Θ is resampled.
One also has to take care that the denominator in the

√
does not become numerically zero

through some quirk of the random number generator.
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Chapter 9

Lewis theory

This chapter contains a discussion of Lewis theory [Lew50], which provides us with a very
powerful way to evaluate the quality of our Monte Carlo algorithms. Lewis’ theory provides
us with scattering-model-independent exact predictions of spatial moments (e.g. 〈z〉, 〈x2 +
y2〉 · · ·), angular moments (e.g. 〈cos θ〉, 〈sin θ2 cosφ2 · · ·), and their correlations (e.g. 〈z cos θ〉,
〈x sin θ cosφ〉 · · ·). It is one of the most remarkable (and often ignored) developments in
transport theory.

Particle transport of the form we consider in this course is described by the linear Boltzmann
transport equation:

[

∂

∂s
+ ~µ · ~∇ + Σ(E)

]

ψ(~x, ~µ, s) =

∫

4π

dµ′ Σ(~µ · ~µ′, E)ψ(~x, ~µ′, s) . (9.1)

where ~x is the position, ~µ is a unit vector indicating the direction of the electron, E is the
energy of the electron and s is the pathlength. Σs(~µ · ~µ′, E) is the macroscopic differential
scattering cross section,

Σ(E) =

∫

4π

dµ′ Σ(~µ · ~µ′, E) (9.2)

is the total macroscopic cross section1 (probability per unit length) and ψ(~x, ~µ, E, s) d~xdµ dE
is the probability of there being an electron in d~x about ~x, in dµ about ~µ and in dE about
E at after having been transported a pathlength s. The boundary condition to be applied
is:

ψ(~x, ~µ, E, 0) = δ(~x)δ(ẑ − ~µ)δ(E0 − E) , (9.3)

where we have assumed that at the start of transport the particle is at the origin and pointed
in the z-direction. (ẑ is a unit vector pointing along the z-axis.) The energy of the particle
at the start of the transport process is E0.

1There is a slight departure in notation from the previous chapter. The macroscopic cross section was
called µ there. In this chapter the appearence of µ and ~µ together in the same equation seem too awkward
to be employed.
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This formulation is a very powerful and comprehensive description of particle scattering. It
can encompass transport models where the drift between collision points happens with no
loss of energy. In this case:

s = vt , (9.4)

where v is the velocity and t is the time, or it can allow for any non-stochastic functional
connection between pathlength and energy. One important energy-loss model is the contin-
uous slowing down (CSD) approximation (or CSDA) which connects pathlength and energy
through the relation:

s = vt =

∫ E0

E

dE ′

L(E ′)
, (9.5)

where L(E) is called the “stopping power” and describes, for example, how electrons slow
down in media. The cross section still depends on E which may be calculated from Equa-
tion 9.5.

Except under very special circumstances (such as no scattering in simple geometries), Equa-
tion 9.5 can not be solved analytically by any means and so the Monte Carlo method is
adopted as a practical approach. However, Lewis [Lew50] has presented a “formal” solution
to Equation9.1 from which all the spatial-angular moments can be derived. We sketch below
and derive the major results.

9.1 The formal solution

Assume that ψ can be written as an expansion in spherical harmonics,

ψ(~x, ~µ, s) =
∑

lm

ψlm(~x, s)Ylm(~µ) , (9.6)

one finds that
[

∂

∂s
+ κl

]

ψlm(~x, s) = −
∑

λµ

~∇ψλµ(~x, s) · ~Qλµ
lm , (9.7)

where

κl(E) =

∫ 2π

0

dΦ

∫ π

0

dΘ sinΘΣ(cosΘ, E)[1− Pl(cosΘ)] , (9.8)

and
~Qλµ
lm =

∫

4π

dµ Y ∗
lm(~µ) ~µYλµ(~µ) . (9.9)

It has been assumed that the scattering law depends only on Θ and not Φ, that is, it is
azimuthally symmetric. The boundary condition in the parametrization is:

ψlm(~x, 0) = δm0δ(~x)Yl0(0) =

√

2l + 1

4π
δm0δ(~x) . (9.10)
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If one considers angular distributions only, then one may integrate over all ~x in Equation 9.7
giving:

[

∂

∂s
+ κl

]

ψl(s) = 0 , (9.11)

resulting in the solution derived by Goudsmit and Saunderson [GS40a, GS40b]:

ψ(~µ, s) =
1

4π

∑

l

(2l + 1)Pl(cos θ)kl(s) , (9.12)

where

kl(s) = exp

(

−
∫ s

0

ds′ κl(E)

)

. (9.13)

Equation 9.7 represents a complete formal solution of the linear Boltzmann transport equa-
tion but it has never been solved exactly in closed form. However, Equation 9.7 may be
employed to extract important information regarding the moments of the distributions.

A long and very boring proof should go here!

Lewis [Lew50] has shown the moments 〈z〉, 〈z cosΘ〉, and 〈x2 + y2〉 to be:

〈z〉 =
∫ s

0

ds′ k1(s
′) , (9.14)

〈z cos θ〉 = k1(s)

3

∫ s

0

ds′
1 + 2k2(s

′)

k1(s′)
, (9.15)

and

〈x2 + y2〉 = 4

3

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1− k2(s

′′)

k1(s′′)
. (9.16)

It can also be shown using Lewis’s methods that

〈x sin θ cosφ+ y sin θ sinφ〉 = 2k1(s)

3

∫ s

0

ds′
1− k2(s

′)

k1(s′)
, (9.17)

〈~x · ~µ〉 = k1(s)

∫ s

0

ds′
1

k1(s′)
, (9.18)

〈z2〉 = 2

3

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1 + 2k2(s

′′)

k1(s′′)
, (9.19)

and

〈x2 + y2 + z2〉 = 2

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1

k1(s′′)
, (9.20)
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which gives the radial coordinate after the total transport distance, s. Note that there was
an error2 in Lewis’s paper where the factor 1/3 was missing from his version of 〈z cosΘ〉. In
the limit that s −→ 0, one recovers from Eqs. 9.15 and 9.19 the results lims−→0〈z cosΘ〉 = s
and lims−→0〈z2〉 = s2 which are not obtained without correcting the error as described in
the footnote.

It warrants repeating that these equations are all “exact” and are independent of the form
of the scattering cross section.

9.2 Isotropic scattering from uniform atomic targets

We assume that the cross section has the form:

σ(Θ,Φ)dΘdΦ =
σ0
4π

sin ΘdΘdΦ . (9.21)

Using the results of the previous chapter,

Σ(Θ,Φ)dΘdΦ = ρ
NA

A

σ0
4π

sinΘdΘdΦ =
Σ0

4π
sin ΘdΘdΦ . (9.22)

From Equation 9.8

κl(E) =

∫ 2π

0

dΦ

∫ π

0

dΘ sinΘΣ(cosΘ, E)[1− Pl(cosΘ)] = Σ0(1− δl0) , (9.23)

and from Equation 9.13

kl(s) = exp

(

−
∫ s

0

ds′ κl(E)

)

= δl0 + (1− δl0)e
−Σ0s = δl0 + (1− δl0)e

−λ , (9.24)

where λ is a natural measure of distance in terms of the number of “mean-free-paths”
(MFP’s). If we substitute this into Equations 9.14–9.20, we obtain:

Σ0〈z〉 = 1− e−λ , (9.25)

Σ0〈z cos θ〉 =
1− (1− 2λ)e−λ

3
, (9.26)

Σ0〈x sin θ cosφ〉 = Σ0〈y sin θ sin φ〉 =
1− (1 + λ)e−λ

3
, (9.27)

2The correction of Lewis’s Equation 26 is:

Hl1 =

√

1

4π(2l+ 1)
kl(s)

∫ s

0

ds′
lkl−1(s

′) + (l + 1)kl+1(s
′)

k1(s′)

The reader should consult Lewis’s paper [Lew50] for the definition of the H-functions.
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Σ0〈~x · ~µ〉 = 1− e−λ , (9.28)

Σ2
0〈z2〉 =

2[1 + λ− (1 + 2λ)e−λ]

3
, (9.29)

Σ2
0〈x2〉 = Σ2

0〈y2〉 =
2[λ− 2 + (2 + λ)e−λ]

3
, (9.30)

Σ2
0〈x2 + y2 + z2〉 = 2[λ− 1 + e−λ] . (9.31)

The leading order small pathlength (λ −→ 0) behavior is:

Σ0〈z〉 −→ λ , (9.32)

Σ0〈z cos θ〉 −→ λ , (9.33)

Σ0〈x sin θ cosφ〉 = Σ0〈y sin θ sinφ〉 −→ λ2/6 , (9.34)

Σ0〈~x · ~µ〉 −→ λ , (9.35)

Σ2
0〈z2〉 −→ λ2 , (9.36)

Σ2
0〈x2〉 = Σ2

0〈y2〉 −→ λ3/9 , (9.37)

Σ2
0〈x2 + y2 + z2〉 −→ λ2 , (9.38)

which is to be expected since the particle has not had much chance to scatter away form the
z axis.

The large pathlength (λ −→ ∞) behavior is:

Σ0〈z〉 −→ 1 , (9.39)

Σ0〈z cos θ〉 −→ 1/3 , (9.40)

Σ0〈x sin θ cos φ〉 = Σ0〈y sin θ sinφ〉 −→ 1/3 , (9.41)

Σ0〈~x · ~µ〉 −→ 1 , (9.42)

Σ2
0〈z2〉 −→ 2(λ+ 1)/3 , (9.43)

Σ2
0〈x2〉 = Σ2

0〈y2〉 −→ 2(λ− 2)/3 , (9.44)

Σ2
0〈x2 + y2 + z2〉 −→ 2(λ− 1) , (9.45)

Several interesting properties may be derived. The variance associated with the distribution
in z is:

Σ2
0〈z2〉 − (Σ0〈z〉)2 =

2[1 + λ− (1 + 2λ)e−λ]

3
− (1− e−λ)2 (9.46)

The small pathlength limit is 4λ3/9 and the large pathlength limit is (2λ− 1)/3. Similarly,
the radial variance is:

Σ2
0〈~x · ~x〉 − Σ2

0〈~x〉 · 〈~x〉 = 2[λ− 1 + e−λ]− (1− e−λ)2 . (9.47)

The small pathlength limit is 2λ3/3 and the large pathlength limit is (2λ− 1).

These results and other similarly derived ones may be employed to verify, in a scattering-
model independent way, the operation of a Monte Carlo code.
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Problems

1. 10,000 particles start out in an infinite, unbounded medium with initial position vector
~x0 = 0 and initial direction vector ~u0 = ẑ. The interaction probability is:

p(si) dsi = Σexp(−Σsi) dsi

where si is a measure of the pathlength of the particle along its current direction of mo-
tion starting from its current position to the i’th interaction point. Having interacted,
the particle scatters isotropically and can scatter again, repeatedly, according to the
same scattering law. This repeated scattering and transport results in a probability
distribution function of the form

F (~x, ~u, s) d~x d~u ds

which you will develop stochastically through a Monte Carlo program. The variable s
is a measure of total pathlength travelled, i.e. s =

∑N(s)
i si. Note that the number of

interactions N(s) is a probabilistic quantity.

(a) Consider the following moments:

• 〈x〉 ± σ〈x〉 (i.e. average x)
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• 〈y〉 ± σ〈y〉 (i.e. average y)

• 〈z〉 ± σ〈z〉 (i.e. average z)

• 〈x~u · x̂〉±σ〈x~u·x̂〉 (i.e. average correlation of x with the x-axis direction cosine)

• 〈y~u · ŷ〉±σ〈y~u·ŷ〉 (i.e. average correlation of y with the y-axis direction cosine)

• 〈z~u · ẑ〉±σ〈z~u·ẑ〉 (i.e. average correlation of z with the z-axis direction cosine)

• 〈xy〉 ± σ〈xy〉 (i.e. average correlation of x and y)

• 〈xz〉 ± σ〈xz〉 (i.e. average correlation of x and z)

• 〈yz〉 ± σ〈yz〉 (i.e. average correlation of y and z)

• 〈x2〉 ± σ〈x2〉 (i.e. average x
2)

• 〈y2〉 ± σ〈y2〉 (i.e. average y
2)

• 〈z2〉 ± σ〈z2〉 (i.e. average z
2)

(b) Which moments would you expect to be zero? Why?

(c) Which moments would you expect to be equal to each other? Why?

(d) For Σ = 1 and s = 0.001, 0.002, 0.005 0.001, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10,
20, 50, 100, 200, 500, 1000, tally the above moments and their estimated errors:

Plot the results divided by sn as a function of log(s). n is some power of n
such that the correct small and large pathlength asymptotic forms (according
to Equations 9.32–9.45) divided by this sn is a constant. (e.g. 〈z2〉/s2 would be
expected to go to the constant 1 for small s and 〈z2〉/s would be expected to go to
the constant 2/3 for large s.) If you expect the moment to be zero (on average),
set n = 0. Verify that both the s −→ 0 and the s −→ ∞ limits discussed in this
chapter are reached.



Chapter 10

Geometry

In particle transport or ray tracing for applications such as the Monte Carlo simulation of
particles being transported through media or vacuum, the inclusion of boundaries permits
the development of applications of particle transport in geometrical objects. These objects
can be very simple, such as a planar interface between two semi-infinite media or a collection
of geometrical objects that define a nuclear power vessel or a complex radiation detector.

The technique to address both of these problems is essentially the same. When a particle
is about to be transported it knows that it is in a region of space identified by a region
number (or some other unique characteristic), its position, its direction and its proposed
flight distance (e.g. the distance to an interaction point). It also knows that its current
location in space is bounded by a finite set of surfaces. So, it interrogates the geometry code
associated with each of these to find out which surface it hits, if any, and the distance to
that surface.

For most Monte Carlo applications the essential questions to be answered by the geometry
modelling code are:

• If my particle starts off at position ~x0 with direction vector µ, and it “flies” in a straight
line up to a maximum distance s, will it hit a given surface?

• If the answer to the above is “yes”, what is the distance to the intersection?

• And is the answer to the first question above is “yes”, what is the region number that
lies on the other side?

In this chapter the general problem of solving for the distance to the intersection point of a
directed straight line with an arbitrary plane or an arbitrary quadric surface is developed.
Quadric surfaces include, for example, spheres, cylinders and cones as well as a few less famil-
iar surfaces. A general strategy for boundary-crossing logic is presented which circumvents
ambiguities associated with numerical precision and end-of-step directional uncertainties.
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The specific examples of surfaces given are planes, circular cylinders, spheres and circular
cones with arbitrary orientation and position. Care is taken to develop the mathematical
equations so that they can be computed with numerical accuracy and a discussion on the
influence of machine precision on the accuracy of results is given.

This simple design allows the Monte Carlo transport routine to concern itself only with the
problem of transport of particles in infinite media and it only needs to know the composition
of the medium that particles are being transported in. Thus, when the new region number
is communicated to the Monte Carlo transport routine, it merely has to check in its look-up
tables to see whether or not the medium has changed and then take appropriate action.
This decoupling of transport physics and geometry is a very powerful generalizing feature
and permits arbitrary flexibility in specifying the geometry in such a way that the underlying
transport mechanisms are identical for all applications.

10.1 Boundary crossing

Let us imagine that a particle is being transported in vacuum, that its initial position is ~x0,
its region number is N0, it has direction ~µ and that there is only one surface bounding its
current region. The geometry code is then interrogated to see of the flight path will strike
the surface.

If the geometry modelling code replies:

• Yes, I will hit a certain surface along my flight path,

• The distance to the intersection is s,

• The region number that lies on the other side is N ,

particle transport is effected using the equation:

~x = ~x0 + ~µs, (10.1)

and one assumes naturally that mathematically (or logically) that the new position is exactly
~x and that any test of where the particle is will yield the answer N for its region number.

However, numerics and mathematics often differ.

In an “ideal” computer where floating point numbers could be specified to absolute accuracy,
there would be no ambiguity. However, real computers represent real numbers to within a
finite, non-zero precision.1 Is the particle on a surface or not? Is it exactly on the surface or

1It is possible to recode geometry transport in integer arithmetic, thereby avoiding ambiguities. This
“quantisation” of space approach has its drawbacks and further discussion would take us out of the scope of
this discussion.
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has truncation caused an “undershoot” or round-up caused an overshoot? The problem of the
finite precision of floating point numbers in computers introduces three position-dependent
possibilities that one must consider:

undershoot The transport distance does not quite reach the surface,

exact Numerically, the particle is exactly on the surface,

overshoot The transport distance is slightly overestimated so that the surface is actually
crossed.

All of these possibilities occur with varying frequency during the course of a Monte Carlo
calculation. In fact, it is correct to say that if you run a geometry code through enough
examples with stochastic selection of input parameters, then everything that can happen
will happen. Therefore, it is necessary to write geometry coding that is robust enough
to handle all of these possibilities and also to be aware of the error handling that must
be introduced. It has been suggested that all geometry be coded in double or extended
precision to avoid these kinds of ambiguities. However, one must realise that double or
extended precision does not mean absolute precision. Higher precision reduces the size of
the undershoot or overshoot but does nothing to cure undershoot or overshoot ambiguities.
A geometry code that survives using single precision arithmetic will work at higher precision
providing that the coding does not make some intrinsic assumptions on precision or scale.
The converse is not true. The routines developed for this course will work for both single
and higher precision and the regions of validity for use with both single and double precision
is investigated.

There is yet another complicating factor. Transport to a surface can cause the direction
of a particle to change! If the boundary represents a reflecting surface, the direction will
change according to the law of reflection (discussed in a later chapter). Many charged
particle transport schemes apply multiple scattering angular deflection to electron/positron
trajectories in media when the flight path is interrupted by a boundary. (This point is
discussed further in a later chapter.) Or, with less probability is the possibility that an exact
boundary intersection corresponds with the exact numerical point of interaction causing a
deflection. The various possibilities are depicted in Figure 10.1.

Fortunately there is a general error handling strategy that resolves these ambiguities:

• Do not calculate flight distances to boundaries that the particle is assumed to be headed
away from based on its known direction. This handles the undershoot and exact hit
problem in the case the particle assumes that it is still directed away from the surface
that it just crossed. However, the particle has to know in advance whether it is “inside”
or “outside” of a surface to start with.

• If the flight distance returned is less than or equal to zero, set the transport step to
zero and assume that the transport step causes a region change. This strategy resolves
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Region N0 Region N

undershoot

exact

overshoot

undershoot

exact

overshoot

Figure 10.1: Boundary crossing of a particle across a boundary. There are six possibili-
ties corresponding to undershoot, exact surface position, and overshoot with either forward
scatter or backscatter.
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ambiguities associated with undershoots and exact hits when the particle backscatters
form the surface.

Remarkably, this simple logic resolves all boundary transport ambiguities. Its calculational
efficiency is excellent, it is completely independent of the scale of the geometry with respect
to the transport pathlengths and it heals precision errors “on the spot” not allowing them
to accumulate.

Let us enumerate all the possibilities of boundary crossing and demonstrate how this boundary-
crossing logic resolves all problems.

undershoot, forward scatter The transport distance does not quite reach the surface,
but assumes logically that it is in the next region. The subsequent transport step
ignores the surface because it is assumed to be heading away from it. Note that the
positioning error is healed “on the spot” in the next transport step.

exact, forward scatter Numerically, the particle is exactly on the surface, but assumes
that it is in the next region. The subsequent transport step ignores the surface because
it is assumed to be heading away from it.

overshoot, forward scatter The transport distance is slightly overestimated so that the
surface is actually crossed. There is no ambiguity in this case since the numerical
position and the logical placement of the particle are in agreement.

undershoot, backscatter The transport distance does not quite reach the surface, but
assumes logically that it is in the next region. The subsequent transport step checks
this surface because it is assumed to be heading toward it. The calculation of the
transport distance to the surface yields a small, negative distance. Set the transport
distance to zero and let the next step transport the particle to this surface, doing
nothing more than resetting the region number to the original. Note that the error is
absorbed by the next transport step.

exact, backscatter The transport distance brings the particle exactly to the surface, and
the logic assumes that it is in the next region. The subsequent transport step checks
this surface because it is assumed to be heading toward it. The calculation of transport
distance to the surface yields an exact zero. Employ this zero transport distance and let
the next step transport the particle to this surface, doing nothing more than resetting
the region number to the original.

overshoot, backscatter The transport distance is slightly overestimated so that the sur-
face is actually crossed. There is no ambiguity in this case since the numerical position
and the logical placement of the particle are in agreement. The next transport will be
a small, positive step.



120 CHAPTER 10. GEOMETRY

It is clear that if there is an overshoot, there is no ambiguity. It is tempting to think that by
arranging for an overshoot (a small amount related to the relative or absolute floating point
precision) in every case will resolve all ambiguities and be efficient as well. The problem
with this approach is that is works well for normal incidence but not very well for grazing
incidence. Certain implementations of this strategy introduce a scale dependence into the
transport scheme, assume that errors in steps of a certain size can be ignored. Such strategies
will either be ineffective if the geometries are very large or introduce positioning errors if the
geometrical elements are very small.

10.2 Solutions for simple surfaces

10.2.1 Planes

The general equation for a plane of arbitrary orientation is:

~n · (~x− ~P ) = 0 (10.2)

where ~n is the unit normal of the plane and ~P is any point on the surface of the plane. Note
the use of the inner product, ~n · ~x ≡ nxx+ nyy + nzz.

Intersection distance

Inserting Equation 10.1 into Equation 10.2 and solving for s gives:

s = −~n · (~x0 − ~P )

~n · ~µ (10.3)

We remark that there is no solution (s = ∞) when the particle direction is perpendicular
to the normal of the plan (~n · ~µ = 0). This is the solution of a particle travelling parallel to
a plane and never hitting it. Only positive solutions for s are acceptable and this depends
upon whether or not the particle is travelling towards the plane.

Adopting the convention that a particle is considered to be outside the plane of it is on the
side that the unit normal, ~n, is pointing, we enumerate the possibilities:

Case I ~n · ~µ = 0
Trajectory is parallel to the plane, no solution

Case II ~n · (~x0 − ~P ) ≥ 0 and the particle is assumed to start from the outside

1. If ~n · ~µ < 0, s = −~n · (~x0 − ~P )/~n · ~µ
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2. Elseif ~n · ~µ > 0, no solution

Case III ~n · (~x0 − ~P ) ≤ 0 and the particle is assumed to start from the inside

1. If ~n · ~µ > 0, s = −~n · (~x0 − ~P )/~n · ~µ
2. Elseif ~n · ~µ < 0, no solution

Case IV ~n · (~x0 − ~P ) < 0 but the particle is assumed to start from the outside

1. If ~n · ~µ < 0, s = 0 effecting a region change

2. Elseif ~n · ~µ > 0, no solution

Case V ~n · (~x0 − ~P ) > 0 but the particle is assumed to start from the inside

1. If ~n · ~µ > 0, s = 0 effecting a region change

2. Elseif ~n · ~µ < 0, no solution

The case of a parallel trajectory is handled by Case I. The two “normal” conditions in
Case II and Case III handle the eventuality where the particle is exactly on the plane,
~n·(~x0−~P ) = 0. Case IV andCase V handle the anomalies. In the case of an undershoot and
backscatter out of the region where the particle thinks it is, then a zero distance is returned
so that the next transport step will switch to the correct region number. If the case of an
undershoot and forward scatter, no solution is given allowing other surfaces in the geometry
to determine the intersection. Note that no correction is made for the undershoot distance
and this will be included in the next transport step. Therefore, numerical inaccuracies are
not allowed to accumulate.

The FORTRAN codes which accomplishes this for a plane normal to the z axis is:

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine zplane(p0,z0,w,s,inside,hit)

implicit none

C Calculates the distance of a particle to a planar surface normal to the

C z-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface
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real

* p0, ! Input: Point at which the plane cuts the z-axis

* z0, ! Input: z-coordinate of the particle

* w , ! Input: z-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

if (

* (inside.and.w.gt.0e0) !headed towards the surface

* .or.

* (.not.inside.and.w.lt.0e0) !headed towards the surface

* )

*then

hit = .true.

s = max(0e0,(p0-z0)/w)

return

else

hit = .false.

return

endif

end

10.3 General solution for an arbitrary quadric

Borrowing from the notation of Olmsted [Olm47], an arbitrary quadric surface in 3(x,y,z)-
space2 can be represented by:

f(~x) =

3
∑

i,j=0

aijxixj = 0. (10.4)

The aij ’s are arbitrary constants and the 4-vector xi has components (1, x, y, z). The zeroth
component is unity by definition allowing a very compact representation and aij is symmetric
with respect to the interchange of i and j, that is aij = aji. Equation 10.4 is very general
and encompasses a wide variety of possibilities including solitary planes (e.g. only a0i non-
zero), intersecting planes (e.g. only a11 and a22 non-zero), cylinders (circular, elliptical,
parabolic and hyperbolic), spheres, spheroids and ellipsoids, cones (circular and elliptical),

2The only variance with Olmsted’s notation is that the 4th component is labelled as the 0th component
in this work.
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hyperboloids of one and two sheets and elliptic and hyperbolic paraboloids. These surfaces
can be combined to make geometrical objects of arbitrary complexity and are extremely
useful in Monte Carlo modeling of physical objects.

Despite having apparently 10 independent constants, Equation 10.4 represents only 10 inde-
pendent real surfaces (including the simple plane), unique after a translation and rotation
to standard position. The three cross terms (aij for i 6= j and i, j ≥ 1) can be eliminated
by rotation. The resultant equation then only involves terms like x2i and xi. In addition,
providing that a given variable’s quadratic constant is non-zero, the linear terms can be
eliminated by a translation. The result is that there are only two generic forms:

f(~x) =
3
∑

i=1

aix
2
i + c = 0, (10.5)

and

f(~x) =
2
∑

i=1

aix
2
i + bx3 = 0. (10.6)

Equations 10.5 and 10.6 describe only 10 distinct possibilities with real solutions.

1. ellipsoids: a21x
2
1 + a22x

2
2 + a23x

2
3 − c2 = 0.

2. cones: a21x
2
1 + a22x

2
2 − a23x

2
3 = 0.

3. cylinders: a21x
2
1 + a22x

2
2 − c2 = 0.

4. hyperboloids of one sheet: a21x
2
1 + a22x

2
2 − a23x

2
3 − c2 = 0.

5. hyperboloids of two sheets: a21x
2
1 + a22x

2
2 − a23x

2
3 + c2 = 0.

6. elliptic paraboloids: a21x
2
1 + a22x

2
2 + a3x3 = 0.

7. hyperbolic paraboloids: a21x
2
1 − a22x

2
2 + a3x3 = 0.

8. hyperbolic cylinders: a21x
2
1 − a22x

2
2 + c2 = 0.

9. parabolic cylinders: a21x
2
1 + a3x3 = 0.

10. simple planes: a3x3 + c = 0.

The first nine of these are shown3 in Figure 10.2. (The magnitude of the above constants
were all chosen to be unity for the purposes of display. Consequently, the first six of these
surfaces shown exhibit at least one axis of rotational symmetry.)

3Thanks to Keath Borg (wherever you are!) for generating the data for these figures.
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Sphere Circular Cone Circular Cylinder

Circular Hyperboloid of One Sheet Circular Hyperboloid of Two Sheets Circular Paraboloid

Hyperbolic Paraboloid Hyperbolic Cylinder Parabolic Cylinder

Figure 10.2: The nine real non-planar quadric surfaces.
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There are other imaginary surfaces (e.g. imaginary ellipsoids a21x
2
1 + a22x

2
2 + a23x

2
3 + c2 =

0) that we will not consider nor will we consider quadrics that can be made up of two
independent planes in various orientations (e.g. intersection planes a21x

2
1 − a22x

2
2 = 0, parallel

planes a21x
2
1 − c2 = 0, and coincident planes a21x

2
1 = 0).

For more information on the reduction to canonical form, the reader is encouraged to read
Olmsted’s book [Olm47]. Olmsted also gives the classification of the surfaces and lists the
entire set of 17 canonical quadric forms.

10.3.1 Intercept to an arbitrary quadric surface?

We now change notation slightly and write the particle trajectory by the parametric equation:

~x = ~p + ~µs (10.7)

where the starting position of the particle is ~p = (px, py, pz). A positive value of s expresses
a distance along the direction that the particle is going (forward trajectory) and a negative
value is associated with a distance that the particle came from (backward trajectory). Thus,
negative solutions that are found for s below will be rejected.

In Monte Carlo particle transport calculations as well as ray-tracing algorithms a common
problem is to find the distance a particle has to travel in order to intersect a surface. This
is done by substituting for ~x from Equation 10.7 in Equation 10.4 to give:

s2

(

3
∑

i,j=0

aijµiµj

)

+ 2s

(

3
∑

i,j=0

aijpiµj

)

+

(

3
∑

i,j=0

aijpipj

)

= 0, (10.8)

where we have adopted the convention that µ0 = 0 and p0 = 1. This is a quadratic equation
in s of the form A(~µ)s2 + 2B(~µ, ~p)s + C(~p) = 0 where A(~µ) =

∑3
i,j=0 aijµiµj, B(~µ, ~p) =

∑3
i,j=0 aijpiµj and C(~p) =

∑3
i,j=0 aijpipj .

Interpretation of the quadratic constants

The constant C(~p) is identically zero when ~p is on the surface. When ~p is not on the surface,
the sign of C(~p) can be interrogated to see if the particle is inside or outside. There is some
arbitrariness in the definition of what is “inside” or “outside”. A sphere with radius R, for
example, has the form ~p2 − R2 = 0 and in this case C(~p) > 0 when |~p| > R. So, for this
example, C(~p) is positive when ~p is outside and negative when inside. However, the same
sphere is defined by R2 − ~p2 = 0 giving opposite interpretation for the signs of C(~p) for
points inside and outside. It is best to adopt a constant interpretation and be aware that
two points on opposite sides of the surface in the sense that a line joining them intersects
the surface only once, have different signs.
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For planes and most of the other surfaces, “inside” and “outside” are arbitrary since multi-
plying Equation 10.5 or Equation 10.6 by a minus sign leaves the surface intact. However,
there is one natural interpretation provided by the calculation of the normal to the surface,
∇f(~p), where ~p is a point on the surface, i.e. C(~p) = 0. In the way they were defined, ∇f(~p)
points to the “outside” region which can be defined as follows: If more than one line can
be drawn through a point such that the surface is not intersected in either the forward or
backward direction, then this point is on the outside. If at most only one such line exists,
then the point is on the “inside”. This defines the inside and outside in a unique and natural
way (inside a sphere, for example). There are three exceptions to this rule, the simple plane,
the hyperboloid of one sheet and the hyperbolic paraboloid. In their standard forms given
below Equation 10.6, the outside or inside of a plane is completely arbitrary, the outside of a
hyperbolic paraboloid contains the positive x3-axis and the inside of the hyperboloid of one
sheet contains the x3-axis which also seems to be a “natural” choice.

The constant B(~µ, ~p) is related to the inner product of the particle’s direction ~µ with
the normal to the surface at a point ~p when ~p is on the surface. Specifically, B(~µ, ~p) =
∑3

i,j=0 aijpiµj =
1
2
~µ ·∇f(~p). When ~p is on the surface ∇f(~p) is its normal there. This can be

exploited to decide to which side of a surface a particle is going if it happens to be on the sur-
face and is pointed in some direction. Imagine a particle on the surface at point ~p with some
direction ~µ and consider an infinitesimal step ǫ. The sign of C(~p+ ~µǫ) = 2ǫB(~µ, ~p) + O(ǫ2)
will have the sign of B(~µ, ~p). If B(~µ, ~p) = 0 for ~p on the surface, it means that the particle
is moving in the tangent plane to the surface at that point.

When a particle is on the surface, the constant A(~µ) can be related to the curvature of the
surface. It can be shown4 that the radius of curvature at the point ~p on the surface in the
plane containing the normal to the surface there, ∇f(~p) and the direction of the particle on
the surface, ~µ, is given by |∇f(~p)|/|A(~µ)|. There is one case among the surfaces we consider
where both |∇f(~p)| and |A(~µ)| vanish simultaneously and that is of a point on the vertex of
a cone. In this anomalous case we can take the radius of curvature to be zero.

A(~µ) vanishes when the particle is travelling parallel to a “ruled line” of the surface, whether
on the surface or not. A ruled line is a line that lies entirely on the surface. Quadrics
with one or more vanishing quadratic constants (one of the ai’s in Equation 10.5 or 10.6)
always possess ruled lines, as do planes, cones, hyperboloids of one sheet and hyperbolic
paraboloids. The constant A(~µ) can also vanish for a particle having a trajectory that is
parallel to an asymptote of a hyperboloid, or pointed at the “nose” of a paraboloid or in the
plane perpendicular to it.

A(~µ) can be used to decide where a particle is in relation to a surface in the case that B(~µ, ~p)

4The way to do this is consider a particle at point ~p on the surface with an initial direction ~µ tangent to
the surface and moving in the plane defined by the normal orthogonal vectors ~µ and ∇f(~p)/|∇f(~p)|. The
trajectory of the particle is then described by f(~p + ~µsu + (∇f(~p)/|∇f(~p)|)sn) = 0 where su and sn are
projections of the particle’s position vector on the ~µ and ∇f(~p)/|∇f(~p)| axes, respectively. This yields the
equation of a conic. The radius of curvature is then obtained by the standard equation for motion in a plane,
Rc = {[1 + (dsn/dsu)

2]3/2}/|d2sn/ds2u|.
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and C(~p) vanish, that is when the particle is on the surface and in the plane tangent to it at
that point. In this case an infinitesimal transport C(~p + ~µǫ) = A(~µ)ǫ2 will have the sign of
A(~µ). So, if (A(~µ) > 0, B(~µ, ~p) = 0, C(~p) = 0) the particle is headed outside, if (A(~µ) < 0,
B(~µ, ~p) = 0, C(~p) = 0) the particle is headed inside, and if (A(~µ) = 0, B(~µ, ~p) = 0, C(~p) = 0)
the particle is on the surface and directed along a ruling and there is no intercept in this
case.

For planar surfaces (A(~µ) = 0 always in this case) there is always a solution for s unless the
particle’s trajectory is exactly parallel to the plane. If the solution for s is negative, it is
rejected since it not a forward solution. If the solution for s is positive, then it represents a
solution along the forward trajectory of the particle.

For the non-planar surfaces, the equation for s is quadratic. In general, when B(~µ, ~p)2 −
A(~µ)C(~p) < 0, there are no solutions to the quadratic equation, which means that the
particle’s trajectory misses the surface. If the surface in question is one of the seven with
the intuitive inside-outside interpretation, then one might guess that one does not have to
test for the positiveness of B(~µ, ~p)2 − A(~µ)C(~p) when the particle is inside, thereby saving
computer time. However, there are conditions where the limited numerical precision causes
B(~µ, ~p)2 − A(~µ)C(~p) to be negative even when the particle is inside one of the natural
surfaces. In this case it can be shown that the particle’s trajectory is very close to that of
being along a ruling and very close to the surface (A(~µ) ≈ 0, B(~µ, ~p) ≈ 0, C(~p) ≈ 0). It is
consistent, therefore, to assume that there is no solution in this case even if the trajectory
is not exactly on the surface or exactly tangent to it. In this case the particle is assumed to
travel along the ruling until it hits another surface in the problem or an interaction effects a
change of direction whereupon a decision can be made whether the particle is headed inside
or outside the surface.

Employing the error recovery strategy of the previous section, a general algorithm for an
arbitrary quadric surface may be sketched:

IF B2 −AC < 0 Particle does not intersect the surface.

ELSEIF The particle thinks it is outside

IF B ≥ 0

IF A ≥ 0 No solution.

ELSE s = −(B +
√
B2 −AC)/A.

ELSE s = max (0, C/[
√
B2 − AC −B]).

ELSE The particle thinks it is inside

IF B ≤ 0

IF A > 0 s = (
√
B2 − AC −B)/A.

ELSE No solution.
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ELSE s = max (0,−C/[
√
B2 − AC +B]).

All quadric surfaces are special cases that can be solved by this algorithm. Only the constants
A,B,C need to be specified for any case. Indeed, this algorithm will work for planes as well
but the simplicity of planes motivates the construction of a more efficient algorithm specific
to planes only.

The FORTRAN codes which solves the general solution of distance to intercept of a quadric
surface is:

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine quadric(A,B,C,s,inside,hit)

implicit none

C Calculates the first positive distance to an arbitrary quadric surface

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* A, ! Input: Quadratic coefficient A

* B, ! Input: Quadratic coefficient B

* C, ! Input: Quadratic coefficient C

* s ! Output: Distance to the surface (if hit)

real

* Q ! Internal: quadratic coefficient

Q = B**2 - A*C

if (Q .lt. 0e0) then

hit = .false.

return

end if

if (inside) then !inside the surface

if (B .le. 0e0) then !headed away from surface

if (A .gt. 0e0) then !but, surface curving up
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hit = .true. !always a hit in this case

s = (sqrt(Q) - B)/A

return

else !surface curving away and headed in

hit = .false. !never a hit in this case

return

end if

else !headed toward the surface

hit = .true. !always a hit in this case

s = max(0e0, -C/(sqrt(Q) + B))

return

end if

end if

!Must be outside the surface

if (B .ge. 0e0) then !headed away

if (A .ge. 0e0) then !surface curves away

hit = .false. !never a hit in this case

return

else !surface curves up

hit = .true. !always a hit in this case

s = -(sqrt(Q) + B)/A

return

end if

else !headed toward the surface

hit = .true. !always a hit in this case

s = max(0e0, C/(sqrt(Q) - B))

return

end if

end

Given this algorithm, the only thing one needs to do for any quadric surface is to specify the
constants A,B,C and present them to the quadratic solver. The following sections describe
some examples of this.
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10.3.2 Spheres

The general equation for a sphere is:

(~x− ~X)2 − R2 = (x−X)2 + (y − Y )2 + (z − Z)2 −R2 = 0 (10.9)

where ~X ≡ (X, Y, Z) is the location of the center of the sphere and R is its radius.

Intercept distance

Substituting the equation for particle trajectory, Equation 10.1, into the above yields a
quadratic equation of the form As2+2Bs+C = 0, where the quadratic constants, A, B and
C, are:

A = 1

B = ~µ · (~x0 − ~X)

= u(x0 −X) + v(y0 − Y ) + w(z0 − Z)

C = (~x0 − ~X)2 −R2

= (x0 −X)2 + (y0 − Y )2 + (z0 − Z)2 − R2 (10.10)

These constants may be employed in the general quadric surface forward-distance solver
algorithm described previously.

The FORTRAN code that calculates the quadratic constants for the case when the sphere
is centered at the origin is:

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine csphere(R,x0,y0,z0,u,v,w,s,inside,hit)

implicit none

C Calculates the distance to a sphere centered at (0,0,0)

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* R, ! Input: Radius of the cylinder

* x0, ! Input: x-coordinate of the particle
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* y0, ! Input: y-coordinate of the particle

* z0, ! Input: z-coordinate of the particle

* u , ! Input: x-axis direction cosine of the particle

* v , ! Input: y-axis direction cosine of the particle

* w , ! Input: w-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

real

* A, ! Internal: Quadratic coefficient A

* B, ! Internal: Quadratic coefficient B

* C ! Internal: Quadratic coefficient C

A = 1e0 ! i.e. u**2 + v**2 + w**2 = 1

B = u*x0 + v*y0 + w*z0

C = x0**2 + y0**2 + z0**2 - R**2

call quadric(A,B,C,s,inside,hit) ! Get the generic quadric solution

return

end

10.3.3 Circular Cylinders

The general equation for a circular cylinder is:

(~x− ~P )2 − [(~x− ~P ) · ~U ]2 − R2 = 0 (10.11)

where ~P ≡ (Px, Py, Pz) is any fixed point on the axis of the cylinder, ~U is the direction vector
of the axis of the cylinder, and R is its radius.

Intercept distance

Substituting the equation for particle trajectory, Equation 10.1, into the above yields a
quadratic equation of the form As2+2Bs+C = 0, where the quadratic constants, A, B and
C, are:

A = 1− (~µ · ~U)2

B = ~µ · {(~p− ~P )− ~U [(~p− ~P ) · ~U ]}
C = (~p− ~P )2 − [(~p− ~P ) · ~U ]2 − R2 (10.12)
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These constants may be employed in the general quadric surface forward-distance solver
algorithm described previously.

The FORTRAN code that calculates the quadratic constants for the case when the cylinder
is cylindrical, aligned and centered on the z axis is:

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine ccylz(R,x0,y0,u,v,s,inside,hit)

implicit none

C Calculates the distance to a circular cylinder centered and aligned along

C the z-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* R, ! Input: Radius of the cylinder

* x0, ! Input: x-coordinate of the particle

* y0, ! Input: y-coordinate of the particle

* u , ! Input: x-axis direction cosine of the particle

* v , ! Input: y-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

real

* A, ! Internal: Quadratic coefficient A

* B, ! Internal: Quadratic coefficient B

* C ! Internal: Quadratic coefficient C

A = u**2 + v**2

B = u*x0 + v*y0

C = x0**2 + y0**2 - R**2

call quadric(A,B,C,s,inside,hit) ! Get the generic quadric solution

return

end
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10.3.4 Circular Cones

In standard quadric form, the general equation for a cone is:

cos2Θ{(~x− ~P )− ~U [(~x− ~P ) · ~U ]}2 − sin2Θ[(~x− ~P ) · ~U ]2 = 0 (10.13)

where ~P ≡ (Px, Py, Pz) is the vertex point of the cone, ~U is the direction vector of the
symmetry axis of the cone and Θ is its opening angle. This form, depicted in Figure 10.2,
is actually two cones on the same axis situated point-to-point. To avoid ambiguities, we
adopt the convention that 0 < Θ < π/2 and use ~U to orient the cone. (The special case,
Θ = π/2, corresponds to the quadric surface for coincident planes, while the special case,
Θ = 0 corresponds to a zero-radius cylinder.) Both cones are to be regarded as valid surfaces
for which the intercept distance is to be calculated. If an application requires only one cone,
then it will be assumed that the other “reflection” cone has been eliminated through the use
of another surface that isolates only one of the cones.

Intercept distance

Substituting the equation for particle trajectory, eq. 10.1, into the above yields a quadratic
equation of the form As2 + 2Bs+ C = 0, where the quadratic constants, A, B and C, are:

A = cos2Θ[~µ− ~U(~µ · ~U)]2 − sin2Θ(~µ · ~U)2

B = cos2Θ~µ · {(~p− ~P )− ~U [(~p− ~P ) · ~U ]− sin2Θ~U [(~p− ~P ) · ~U ]}
C = cos2Θ{(~p− ~P )− ~U [(~p− ~P ) · ~U ]}2 − sin2Θ[(~p− ~P ) · ~U ]2 (10.14)

These constants may be employed in the general quadric surface forward-distance solver
algorithm described previously.

10.4 Using surfaces to make objects

Now that we know everything about surfaces, it is time to put them together to make objects.
That is, we want to develop techniques to delineate regions of space and use them to define
the geometrical elements that constitute some object in a Monte Carlo application.

10.4.1 Elemental volumes

We define first the concept of an elemental volume, a region of space that can be specified
uniquely by a set of logical conditions related to being inside or outside the constituent
surfaces.

Here are some examples:
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A single plane z = 0

The gradient of f(z) = z = 0 is ∇f(z) = (∂z/∂z)ẑ = ẑ. So, the normal to this surface
points along the positive z axis. Therefore, using our definition, all points in space with
z < 0 are “inside” and all points in space with z > 0 are “outside”. (One immediately sees
how arbitrary this definition is!).

What if you were asked to locate the point (x0, y0, 0)? Based on its position, this point is
neither inside nor outside. To answer this question you would require more information,
the particle direction, ~µ = (u, v, w). You would base your decision on where the particle is
going. If the particle is on the surface, form the product ~µ · n̂ where n is the normal to the
plane. In this case ~µ · n̂ = w. If ~µ · n̂ > 0, it means that the particle is directed outside. If
~µ · n̂ < 0, it means that the particle is directed inside. This would place the particle based
on where it is going. What if z = 0 and ~µ · n̂ = 0, or w = 0 in our case? This means that the
particle is on the plane and has a trajectory that is parallel to the plane. In this case, the
choice is arbitrary. Unless there is a special source of particles that specifically chooses this
set of conditions (and would specify the logical location of the particle), the probability that
a particle will transport and scatter into this condition is quite small. In this case, choose
either “inside” or “outside”. Eventually the particle will scatter either inside or outside the
plane and its position will be resolved at that point.

A single sphere of radius R centered at (0, 0, 0)

The equation of this surface is:

~x2 − R2 = x2 + y2 + z2 −R2 = 0 . (10.15)

Given a particle at position ~x0 = (x0, y0, z0) and direction ~µ = (u, v, w), the quadratic
constants, A, B and C, are:

A = 1

B = ~µ · ~x0
= ux0 + vy0 + wz0

C = ~x20 − R2

= x20 + y20 + z20 − R2 (10.16)

The sphere delineates two elemental volumes, the interior of the sphere and the exterior of
the sphere as shown in Figure 10.4.

If you were asked to locate the particle, first you would look at C = x20 + y20 + z20 − R2. If
C < 0 the particle is inside the sphere and if the C > 0 the particle is outside the sphere. (In
this example, the choice of “inside” and “outside” seems a little more natural.) If C = 0 the
location of the particle is on the sphere and we would then look at the constant B. If C = 0
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and B < 0, the particle is headed inside. If C = 0 and B > 0, the particle is headed outside.
If C = 0 and B = 0 the particle is on the surface and has a trajectory that is tangent to the
sphere. In this case we would appeal to the constant A. For a sphere is always has the same
value, 1. It is positive, which means the surface is curving away from the particle trajectory
and the particle is headed outside.

A single circular cylinder of radius R centered and directed along the z axis

The equation of this surface is:
x2 + y2 − R2 = 0 . (10.17)

Given a particle at position ~x0 = (x0, y0, z0) and direction ~µ = (u, v, w), the quadratic
constants, A, B and C, are:

A = u2 + v2

B = ux0 + vy0

C = x20 + y20 − R2 (10.18)

The cylinder delineates two elemental volumes, the interior of the cylinder and the exterior
of the cylinder as shown in Figure 10.5.

If you were asked to locate the particle, first you would look at C = x20 + y20 −R2. If C < 0
the particle is inside the cylinder and if the C > 0 the particle is outside the cylinder. (In
this example, the choice of “inside” and “outside” also seems a little more natural.) If C = 0
the location of the particle is on the cylinder and we would then look at the constant B. If
C = 0 and B < 0, the particle is headed inside. If C = 0 and B > 0, the particle is headed
outside. If C = 0 and B = 0 the particle is on the surface and has a trajectory that is tangent
to the cylinder. in this case we would appeal to the constant A. For a cylinder this can be
zero if the particle’s direction is identical to the axis of the cylinder. In this case, the choice
is again arbitrary. Unless there is a special source of particles that specifically chooses this
set of conditions (and would specify the logical location of the particle), the probability that
a particle will transport and scatter into this condition is quite small. In this case, choose
either “inside” or “outside”. Eventually the particle will scatter either inside or outside the
cylinder and its position will be resolved at that point.

An elemental volume made up of several surfaces

For this example, let us consider the planes P1 : z = 0, P2 : z = 1 and the cylinder
C1 : x

2 + y2 − R2 = 0. The geometry is depicted in Figure 10.6.

The first thing to notice (if you have not already) is that planes and cylinders are infinite
and all of space is “carved up” by a set of surfaces. In fact this arrangement delineates 6
elemental volumes! With the notation Sn means outside of surface Sn, we can delineate the
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6 elemental volumes as:

Region Location Description
1 P 1 ∩ C1 ∩ P2 outside P1, inside C1, inside P2

2 P1 ∩ C1 inside P1, inside C1

3 C1 ∩ P 2 inside C1, outside P2

4 P1 ∩ C1 inside P1, outside C1

5 P 1 ∩ C1 ∩ P2 outside P1, outside C1, inside P2

6 C1 ∩ P 2 outside C1, outside P2

The location of a particle within one of these elemental volumes can be determined uniquely
by finding which of these conditions is satisfied.

General considerations for elemental volumes

The first thing to notice that each elemental volume defines a unique region of space that
can be specified by a unique set of logical conditions. Tracking particles through elemental
volumes is extremely fast. First of all, the positioning errors mentioned earlier in this chapter
cause no problem and are absorbed on subsequent transport steps. Correction schemes
never have to be invoked. Particles that become “lost”, that is, lose or never acquire a
sense of which elemental volume they are in, can be found using the location techniques just
described.5 Finally, if a particle leaves an elemental volume by one of its surfaces and this
surface is employed by another elemental volume, its next elemental volume is known by
flipping the logical switch that orients the particle with respect to that surface.

10.5 Tracking in an elemental volume

We now consider the case where we are tracking a particle within an elemental volume.
There are some nice consequences of tracking within elemental volumes. The first is that
any given surface defining the elemental volume can only be intercepted once. Otherwise
the “insideness” or the “outsidesness” would not be unique. The other consequence is that
the intercept is defined as the shortest intercept to any surface bounding the elemental
volume without consideration of location of the intercept. Recall that a surface extends to
the exterior of any elemental volume because surfaces are infinite (except for ellipsoids) and
volumes are (usually) finite. The consequence of this is that the shortest intercept with any

5If each surface of each elemental volume joins uniquely onto other elemental volume, it can never become
“lost” through tracking. Source particles may be “lost” before tracking starts and will have to acquire its
location in an elemental volume by searching. Sometimes the surface of an elemental volumes join onto
two or more other elemental volumes. A search algorithm may have to be initiated at this point to locate
the particle uniquely in an elemental volume. Another difficulty occurs if “voids” are created by poorly
constructed geometry code. Good coding defines all of space uniquely.
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surface is guaranteed to be in the elemental surface volume.

This is best demonstrated by example. Consider the interior of the right circular cylinder
defined by the planes P1 : z = 0, P2 : z = 1 and the cylinder C1 : x2 + y2 − R2 = 0. The
geometry is depicted in Figure 10.7 and some representative trajectories are given there.

Consider trajectory 1. It has intercepts with both C1 and P2. However, the distance to the
intercept with C1 is shorter and is the answer in this case. Contrast this with trajectory 2.
It has intercepts with both C1 and P2. However, the distance to the intercept with P2 is
shorter and is the answer in this case.

Recall that the interior of the right circular cylinder is represented by the condition P 1∩C1∩
P2. Therefore, the distance to exit the elemental volume is given by the following coding:

TransportDistance = infinity ! (Some very large number)

! Check the distance to each bounding surface

! Check the leftmost plane

call zplane(0e0,z0,w,s,.false.,hit) ! 0e0 = zplane position, .false. => outside

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

! Check the rightmost plane

call zplane(1e0,z0,w,s,.true.,hit) ! 1e0 = zplane position, .true. => inside

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

! Check the cylinder

call ccylz(1e0,x0,y0,u,v,s,.true.,hit) ! 1e0 = radius, .true. => inside

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

After this code segment is executed, the variable TransportDistance is the distance to exit
the elemental volume by any surface irrespective of its direction, as long as it is logically
placed within this elemental volume.

The equivalent coding for a general elemental volume would be:

TransportDistance = infinity ! (Some very large number)

! Check the distance to each bounding surface

! {...} are the parameters that define the particle’s position and direction
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! [...] are the parameters that define the surface

! [.true.|.false.] true or false depending upon orientation of surface

! hit is always returned .true. or .false.

! If hit is returned as .true., s represents the distance to that surface

call Surface_1({...},[...],s,[.true.|.false.],hit)

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

call Surface_2({...},[...],s,[.true.|.false.],hit)

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

call Surface_3({...},[...],s,[.true.|.false.],hit)

if (hit .and. (s .le. TransportDistance)) TransportDistance = s

.

.

.

! Until all the bounding surfaces are exhausted

After this code segment is executed, the variable TransportDistance is the distance to exit
the elemental volume by any surface irrespective of its direction, as long as it is logically
placed within this elemental volume.

10.6 Using elemental volumes to make objects

10.6.1 Simply-connected elements

A simply-connected object is one in which one element connects to only one other element
through a common surface. It is best to explain this by means of an example.

Consider the simple problem of creating the object depicted in Figure 10.8. This object is
made up of the planes P1 : z = 0, P2 : z = 1 and the cylinder C1 : x

2 + y2 − R2 = 0 and the
sphere S1 : x

2 + y2 + z2 − R2 = 0. We will define three regions:

Region Location Description
1 P 1 ∩ C1 ∩ P2 outside P1, inside C1, inside P2

2 P1 ∩ S1 inside P1, inside S1

0 All the rest This is the “outside” of the object

We will adopt the convention that region “0” is the exterior of the object. By exterior
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we mean that if a particle is tracked from the interior to the exterior it is considered to
“vanish” from the simulation.

Note that the way to define this object is not unique! Equivalently we may define it as follows:

Region Location Description
1 S1 ∩ C1 ∩ P2 outside S1, inside C1, inside P2

2 S1 inside S1

0 All the rest This is the “outside” of the object

However, we will employ the first definition in our example. We note that we do require two
elemental volumes to define this object. The reason for this is that the interior space of the
object is made up of regions that are both “inside” and “outside” the sphere. The division
into two elemental surfaces can be done in a number of ways.

The logic to handle tracking in the object is to realize that if the particle is inside region 1
and tracked to either C1 or P2, it escapes on the next step. If the particle is inside region 2
and tracked to either S1 or P1, it escapes on the next step. If the particle is inside region
1 and tracked to P1 it enters region 2 on the next step. Conversely, if the particle is inside
region 2 and tracked to P1 it enters region 1 on the next step.

We will now write the “pseudo-code” for this geometry. However, we must now extend the
particle phase-space concept introduced in Chapter 7. In that chapter, in Equation 7.1, a
particle’s phase-space was defined as:

{~x, ~u} , (10.19)

where ~x is the particle’s absolute location in space referred back to the origin of some
laboratory coordinate system, and ~u is its direction referred back to a fixed set of axes in
the same laboratory coordinate system. The phase-space is now expanded to:

{~x, ~u,Nelem} , (10.20)

where Nelem is the elemental volume number associated with its current position.

The pseudo-code for this geometry is:

IF Nelem = 0, stop transport, particle vanishes.

ELSEIF Nelem = 1

IF particle hits P1, Nelem = 2, next region is region 2

ELSEIF particle hits P2, Nelem = 0, next region is the outside

ELSEIF particle hits C1, Nelem = 0, next region is the outside

ELSE No surface is hit, continue transport
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ELSEIF Nelem = 2

IF particle hits P1, Nelem = 1, next region is region 1

ELSEIF particle hits S1, Nelem = 0, next region is the outside

ELSE No surface is hit, continue transport

Now, let us write the Fortran code for this application:

.

.

.

! Determine the distance to a scattering point

TransportDistance = DistanceToScatteringPoint()

NextElement = Nelem ! Assume particle stays in the same region

if (Nelem .eq. 0) then

! Particle escapes

! Special coding or a logic transfer point must be specified to

! give us some particle phase-space to work with

elseif (Nelem eq.1) then

! In the first region

! Check the distance to each bounding surface of region 1

! Check plane 1 at z = 0

call zplane(0e0,z0,w,s,.false.,hit) ! .false. => outside

if (hit .and. (s .le. TransportDistance)) then

TransportDistance = s

NextElement = 2

end if

! Check plane 2 at z = 1

call zplane(1e0,z0,w,s,.true.,hit) ! .true. => inside

if (hit .and. (s .le. TransportDistance)) then

TransportDistance = s

NextElement = 0



10.6. USING ELEMENTAL VOLUMES TO MAKE OBJECTS 147

end if

! Check the cylinder

call ccylz(1e0,x0,y0,u,v,s,.true.,hit) ! 1e0 = radius, .true. => inside

if (hit .and. (s .le. TransportDistance))

TransportDistance = s

NextElement = 0

end if

elseif (Nelem .eq. 2) then

! In the second region

! Check the distance to each bounding surface of region 2

! Check plane 1 at z = 0

call zplane(0e0,z0,w,s,.false.,hit) ! .true. => inside

if (hit .and. (s .le. TransportDistance)) then

TransportDistance = s

NextElement = 1

end if

! Check the sphere

call csphere(1e0,x0,y0,z0,u,v,w,s,.true.,hit) ! 1e0 = radius, .true. => inside

if (hit .and. (s .le. TransportDistance))

TransportDistance = s

NextElement = 0

end if

endif

! Transport the particle

x0 = x0 + u*s

y0 = y0 + v*s

z0 = z0 + w*s

! Change region numbers

Nelem = NextRegion

.
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.

.

Note that if the surface is hit, it must also shorten the transport distance in order to serve
as a candidate for the surface through which a particle leaves the elemental volume.

The generalization to more complex objects is clear. With the knowledge of which elemental
volume the particle is in cycle over all the bounding surfaces of the element. If the particle
strikes this surface along its flight path and if this distance shortens the proposed transport
distance, then the next element can be specified. It can also be superseded by a shorter
intersection to another surface. The shortest one is the one that matters!

10.6.2 Multiply-connected elements

A multiply-connected object is one in which one element can connect to more than one
element through one or more common surface. It is best to explain this by means of an
example as well.

Consider the problem of creating the object depicted in Figure 10.9. This object is made up
of two planes P1 : x = 0, P2 : y = 0. We will define three regions:

Region Location Description
1 P1 inside P1

2 P 1 ∩ P2 outside P1, inside P2

3 P 1 ∩ P 2 outside P1, outside P2

Regions 2 and 3 are simply connected to each other an region 1, but region 1 is multiply-
connected to regions 2 and 3 through the common surface P1.

In objects that are not too complex one can do a fake transport of the particle and see in
which region its terminal position resides in. In this case we would test to see whether y0
+ v*s os greater or less than zero to make a decision. Each case requires special coding
and techniques to resolve. If one can turn a multiply-connected object into an simply-
connected one, it often generates faster code at the expense of introducing more regions into
the problem.

A general strategy for resolving this problem would take us beyond the scope of this course.
A basic solution that is applied in some applications is first to do a search for position in
all the candidate elements. If the search comes up empty, it means that the particle did not
escape its current region by virtue of an undershoot that that surface. One can reset the
region back to the original and try again. If the subsequent transport still does not resolve
the problem the solution is to provide small boosts to the transport step starting with the
smallest resolvable floating-point number and allow these boosts to grow geometrically until
the surface is crosses, at least numerically.
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It is ugly but it works and is fast. Unlike the simply-connected surfaces where some elegant
logic solves the problem, the logic for multiply-connected surfaces gets quite involved and is
usually not worth the effort in terms of code efficiency.

10.6.3 Combinatorial geometry

So far we have introduced elemental volumes and indicated how they may be combined
to make objects. We have also introduced a simple yet powerful tracking algorithm for
simply-connected surfaces and have given some idea as to the subtleties involved in multiply-
connected elements.

The general discussion of this is called combinatorial geometry and would take us beyond
the scope of this book. Before dismissing the topic, however, the following capabilities of
combinatorial codes are either necessary or desirable:

1. The ability for a particle to locate itself unambiguously in a unique elemental volume
based upon its position and direction.

2. A systematic numbering/identification scheme for the elemental volumes. For small
applications this can be coded by the user. For involved applications, the combinatorial
code should be able to do this on its own.

3. The ability to model reflecting, absorbing or partially absorbing surfaces.

4. The ability to “build” objects in standard position and then translate and rotate them
into actual position.

5. The ability to re-use objects, once, twice, or in repetitive patterns.

6. The ability to model various sources of particles, either originating interior or exterior
to the geometry.

7. The ability to see the results of geometry construction graphically.

8. A graphical tool to build geometries.

10.7 Law of reflection

The use of some of the inherent symmetry of the geometry can realize some real simplifica-
tions. We will consider the use of reflecting planes to mimic some of the inherent symmetry
of a geometry.

For example, consider the geometry depicted in fig. 10.10. In this case, an infinite square
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Figure 10.10: Top end view of an infinite square lattice of cylinders. Three planes of symme-
try are drawn, a, b, and c. A complete simulation of the entire lattice may be performed by
restricting the transport to the interior of the three planes. When a particle strikes a plane
it is reflected back in, thereby mimicking the symmetry associated with this plane.
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lattice of cylinders is irradiated uniformly from the top. The cylinders are all uniform and
aligned. How should one approach this problem? Clearly, one can not model an infinite
array of cylinders. If one tried, one would have to pick a finite set and decide somehow
that it was big enough. Instead, it is much more efficient to exploit the symmetry of the
problem. It turns out that in this instance, one needs to transport particles in only 1/8’th
of a cylinder! To see this we find the symmetries in this problem. In fig. 10.10 we have
drawn three planes of symmetry in the problem, planes a, b, and c6. There is reflection
symmetry for each of these planes. Therefore, to mimic the infinite lattice, any particles
that strike these reflecting planes should be reflected. One only needs to transport particles
in the region bounded by the reflecting planes. Because of the highly symmetric nature of
the problem, we only need to perform the simulation in a portion of the cylinder and the
“response” functions for the rest of the lattice is found by reflection.

The rule for particle reflection about a plane of arbitrary orientation is easy to derive. Let ~u
be the unit direction vector of a particle and n̂ be the unit direction normal of the reflecting
plane. Now divide the particle’s direction vector into two portions, ~u‖, parallel to n̂, and ~u⊥,
perpendicular to ~n. The parallel part gets reflected, ~u′‖ = −~u‖, and the perpendicular part
remains unchanged, ~u′⊥ = ~u⊥. That is, the new direction vector is ~u′ = −~u‖ + ~u⊥. Another
way of writing this is,

~u′ = ~u− 2(~u · ~n)~n . (10.21)

Applying eq. 10.21 to the problem in fig. 10.10, we have: For reflection at plane a, (u′x, u
′
y, u

′
z) =

(−ux, uy, uz). For reflection at plane b, (u′x, u
′
y, u

′
z) = (ux,−uy, uz). For reflection at plane

c, (u′x, u
′
y, u

′
z) = (−uy,−ux, uz). The use of this reflection technique can result in great gains

in efficiency. Most practical problems will not enjoy such a great amount of symmetry but
one is encouraged to make use of any available symmetry. The saving in computing time is
well worth the extra care and coding.

6Note that this symmetry applies only to a square lattice, where the spacing is the same for the x and
y-axes. For a rectangular symmetry, the planes of reflection would be somewhat different. There would be
no plane c as for the square lattice in fig. 10.10.
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Problems

1. Consider a right circular cylinder of radius R and length L where R and L are in units
of, say, cm’s. The interior of this object is defined by the planes z = 0, z = L and the
cylinder x2 + y2 = R2.

A beam of at least 104 particles is incident on the middle of the flat end of the ge-
ometry at ~x = 0 with unit direction vector ~u = ẑ. These particles exhibit discrete
interactions with an attenuation factor of Σ = 1 cm−1. Thus, the interaction proba-
bility distribution function at location z is p(z)dz = Σexp(−Σz)dz . These particles
scatter isotropically once they reach the scattering point.

Write a Monte Carlo code to simulate this problem and answer the following questions:

(a) The total pathlength/history is the sum of the distance from start to interaction
(if it occurs) plus the drift distance to exit the geometry. For R = 0 and L = ∞,
what is the average total pathlength/history and its associated estimated error,
t± st?

(b) For L = 10 cm, what is the average pathlength and its associated estimated error,
t± st when R is 0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000 cm’s? Plot the results
and discuss the small-R and large-R limits.

(c) For R = 10 cm, what is the average pathlength and its associated estimated error,
t± st when L is 0.1,0.2,0.5,1,2,5,10,20,50,100,200,500,1000 cm’s? Plot the results
and discuss the small-L and large-L limits.

2. Consider a right circular cylinder of radius R and length L. The interior of this object
is defined by the planes z = 0, z = L and the cylinder x2 + y2 = R2. For this exercise,
R = L = 1 cm. A beam of at least 104 particles is incident on the middle of the
flat end of the geometry at ~x = 0 with unit direction vector ~u = ẑ. These particles
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exhibit discrete interactions with an attenuation factor Σ which will be given later in
units of cm−1’s. Thus, the interaction probability distribution function at location z is
p(z) dz = Σexp(−Σz) dz. At the interaction point, the particle scatters into a polar,
Θ, and an azimuthal, Φ, angle with probability distribution:

p(Θ,Φ) dΘ dΦ =
η(2 + η)

4π

sin Θ dΘ dΦ

(1− cosΘ + η)2
,

where η is a dimensionless constant that describes forward scattering for η −→ 0 and
isotropic scattering for η −→ ∞. After the first interaction, second and subsequent
interactions can occur with the same interaction probability until the particle escapes
from the geometry, possibly having scattered repeatedly.

Write a Monte Carlo code to simulate this problem and answer the following associated
questions:

(a) i. Show that in the limit, η −→ 0, p(Θ) sinΘ dΘ dΦ −→ δ(1−cosΘ) sinΘ dΘ dΦ/2π.

ii. Show that in the limit, η −→ ∞, p(Θ) sinΘ dΘ dΦ −→ sinΘ dΘ dΦ/4π.

(b) For the set of Σ’s, Σ = 0.1, 1, 10 cm−1’s and both forward (η −→ 0) and isotropic
(η −→ ∞) scattering, calculate the backscatter and transmission coefficients
(number backscattered or transmitted divided by the number of histories), and
the associated estimated statistical uncertainty.

(c) For Σ = 10 cm−1, do simulations for a set of η’s with enough points such that
both asymptotic limits are nearly reached and the η behavior of the backscatter
and transmission coefficients for intermediate η are fully described.

(d) Repeat 2(b) but with the back plane of the geometry being a reflective surface.

(e) Repeat 2(b) but with both the back plane and the cylindrical surface of the
geometry reflective but with absorption included in the following way—at each
interaction point, there is a 0.8 probability that the particle will scatter in the
way previously described and a 0.2 probability that it will be absorbed.

(f) Repeat 2(b) but with grazing incidence of the starting point, i.e. the particles are
incident on the middle of the flat end of the geometry at ~x = 0 with unit direction
vector ~u = ŷ.

3. A cylindrical beam of particles with the following starting characteristics:

ψ(~x, ~u) =
2

R2
beam

Θ(R2
beam − x2 − y2)δ(z)δ(ẑ − ~u)

is incident on a geometry defined by the plane, z = 0 and the cylinder x2 + y2 = R2
cyl.

Once inside the target (i.e. z ≥ 0), the particle scatters isotropically with elastic
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scattering cross section, Σs = 1 and absorption cross section Σa = 0.25. Outside the
target (i.e. z < 0), Σs = Σa = 0. Note to take care that you inform the particles
whether they are inside the cylinder or outside.

(a) Let Rcyl = 1. Tally and plot the average path-length/R2
cyl (per particle) inside the

cylinder and its estimated error as a function of 0.1 ≤ Rbeam ≤ 10 using 10000
incident particle histories.

(b) Now let Rbeam = 1. Tally and plot the average path-length/R2
cyl (per particle)

inside the cylinder and its estimated error as a function of 0.1 ≤ Rcyl ≤ 10 using
10000 incident particle histories.

(c) Compare both the average values and the estimated errors of the above two ex-
amples. What conclusions do you make? Which is the more efficient way to solve
the problem?

4. A geometry is defined by the infinite square lattice of cylinders

∞
∑

i=−∞

∞
∑

j=−∞

(x− di)2 + (y − dj)2 = R2
cyl,

where i and j are integers and d is the lattice spacing constant. 10000 particles start out
from the origin with an isotropically symmetric direction. Inside the cylinders there
is only absorption, with an absorption constant Σa. Outside the cylinders there is
only isotropic elastic scattering, with an interaction constant Σs. Starting with default
values of Rcyl = 0.25, Σs = 1, Σa = 1, tally and plot the average square cylindrical
radius distance x2 + y2 (and its estimated error) where the particle is absorbed as a
function of the following geometrical variables:

(a) d, taking note that d < 0.5

(b) Σs

(c) Σa

5. The particle interaction scheme we will consider is that of either isotropic or forward
scattering with a scattering constant, Σscat, and particle absorption with the constant,
Σabs. In this example, Σscat = 1 cm−1 and Σabs = 0.05 cm−1. The particles are incident
normally on a planar geometry consisting of 21 planes normal to the z-axis separated
by 1 cm. That is, z = 0, 1, 2, ...20 cm. Tally the average pathlength in each planar
zone. Once within the geometry, if it hits the plane at z = 0 or z = 20, it escapes.

A working version of transport portion of the code is attached. The difficulty in
doing this exercise is writing an efficient subroutine geometry. Use the subroutine
zplane() from the code library to solve this problem. (It is possible to do it in about
15 lines of executable code.)
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Plot the results for isotropic and forward scattering. Compare and explain the results.
Hand in only your plot(s), your subroutine geometry and associated discussion.

! Starting position

x = 0

y = 0

z = 0

! Starting direction

u = 0

v = 0

w = 1

iregion = 1 ! Starts incident on plane 1

1 continue ! Beginning of the transport loop

t = -log(1 - rng())/(Sigma_scat + Sigma_abs)

call geometry

*(

* t, ! On input, this is the proposed transport distance

* ! On output, if hit = .true., t is set to the

! distance to the plane which it hits

* hit, ! Set to .true. if the input distance t is greater

! than the transport distance to a plane

* iregion, ! Input: the current region number

* new_region ! The new region number.

! If new_region is set to 0 then is escape from either

! the front or the back of the geometry

*)

! Transport the particle

x = x + u*t

y = y + v*t

z = z + w*t

path(iregion) = path(iregion) + t ! Tally the pathlength in region

! iregion

path2(iregion) = path2(iregion) + t**2 ! Tally its square for statistics

if (hit) then
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! Particle moves out of the current region

if (new_region .eq. 0) then

! It has escaped the geometry, do the next particle

continue

else

iregion = new_region ! It has changed its region number

goto 1 ! Continue transport in the new region

end if

else

if (rng() .lt. Sigma_scat/(Sigma_scat + Sigma_abs)) then

! Particle interacts isotropically

! For forward scattering, comment out the next two lines

call isotropic(costhe)

call rotate(u,v,w,costhe)

goto 1 ! Continue transport in the same region

else

! Particle is absorbed, do the next particle

continue

end if

end if

6. A geometry consists of a unit cube at the center of which is a sphere with diameter
D, where D ≤ 1. The planar surfaces are reflecting with an efficiency of ǫ = 0.95.
That means, if a particle strikes a planar surface, it has p = 0.95 of being reflected and
p = 0.05 of being absorbed. The sphere, on the other hand, is totally absorbing. That
is, if a particle strikes the sphere, it has p = 1 of being absorbed. The source for this
is distributed uniformly throughout the box and radiates isotropically. The interior of
the box is vacuum.

Write a Monte Carlo code to simulate this problem and tally the number of reflections
a particle experiences before it is absorbed as a function of the diameter of the sphere.
Tally the number of particles absorbed by the sphere vs. the number of particles ab-
sorbed by the planes as a function of the diameter of the sphere.

Use your discretion as to how many histories to execute to get a reasonable result and
how fine a grid spacing in a to produce reasonable results.
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Chapter 11

Monte Carlo and Numerical
Quadrature

In this chapter we present a mathematical proof that the Monte Carlo method is the most
efficient way of estimating tallies in 3 spatial dimensions when compared to first-order deter-
ministic (analytic, phase-space evolution) methods. Notwithstanding the opinion that the
Monte Carlo method is thought of as providing the most accurate calculation, the argu-
ment may be may be made in such a way that is independent of the physics content of the
underlying algorithm or the quality of the incident radiation field.

11.1 The dimensionality of deterministic methods

For the purposes of estimating tallies from initiating electrons, photons, or neutrons, the
transport process that describes the trajectories of particles is adequately described by the
linear Boltzmann transport equation [DM79]:

[

∂

∂s
+

p

|p| ·
∂

∂x
+ µ(x, p)

]

ψ(x, p, s) =

∫

dx′
∫

dp′ µ(x, p, p′)ψ(x′, p′, s) , (11.1)

where x is the position, p is the momentum of the particle, (p/|p|) · ∂/∂x is a directional

derivative (in three dimensions ~Ω · ~∇, for example) and s is a measure of the particle path-
length. We use the notation that x and p are multi-dimensional variables of dimensionality
Nx and Np. Conventional applications span the range 1 ≤ Np,x ≤ 3. The macroscopic dif-
ferential scattering cross section (probability per unit length) µ(x, p, p′) describes scattering
from momentum p′ to p at location x, and the total macroscopic cross section is defined by:

µ(x, p) =

∫

dp′ µ(x, p, p′) . (11.2)

159



160 CHAPTER 11. MONTE CARLO AND NUMERICAL QUADRATURE

ψ(x, p, s) dx dp is the probability of there being a particle in dx about x, in dp about p and
at pathlength s. The boundary condition to be applied is:

ψ(x, p, 0) = δ(x)δ(p0 − p)δ(s) , (11.3)

where p0 represents the starting momentum of a particle at s = 0. The essential feature of
Equation 11.1 insofar as this proof is concerned, is that the solution involves the computation
of a (Nx +Np)-dimensional integral.

A general solution may be stated formally:

ψ(x, p, s) =

∫

dx′
∫

dp′G(x, p, x′, p′, s)Q(x′, p′) , (11.4)

where G(x, p, x′, p′, s) is the Green’s function and Q(x′, p′) is a source. The Green’s function
encompasses the operations of transport (drift between points of scatter, x′ → x), scattering
(i.e. change in momentum) and energy loss, p′ → p. The interpretation of G(x, p, x′, p′, s) is
that it is an operator that moves particles from one point in (Nx + Np)-dimensional phase
space, (x′, p′), to another, (x, p) and can be computed from the kinematical and scattering
laws of physics.

Two forms of Equation 11.4 have been employed extensively for general calculation purposes.
Convolution methods integrate Equation 11.4 with respect to pathlength s and further as-
sume (at least for the calculation of the Green’s function) that the medium is effectively
infinite. Thus,

ψ(x, p) =

∫

dx′
∫

dp′G

(

|x− x′|,
[

p

|p| ·
p′

|p′|

]

, |p′|
)

Q(x′, p′) , (11.5)

where the Green’s function is a function of the distance between the source point x′ and
x, the angle between the vector defined by the source p′ and p and the magnitude of the
momentum of the course, |p′|, or equivalently, the energy.

To estimate a tally using Equation 11.5 we integrate ψ(x, p) over p, with an response function,
R(x, p) [SF96]:

T (x) =

∫

dx′
∫

dp′ F (|x− x′|, p′)Q(x′, p′) , (11.6)

where the “kernel”, F (|x− x′|, p′), is defined by:

F (|x− x′|, p′) =
∫

dpR(x, p)G

(

|x− x′|,
[

p

|p| ·
p′

|p′|

]

, |p′|
)

. (11.7)

F (|x−x′|, p′) has the interpretation of a functional relationship that connects particle fluence
at phase-space location x′, p′ to a tally calculated at x. This method has a known difficulty—
its treatment of heterogeneities and interfaces. Heterogeneities and interfaces can be treated
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approximately by scaling |x− x′| by the collision density. This is a exact for the part of the
kernel that describes the first scatter contribution but approximate for higher-order scatter
contributions. It can also be approximate to varying degrees if the scatter produces other
particles with different scaling laws, such as the electron set in motion by a first Compton
collision of a photon.

For calculation methods that are concerned with primary charged particles, the heterogeneity
problem is more severe. The true solution in this case is reached when the pathlength steps,
s in Equation 11.4 are made small [Lar92] and so, an iterative scheme is set up:

ψ1(x, p) =

∫

dx′
∫

dp′G(x, p, x′, p′,∆s)Q(x′, p′)

ψ2(x, p) =

∫

dx′
∫

dp′G(x, p, x′, p′,∆s)ψ1(x
′, p′)

ψ3(x, p) =

∫

dx′
∫

dp′G(x, p, x′, p′,∆s)ψ2(x
′, p′)

.

.

.

ψN (x, p) =

∫

dx′
∫

dp′G(x, p, x′, p′,∆s)ψN−1(x
′, p′) (11.8)

which terminates when the largest energy in ψN (x, p) has fallen below an energy threshold
or there is no x remaining within the target. The picture is of the phase space represented
by ψ(x, p) “evolving” as s accumulates. This technique has come to be known as the “phase-
space evolution” model. Heterogeneities are accounted for by forcing ∆s to be “small” or
of the order of the dimensions of the heterogeneities and using a G() that pertains to the
atomic composition of the local environment. The calculation is performed in a similar
manner described for convolution. That is,

T (x) =
N
∑

i=1

∫

dx′
∫

dp′ F (x, x′, p, p′,∆s)ψi(x
′, p′) , (11.9)

where the “kernel”, F (x, x′, p, p′,∆s), is defined by:

F (x, x′, p, p′,∆s) =

∫

dpR(x, p)G(x, p, x′, p′,∆s)) . (11.10)

In the following analysis, we will not consider further any systematic errors associated with
the treatment of heterogeneities in the case of the convolution method or with the “step-
ping errors” associated with incrementing s using ∆s in the phase space evolution model.
Furthermore, we assume that the Green’s functions or response kernels can be computed
“exactly”—that there is no systematic error associated with them. The important result
of this discussion is to demonstrate that the dimensionality of the analytic approaches is
Nx +Np.
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11.2 Convergence of Deterministic Solutions

The discussion of the previous section indicates that deterministic solutions are tantamount
to solving a D-dimensional integral of the form:

I =

∫

D

duH(u) . (11.11)

11.2.1 One dimension

Consider a 1-dimensional problem. We divide the u space into Ncell cells. Thus, Equa-
tion 11.11 may be re-written exactly as:

I =

∫ umax

umin

duH(u) =

Ncell
∑

i=1

∫ ui+∆u/2

ui−∆u/2

duH(u) , (11.12)

where ∆u = (umax − umin)/Ncell and ui is the mid-point of the ith cell. We assume that we
can approximate H(u) in the vicinity of ui in a Taylor expansion:

H(u) = H(ui) + (u− ui)
dH(u)

du

∣

∣

∣

∣

u=ui

+
(u− ui)

2

2

d2H(u)

du2

∣

∣

∣

∣

u=ui

· · · (11.13)

Substituting Equation 11.13 into Equation 11.12 gives:

I = ∆u

Ncell
∑

i=1

(

H(ui) +
(∆u)2

24

d2H(u)

du2

∣

∣

∣

∣

u=ui

· · ·
)

. (11.14)

The first term in the above summation gives the “first-order” estimate while the second term
gives an estimate of its error. The first derivative terms have all vanished by virtue of taking
the midpoint of the cell as the point about which to execute the Taylor expansion.

Therefore we write the fractional error as:

∆I

I
=

1

N2
cell

(umax − umin)
2

24

∑Ncell

i=1 d2H(ui)/du
2

∑Ncell

i=1 H(ui)
(11.15)

where we have employed the more compact notation, d2H(ui)/du
2 = d2H(u)/du2|u=ui

11.2.2 Two dimensions

In two dimensions, we give each dimension a mesh-size of N
1/2
cell giving:

I =

∫ u1,max

u1,min

du1

∫ u2,max

u2,min

du2H(u1, u2) =

N
1/2
cell
∑

i1=1

N
1/2
cell
∑

i2=1

∫ u1i
+∆u1/2

u1i
−∆u1/2

du1

∫ u2i
+∆u2/2

u2i
−∆u2/2

du2H(u1, u2) ,

(11.16)
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where ∆u1 = (u1,max−u1,min)/N
1/2
cell and ∆u2 = (u2,max−u2,min)/N

1/2
cell . The Taylor expansion

of H(u) then takes the form:

H(u1, u2) = H(ui1, ui2) + (u1 − ui1)∂H(ui1 , ui2)/∂u1 + (u2 − ui2)∂H(ui1 , ui2)/∂u2 +

(u− ui1)
2

2
∂2H(ui1, ui2)/∂u

2
1 +

(u− ui2)
2

2
∂2H(ui1, ui2)/∂u

2
2 +

(u1 − ui1)(u2 − ui2)∂
2H(ui1, ui2)/(∂u1∂u2) · · · (11.17)

Substituting Equation 11.17 into Equation 11.16 gives:

I = ∆u1∆u2

N
1/2
cell
∑

i1=1

N
1/2
cell
∑

i2=1

(

H(ui1, ui2) +
(∆u1)

2

24
∂2H(ui1, ui2)∂u

2
1 +

(∆u2)
2

24
∂2H(ui1, ui2)∂u

2
2 · · ·

)

,

(11.18)
where all the terms linear in u−ui1 or u−ui2 have vanished due to the midpoint symmetry.

The first term in the above summation gives the “first-order” estimate while the next two
terms give an estimate of its error.

Therefore we write the fractional error as:

∆I

I
=

1

Ncell

1

24

∑N
1/2
cell

i1=1

∑N
1/2
cell

i2=1

[

(u1,max − u1,min)
2∂2H(ui1 , ui2)∂u

2
1 + (u2,max − u2,min)

2∂2H(ui1 , ui2)∂u
2
2

]

∑N
1/2
cell

i1=1

∑N
1/2
cell

i2=1 H(ui1 , ui2)
(11.19)

11.2.3 D dimensions

In D dimensions the calculation is no more difficult than in two dimensions, only the notation
is more cumbersome. One notes that the integral takes the form:

I =

∫ u1,max

u1,min

du1

∫ u2,max

u2,min

du2 · · ·
∫ uD,max

uD,min

duDH(u1, u2 · · ·uD)

=

N
1/D
cell
∑

i1=1

∫ ui1
+∆u1/2

ui1
−∆u1/2

du1

N
1/D
cell
∑

i2=1

∫ ui2
+∆u2/2

ui2
−∆u2/2

du2 · · ·
∫ uiD

+∆uD/2

uiD
−∆uD/2

duD

N
1/D
cell
∑

iD=1

H(u1, u2 · · ·uD)

(11.20)

The Taylor expansion takes the form

H(u1, u2 · · ·uD) = H(ui1, ui2 · · ·uiD) +
D
∑

j=1

(ui − uij)∂H(ui1 , ui2 · · ·uiD)/∂uj +
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D
∑

j=1

(ui − uij)
2

2
∂2H(ui1, ui2 · · ·uiD)/∂u2j +

D
∑

j=1

D
∑

k 6=j=1

(ui − uij)(ui − uik)∂
2H(ui1, ui2 · · ·uiD)/∂ui∂uj · · ·(11.21)

The linear terms of the form (ui−uij ) and the bilinear terms of the form (ui−uij )(ui−uik)

for k 6= j all vanish by symmetry and a relative N−2/D is extracted from the quadratic terms
after integration. The result is that:

∆I

I
=

1

24N
2/D
cell

∑N
1/D
cell

i1=1

∑N
1/D
cell

i2=1 · · ·
∑N

1/D
cell

iD=1

∑D
d=1(ud,max − ud,min)

2∂2H(ui1, ui2 · · ·uiD)/∂u2d
∑N

1/D
cell

i1=1

∑N
1/D
cell

i2=1 · · ·∑N
1/D
cell

iD=1 H(ui1, ui2 · · ·uiD)
.

(11.22)
Note that the one and two-dimensional result can be obtained from the above equation. The
critical feature to note is the overall N

−2/D
cell convergence rate. The more dimensions in the

problem, the slower the convergence for numerical quadrature.

11.3 Convergence of Monte Carlo solutions

An alternative approach to solving Equation 11.1 is the Monte Carlo method whereby Nhist

particle histories are simulated. In this case, the Monte Carlo converges to the true answer
according to the central limit theorem [Fel67] which is expressed as:

∆TMC(x)

TMC(x)
=

1√
Nhist

σMC(x)

TMC(x)
, (11.23)

where TMC(x) is the tally calculated in a voxel located at x as calculated by the Monte Carlo
method and σ2

MC(x) is the variance associated with the distribution of TMC(x). Note that
this variance σ2

MC(x) is an intrinsic feature of how the particle trajectories deposit energy in
the spatial voxel. It is a “constant” for a given set of initial conditions and is conventionally
estimated from the sample variance. It is also assumed, for the purpose of this discussion,
that the sample variance exists and is finite.

11.4 Comparison between Monte Carlo and Numerical

Quadrature

The deterministic models considered in this discussion pre-calculate F (|x− x′|, p′) of Equa-
tion 11.7 or F (x, x′, p, p′,∆s) of Equation 11.10 storing them in arrays for iterative use. Then,
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during the iterative calculation phase a granulated matrix operation is performed. The asso-
ciated matrix product is mathematically similar to the “mid-point”Nx+Np-multidimensional
integration discussed previously:

T (x) =

∫

D

duH(u, x) , (11.24)

where D = Nx +Np and u = (x1, x2 · · ·xNx , p1, p2 · · · pNp). That is, u is a multidimensional
variable that encompasses both space and momentum. In the case of photon convolution,
H(u, x) can be inferred from Equation 11.6 and takes the explicit form:

H(u, x) =

∫

dp F (|x− x′|, p′)Q(x′, p′) . (11.25)

There is a similar expression for the phase space evolution model.

The “mid-point” integration represents a “first-order” deterministic technique and is ap-
plied more generally than the convolution or phase space evolution applications. As shown
previously, the convergence of this technique obeys the relationship:

∆TNMC(x)

TNMC(x)
=

1

N
2/D
cell

σNMC(x)

TNMC(x)
, (11.26)

where TNMC(x) is the tally in a spatial voxel in an arbitrary Nx-dimensional geometry calcu-
lated by a non-Monte Carlo method where Np momentum components are considered. The
D-dimensional phase space has been divided into Ncell “cells” equally divided among all the
dimensions so that the “mesh-size” of each phase space dimension is N

1/D
cell . The constant of

proportionality as derived previously is:

σNMC(x) =
1

24

N
1/D
cell
∑

i1=1

N
1/D
cell
∑

i2=1

· · ·
N

1/D
cell
∑

iD=1

D
∑

d=1

(ud,max − ud,min)
2∂2H(ui1, ui2 · · ·uiD)/∂u2d , (11.27)

where the u-space of H(u) has been partitioned in the same manner as the phase space
described above. ud,min is the minimum value of ud while ud,max is its maximum value. uij is
the midpoint of the cell in the jth dimension at the ithj mesh index.

The equation for the proportionality factor is quite complicated. However, the important
point to notice is that it depends only on the second derivatives of H(u) with respect to
the phase-space variables, u. Moreover, the non-Monte Carlo proportionality factor is quite
different from the Monte Carlo proportionality factor. It would be difficult to predict which
would be smaller and almost certainly would be application dependent.

We now assume that the computation time in either case is proportional to Nhist or cell, That
is, TMC = αMCNhist and TNMC = αNMCNcell. In the Monte Carlo case, the computation time
is simply Nhist times the average computation time/history. In the non-Monte Carlo case,



166 CHAPTER 11. MONTE CARLO AND NUMERICAL QUADRATURE

the matrix operation can potentially attempt to connect every cell in the D-dimensional
phase space to the tally at point x. Thus, a certain number of floating-point and integer
operations are required for each cell in the problem.

Consider the convergence of the Monte Carlo and non-Monte Carlo method. Using the above
relationships, one can show that:

∆TMC(x)/TMC(x)

∆TNMC(x)/TNMC(x)
=

(

σNMC(x)

σMC(x)

)(

αD
NMC

αMC

)1/2

t(4−D)/2D , (11.28)

where t is the time measuring computational effort for either method. We have assumed that
the two calculational techniques are the same so that given enough time DMC(x) ≈ DNMC(x).
One sees that given longer enough, the Monte Carlo method is always more advantageous
for D > 4. We also note that inefficient programming in the non-Monte Carlo method is
severely penalized in this comparison of the two methods.

Assume that one desires to do a calculation to a prescribed ε = ∆T (x)/T (x). Using the
relations derived so far, we calculate the relative amount time to execute the task to be:

tNMC

tMC
=

(

αMC

αNMC

)(

[σNMC(x)/TNMC(x)]
D/2

σMC(x)/TMC(x)

)

ε(4−D)/2 , (11.29)

which again shows an advantage for the Monte Carlo method for D > 4. Of course, this con-
clusion depends somewhat upon assumptions of the efficiency ratio αMC/αNMC which would
be dependent on the details of the calculational technique. Our conclusion is also dependent
on the ratio [{σNMC(x)/TNMC(x)}D/2]/[σMC(x)/TMC(x)] which relates to the detailed shape
of the response functions. For distributions that can vary rapidly the Monte Carlo method
is bound to be favored. When the distributions are flat, non-Monte Carlo techniques may
be favored.

Nonetheless, at some level of complexity (large number of Ncell’s required) Monte Carlo be-
comes more advantageous. Whether or not one’s application crosses this complexity “thresh-
old” has to be determined on a case-by-case-basis.

Smaller dimensional problems will favor the use of non-Monte Carlo techniques. The degree
of the advantage will depend again on the details of the application.
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Problems

1. Solve the following integral both by Monte Carlo (seeding an D-dimensional unit cube
and also by simple mid-point summation :

I =

D
∏

i=1

∫ 1

0

dxie
−xi

for D = 1, 2, 3, 4, 5, 6, 7, 8. D is the dimensionality of the problem. Make the number
of cells, Ncell, and the number of histories, Nhist equal in each case, so employ the
following table:

D 1 2 3 4 5 6 7 8
Ncell 65536 2562 403 164 95 66 57 48

Nhist 65536 65536 64000 65536 59049 46656 78125 65536

Compare with the simple mathematical result (1 − 1/e)D. What conclusions can you
make regarding the computational efficiency of either technique as the dimensionality
increases?

Note: At high dimensionality, the random number generator is severely tested!
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Chapter 12

Photon Monte Carlo Simulation

“I could have done it in a much more complicated way”
said the red Queen, immensely proud.
Lewis Carroll

In this chapter we discuss the basic mechanism by which the simulation of photon interaction
and transport is undertaken. We start with a review of the basic interaction processes
that are involved, some common simplifications and the relative importance of the various
processes. We discuss when and how one goes about choosing, by random selection, which
process occurs. We discuss the rudimentary geometry involved in the transport and deflection
of photons. We conclude with a schematic presentation of the logic flow executed by a
typical photon Monte Carlo transport algorithm. This chapter will only sketch the bare
minimum required to construct a photon Monte Carlo code. A particularly good reference
for a description of basic interaction mechanisms is the excellent book [Eva55] by Robley
Evans, The Atomic Nucleus. This book should be in the bookshelf of anyone undertaking
a career in the radiation sciences. Simpler descriptions of photon interaction processes are
useful as well and are included in many common textbooks [JC83, Att86, SF96].

12.1 Basic photon interaction processes

We now give a brief discussion of the photon interaction processes that should be modeled
by a photon Monte Carlo code, namely:

• Pair production in the nuclear field

• The Compton interaction (incoherent scattering)

169
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• The photoelectric interaction

• The Rayleigh interaction (coherent scattering)

12.1.1 Pair production in the nuclear field

As seen in Figure 12.1, a photon can interact in the field of a nucleus, annihilate and produce
an electron-positron pair. A third body, usually a nucleus, is required to be present to
conserve energy and momentum. This interaction scales as Z2 for different nuclei. Thus,
materials containing high atomic number materials more readily convert photons into charged
particles than do low atomic number materials. This interaction is the quantum “analog” of
the bremsstrahlung interaction, which we will encounter in the next Chapter, Electron Monte
Carlo simulation. At high energies, greater than 50 MeV or so in all materials, the pair and
bremsstrahlung interactions dominate. The pair interaction gives rise to charged particles
in the form of electrons and positrons (muons at very high energy) and the bremsstrahlung
interaction of the electrons and positrons leads to more photons. Thus there is a “cascade”
process that quickly converts high energy electromagnetic particles into copious amounts of
lower energy electromagnetic particles. Hence, a high-energy photon or electron beam not
only has “high energy”, it is also able to deposit a lot of its energy near one place by virtue
of this cascade phenomenon. A picture of this process is given in Figure 12.2.

The high-energy limit of the pair production cross section per nucleus takes the form:

lim
α→∞

σpp(α) = σpp
0 Z

2

(

ln(2α)− 109

42

)

, (12.1)

where α = Eγ/mec
2, that is, the energy of the photon divided by the rest mass energy1 of

the electron (0.51099907± 0.00000015 MeV) and σpp
0 = 1.80× 10−27 cm2/nucleus. We note

that the cross section grows logarithmically with incoming photon energy.

The kinetic energy distribution of the electrons and positrons is remarkably “flat” except
near the kinematic extremes of K± = 0 and K± = Eγ − 2mec

2. Note as well that the
rest-mass energy of the electron-positron pair must be created and so this interaction has a
threshold at Eγ = 2mec

2. It is exactly zero below this energy.

Occasionally it is one of the electrons in the atomic cloud surrounding the nucleus that
interacts with the incoming photon and provides the necessary third body for momentum
and energy conservation. This interaction channel is suppressed by a factor of 1/Z relative
to the nucleus-participating channel as well as additional phase-space and Pauli exclusion
differences. In this case, the atomic electron is ejected with two electrons and one positron
emitted. This is called “triplet” production. It is common to include the effects of triplet pro-

1The latest information on particle data is available on the web at: http://pdg.lbl.gov/pdg.htmlThis
web page is maintained by the Particle Data Group at the Lawrence Berkeley laboratory.
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Figure 12.1: The Feynman diagram depicting pair production in the field of a nucleus. Occa-
sionally (suppressed by a factor of 1/Z), “triplet” production occurs whereby the incoming
photon interacts with one of the electrons in the atomic cloud resulting in a final state with
two electrons and one positron. (Picture not shown.)
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Figure 12.2: A simulation of the cascade resulting from five 1.0 GeV electrons incident
from the left on a target. The electrons produce photons which produce electron-positron
pairs and so on until the energy of the particles falls below the cascade region. Electron
and positron tracks are shown with black lines. Photon tracks are not shown explaining
why some electrons and positrons appear to be “disconnected”. This simulation depicted
here was produced by the EGS4 code [NHR85, BHNR94] and the system for viewing the
trajectories is called EGS Windows [BW91].
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duction by “scaling up” the two-body reaction channel and ignoring the 3-body kinematics.
This is a good approximation for all but the low-Z atoms.

Further reading on the pair production interaction can be found in the reviews by Davies,
Bethe, Maximon [DBM54], Motz, Olsen, and Koch [MOK69], and Tsai [Tsa74].

12.1.2 The Compton interaction (incoherent scattering)

Figure 12.3: The Feynman diagram depicting the Compton interaction in free space. The
photon strikes an electron assumed to be “at rest”. The electron is set into motion and the
photon recoils with less energy.

The Compton interaction [CA35] is an inelastic “bounce” of a photon from an electron in
the atomic shell of a nucleus. It is also known as “incoherent” scattering in recognition of the
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fact that the recoil photon is reduced in energy. A Feynman diagram depicting this process is
given in Figure 12.3. At large energies, the Compton interaction approaches asymptotically:

lim
α→∞

σinc(α) = σinc
0

Z

α
, (12.2)

where σinc
0 = 3.33 × 10−25 cm2/nucleus. It is proportional to Z (i.e. the number of elec-

trons) and falls off as 1/Eγ. Thus, the Compton cross section per unit mass is nearly a
constant independent of material and the energy-weighted cross section is nearly a constant
independent of energy. Unlike the pair production cross section, the Compton cross section
decreases with increased energy.

At low energies, the Compton cross section becomes a constant with energy. That is,

lim
α→0

σinc(α) = 2σinc
0 Z . (12.3)

This is the classical limit and it corresponds to Thomson scattering, which describes the
scattering of light from “free” (unbound) electrons. In almost all applications, the electrons
are bound to atoms and this binding has a profound effect on the cross section at low energies.
However, above about 100 keV on can consider these bound electrons as “free”, and ignore
atomic binding effects. As seen in Figure 12.4, this is a good approximation for photon
energies down to 100 of keV or so, for most materials. This lower bound is defined by the
K-shell energy although the effects can have influence greatly above it, particularly for the
low-Z elements. Below this energy the cross section is depressed since the K-shell electrons
are too tightly bound to be liberated by the incoming photon. The unbound Compton
differential cross section is taken from the Klein-Nishina cross section [KN29], derived in
lowest order Quantum Electrodynamics, without any further approximation.

It is possible to improve the modeling of the Compton interaction. Namito and Hirayama [NH91]
have considered the effect of binding for the Compton effect as well as allowing for the trans-
port of polarised photons for both the Compton and Rayleigh interactions.

12.1.3 Photoelectric interaction

The dominant low energy photon process is the photoelectric effect. In this case the photon
gets absorbed by an electron of an atom resulting in escape of the electron from the atom and
accompanying small energy photons as the electron cloud of the atom settles into its ground
state. The theory concerning this phenomenon is not complete and exceedingly complicated.
The cross section formulae are usually in the form of numerical fits and take the form:

σph(Eγ) ∝
Zm

En
γ

, (12.4)

where the exponent on Z ranges from 4 (low energy, below 100 keV) to 4.6 (high energy,
above 500 keV) and the exponent on Eγ ranges from 3 (low energy, below 100 keV) to 1
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Figure 12.5: Photoelectric effect

(high energy, above 500 keV). Note that the high-energy fall-off is the same as the Compton
interaction. However, the high-energy photoelectric cross section is depressed by a factor of
about Z3.610−8 relative to the Compton cross section and so is negligible in comparison to
the Compton cross section at high energies.

A useful approximation that applies in the regime where the photoelectric effect is dominant
is:

σph(Eγ) ∝
Z4

E3
γ

, (12.5)

which is often employed for simple analytic calculations. However, most Monte Carlo codes
employ a table look-up for the photoelectric interaction.

Angular distributions of the photoelectron can be determined according to the theory of
Sauter [Sau31]. Although Sauter’s theory is relativistic, it appears to work in the non-
relativistic regime as well.
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Figure 12.6: Rayleigh scattering

12.1.4 Rayleigh (coherent) interaction

Now we consider the Rayleigh interaction, also known as coherent scattering. In terms of
cross section, the Rayleigh cross section is at least an order of magnitude less that the
photoelectric cross section. However, it is still important! As can be seen from the Feynman
diagram in Figure 12.6, the distinguishing feature of this interaction in contrast to the
photoelectric interaction is that there is a photon in the final state. Indeed, if low energy
photons impinge on an optically thick shield both Compton and Rayleigh scattered photons
will emerge from the far side. Moreover, the proportions will be a sensitive function of the
incoming energy.

The coherent interaction is an elastic (no energy loss) scattering from atoms. It is not
good enough to treat molecules as if they are made up of independent atoms. A good
demonstration of the importance of molecular structure was demonstrated by Johns and
Yaffe [JY83].
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The Rayleigh differential cross section has the following form:

σcoh(Eγ ,Θ) =
r2e
2
(1 + cos2Θ)[F (q, Z)]2 , (12.6)

where re is the classical electron radius (2.8179 × 10−13 cm), q is the momentum-transfer
parameter , q = (Eγ/hc) sin(Θ/2), and F (q, Z) is the atomic form factor. F (q, Z) approaches
Z as q goes to zero either by virtue of Eγ going to zero or Θ going to zero. The atomic
form factor also falls off rapidly with angle although the Z-dependence increases with angle
to approximately Z3/2.

The tabulation of the form factors published by Hubbell and Øverbø [HØ79].

12.1.5 Relative importance of various processes

We now consider the relative importance of the various processes involved.

For carbon, a moderately low-Z material, the relative strengths of the photon interactions
versus energy is shown in Figure 12.7. For this material we note three distinct regions of single
interaction dominance: photoelectric below 20 keV, pair above 30 MeV and Compton in
between. The almost order of magnitude depression of the Rayleigh and triplet contributions
is some justification for the relatively crude approximations we have discussed. For lead,
shown in Figure 12.8, there are several differences and many similarities. The same comment
about the relative unimportance of the Rayleigh and triplet cross sections applies. The
“Compton dominance” section is much smaller, now extending only from 700 keV to 4 MeV.
We also note quite a complicated structure below about 90 keV, the K-shell binding energy
of the lead atom. Below this threshold, atomic structure effects become very important.

Finally, we consider the total cross section versus energy for the materials hydrogen, water
and lead, shown in Figure 12.9. The total cross section is plotted in the units cm2/g. The
Compton dominance regions are equivalent except for a relative A/Z factor. At high energy
the Z2 dependence of pair production is evident in the lead. At lower energies the Zn(n > 4)
dependence of the photoelectric cross section is quite evident.

12.2 Photon transport logic

We now discuss a simplified version of photon transport logic. It is simplified by ignoring
electron creation and considering that the transport occurs in only a single volume element
and a single medium.

This photon transport logic is schematised in Figure 12.10. Imagine that an initial photon’s
parameters are present at the top of an array called STACK. STACK is an array that retains
particle phase space characteristics for processing. We also imagine that there is a photon
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transport cutoff defined. Photons that fall below this cutoff are absorbed “on the spot”.
We consider that they do not contribute significantly to any tallies of interest and can be
ignored. Physically, this step is not really necessary—it is only a time-saving manoeuvre.
In “real life” low-energy photons are absorbed by the photoelectric process and vanish. (We
will see that electrons are more complicated. Electrons are always more complicated.

The logic flow of photon transport proceeds as follow. The initial characteristics of a photon
entering the transport routine and first tested to see if the energy is below the transport
cutoff. If it is below the cutoff, the history is terminated. If the STACK is empty then a
new particle history is started. If the energy is above the cutoff then the distance to the
next interaction site is chosen, following the discussion in Chapter 8, Transport in media,
interaction models. The photon is then transported, that is “stepped” to the point of in-
teraction. (If the geometry is more complicated than just one region, transport through
different elements of the geometry would be taken care of here.) If the photon, by virtue
of its transport, has left the volume defining the problem then it is discarded. Otherwise,
the branching distribution is sampled to see which interaction occurs. Having done this, the
surviving particles (new ones may be created, some disappear, the characteristics of the ini-
tial one will almost certainly change) have their energies, directions and other characteristics
chosen from the appropriate distributions. The surviving particles are put on the STACK.
Lowest energy ones should be put on the top of the STACK to keep the size of the STACK as
small as possible. Then the whole process takes place again until the STACK is empty and all
the incident particles are used up.



12.2. PHOTON TRANSPORT LOGIC 183

0.0 0.5 1.0
0.0

0.5

1.0

Photon Transport

Place initial photon’s parameters on stack

Pick up energy, position, direction, geometry of
current particle from top of stack

Is photon energy < cutoff?

Sample distance to next interaction
Transport photon taking geometry into account

Has photon left the volume of interest?

Sample the interaction channel:

Sample energies and directions of resultant particles
and store paramters on stack for future processing

- photoelectric
- Compton
- pair production
- Rayleigh

Is stack
empty?

Terminate
history

N
Y

Y

N

Y

N

Figure 12.10: “Bare-bones” photon transport logic.



184 CHAPTER 12. PHOTON MONTE CARLO SIMULATION



Bibliography

[Att86] F. H. Attix. Introduction to Radiological Physics and Radiation Dosimetry.
Wiley, New York, 1986.

[BHNR94] A. F. Bielajew, H. Hirayama, W. R. Nelson, and D. W. O. Rogers. His-
tory, overview and recent improvements of EGS4. National Research Council
of Canada Report PIRS-0436, 1994.

[BW91] A. F. Bielajew and P. E. Weibe. EGS-Windows - A Graphical Interface to EGS.
NRCC Report: PIRS-0274, 1991.

[CA35] A. H. Compton and S. K. Allison. X-rays in theory and experiment. (D. Van
Nostrand Co. Inc, New York), 1935.

[DBM54] H. Davies, H. A. Bethe, and L. C. Maximon. Theory of bremsstrahlung and pair
production. II. Integral cross sections for pair production. Phys. Rev., 93:788,
1954.

[Eva55] R. D. Evans. The Atomic Nucleus. McGraw-Hill, New York, 1955.

[HØ79] J. H. Hubbell and I. Øverbø. Relativistic atomic form factors and photon co-
herent scattering cross sections. J. Phys. Chem. Ref. Data, 9:69, 1979.

[JC83] H. E. Johns and J. R. Cunningham. The Physics of Radiology, Fourth Edition.
Charles C. Thomas, Springfield, Illinois, 1983.

[JY83] P. C. Johns and M. J. Yaffe. Coherent scatter in diagnostic radiology. Med.
Phys., 10:40, 1983.

[KN29] O. Klein and Y. Nishina. . Z. für Physik, 52:853, 1929.

[MOK69] J. W. Motz, H. A. Olsen, and H. W. Koch. Pair production by photons. Rev.
Mod. Phys., 41:581 – 639, 1969.

[NH91] Y. Namito and H. Hirayama. Improvement of low energy photon transport
calculation by EGS4 – electron bound effect in Compton scattering. Japan Atomic
Energy Society, Osaka, page 401, 1991.

185



186 BIBLIOGRAPHY

[NHR85] W. R. Nelson, H. Hirayama, and D. W. O. Rogers. The EGS4 Code System.
Report SLAC–265, Stanford Linear Accelerator Center, Stanford, Calif, 1985.
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Chapter 13

Electron Monte Carlo Simulation

In this chapter we discuss the electron and positron interactions and discuss the approxima-
tions made in their implementation. We give a brief outline of the electron transport logic
used in Monte Carlo simulations.

The transport of electrons (and positrons) is considerably more complicated than for pho-
tons. Like photons, electrons are subject to violent interactions. The following are the
“catastrophic” interactions:

• large energy-loss Møller scattering (e−e− −→ e−e−),
• large energy-loss Bhabha scattering (e+e− −→ e+e−),
• hard bremsstrahlung emission (e±N −→ e±γN), and
• positron annihilation “in-flight” and at rest (e+e− −→ γγ).

It is possible to sample the above interactions discretely in a reasonable amount of computing
time for many practical problems. In addition to the catastrophic events, there are also “soft”
events. Detailed modeling of the soft events can usually be approximated by summing the
effects of many soft events into virtual “large-effect” events. These “soft” events are:

• low-energy Møller (Bhabha) scattering (modeled as part of the collision stopping
power),

• atomic excitation (e±N −→ e±N∗) (modeled as another part of the collision stopping
power),

• soft bremsstrahlung (modeled as radiative stopping power), and
• elastic electron (positron) multiple scattering from atoms, (e±N −→ e±N).

Strictly speaking, an elastic large angle scattering from a nucleus should really be considered
to be a “catastrophic” interaction but this is not the usual convention. (Perhaps it should
be.) For problems of the sort we consider, it is impractical to model all these interactions
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discretely. Instead, well-established statistical theories are used to describe these “soft”
interactions by accounting for them in a cumulative sense including the effect of many such
interactions at the same time. These are the so-called “statistically grouped” interactions.

13.1 Catastrophic interactions

We have almost complete flexibility in defining the threshold between “catastrophic” and
“statistically grouped” interactions. The location of this threshold should be chosen by the
demands of the physics of the problem and by the accuracy required in the final result.

13.1.1 Hard bremsstrahlung production

As depicted by the Feynman diagram in fig. 13.1, bremsstrahlung production is the creation
of photons by electrons (or positrons) in the field of an atom. There are actually two
possibilities. The predominant mode is the interaction with the atomic nucleus. This effect
dominates by a factor of about Z over the three-body case where an atomic electron recoils
(e±N −→ e±e−γN∗). Bremsstrahlung is the quantum analogue of synchrotron radiation, the
radiation from accelerated charges predicted by Maxwell’s equations. The de-acceleration
and acceleration of an electron scattering from nuclei can be quite violent, resulting in very
high energy quanta, up to and including the total kinetic energy of the incoming charged
particle.

The two-body effect can be taken into account through the total cross section and angular
distribution kinematics. The three-body case is conventionally treated only by inclusion in
the total cross section of the two body-process. The two-body process can be modeled using
one of the Koch and Motz [KM59] formulae. The bremsstrahlung cross section scales with
Z(Z + ξ(Z)), where ξ(Z) is the factor accounting for three-body case where the interaction
is with an atomic electron. These factors comes are taken from the work of Tsai [Tsa74].
The total cross section depends approximately like 1/Eγ.

13.1.2 Møller (Bhabha) scattering

Møller and Bhabha scattering are collisions of incident electrons or positrons with atomic
electrons. It is conventional to assume that these atomic electrons are “free” ignoring their
atomic binding energy. At first glance the Møller and Bhabha interactions appear to be
quite similar. Referring to fig. 13.2, we see very little difference between them. In reality,
however, they are, owing to the identity of the participant particles. The electrons in the
e−e+ pair can annihilate and be recreated, contributing an extra interaction channel to the
cross section. The thresholds for these interactions are different as well. In the e−e− case,
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the “primary” electron can only give at most half its energy to the target electron if we
adopt the convention that the higher energy electron is always denoted “the primary”. This
is because the two electrons are indistinguishable. In the e+e− case the positron can give up
all its energy to the atomic electron.

Møller and Bhabha cross sections scale with Z for different media. The cross section
scales approximately as 1/v2, where v is the velocity of the scattered electron. Many more
low energy secondary particles are produced from the Møller interaction than from the
bremsstrahlung interaction.

13.1.3 Positron annihilation

Two photon annihilation is depicted in fig. 13.3. Two-photon “in-flight” annihilation can be
modeled using the cross section formulae of Heitler [Hei54]. It is conventional to consider the
atomic electrons to be free, ignoring binding effects. Three and higher-photon annihilations
(e+e− −→ nγ[n > 2]) as well as one-photon annihilation which is possible in the Coulomb
field of a nucleus (e+e−N −→ γN∗) can be ignored as well. The higher-order processes are
very much suppressed relative to the two-body process (by at least a factor of 1/137) while
the one-body process competes with the two-photon process only at very high energies where
the cross section becomes very small. If a positron survives until it reaches the transport
cut-off energy it can be converted it into two photons (annihilation at rest), with or without
modeling the residual drift before annihilation.

13.2 Statistically grouped interactions

13.2.1 “Continuous” energy loss

One method to account for the energy loss to sub-threshold (soft bremsstrahlung and soft
collisions) is to assume that the energy is lost continuously along its path. The formalism that
may be used is the Bethe-Bloch theory of charged particle energy loss [Bet30, Bet32, Blo33]
as expressed by Berger and Seltzer [BS64] and in ICRU 37 [ICR84]. This continuous energy
loss scales with the Z of the medium for the collision contribution and Z2 for the radiative
part. Charged particles can also polarise the medium in which they travel. This “density
effect” is important at high energies and for dense media. Default density effect parameters
are available from a 1982 compilation by Sternheimer, Seltzer and Berger [SSB82] and
state-of-the-art compilations (as defined by the stopping-power guru Berger who distributes
a PC-based stopping power program [Ber92]).

Again, atomic binding effects are treated rather crudely by the Bethe-Bloch formalism.
It assumes that each electron can be treated as if it were bound by an average binding
potential. The use of more refined theories does not seem advantageous unless one wants
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to study electron transport below the K-shell binding energy of the highest atomic number
element in the problem.

The stopping power versus energy for different materials is shown in fig. 13.4. The difference
in the collision part is due mostly to the difference in ionisation potentials of the various
atoms and partly to a Z/A difference, because the vertical scale is plotted in MeV/(g/cm2),
a normalisation by atomic weight rather than electron density. Note that at high energy the
argon line rises above the carbon line. Argon, being a gas, is reduced less by the density
effect at this energy. The radiative contribution reflects mostly the relative Z2 dependence
of bremsstrahlung production.

The collisional energy loss by electrons and positrons is different for the same reasons de-
scribed in the “catastrophic” interaction section. Annihilation is generally not treated as
part of the positron slowing down process and is treated discretely as a “catastrophic” event.
The differences are reflected in fig. 13.5, the positron/electron collision stopping power. The
positron radiative stopping power is reduced with respect to the electron radiative stopping
power. At 1 MeV this difference is a few percent in carbon and 60% in lead. This relative
difference is depicted in fig. 13.6.

13.2.2 Multiple scattering

Elastic scattering of electrons and positrons from nuclei is predominantly small angle with
the occasional large-angle scattering event. If it were not for screening by the atomic elec-
trons, the cross section would be infinite. The cross sections are, nonetheless, very large.
There are several statistical theories that deal with multiple scattering. Some of these theo-
ries assume that the charged particle has interacted enough times so that these interactions
may be grouped together. The most popular such theory is the Fermi-Eyges theory [Eyg48],
a small angle theory. This theory neglects large angle scattering and is unsuitable for ac-
curate electron transport unless large angle scattering is somehow included (perhaps as a
catastrophic interaction). The most accurate theory is that of Goudsmit and Saunder-
son [GS40a, GS40b]. This theory does not require that many atoms participate in the
production of a multiple scattering angle. However, calculation times required to produce
few-atom distributions can get very long, can have intrinsic numerical difficulties and are not
efficient computationally for Monte Carlo codes such as EGS4 [NHR85, BHNR94] where the
physics and geometry adjust the electron step-length dynamically. A fixed step-size scheme
permits an efficient implementation of Goudsmit-Saunderson theory and this has been done
in ETRAN [Sel89, Sel91], ITS [HM84, Hal89, HKM+92] and MCNP [Bri86, Bri93, Bri97].
Apart from accounting for energy-loss during the course of a step, there is no intrinsic diffi-
culty with large steps either. EGS4 uses the Molière theory [Mol47, Mol48] which produces
results as good as Goudsmit-Saunderson for many applications and is much easier to imple-
ment in EGS4’s transport scheme.

The Molière theory, although originally designed as a small angle theory has been shown
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with small modifications to predict large angle scattering quite successfully [Bet53, Bie94].
The Molière theory includes the contribution of single event large angle scattering, for ex-
ample, an electron backscatter from a single atom. The Molière theory ignores differences
in the scattering of electrons and positrons, and uses the screened Rutherford cross sections
instead of the more accurate Mott cross sections. However, the differences are known to
be small. Owing to analytic approximations made by Molière theory, this theory requires a
minimum step-size as it breaks down numerically if less than 25 atoms or so participate in
the development of the angular distribution [Bie94, AMB93]. A recent development [KB98]
has surmounted this difficulty. Apart from accounting for energy loss, there is also a large
step-size restriction because the Molière theory is couched in a small-angle formalism. Be-
yond this there are other corrections that can be applied [Bet53, Win87] related to the
mathematical connection between the small-angle and any-angle theories.

13.3 Electron transport “mechanics”

13.3.1 Typical electron tracks

A typical Monte Carlo electron track simulation is shown in fig. 13.7. An electron is being
transported through a medium. Along the way energy is being lost “continuously” to sub-
threshold knock-on electrons and bremsstrahlung. The track is broken up into small straight-
line segments called multiple scattering substeps. In this case the length of these substeps
was chosen so that the electron lost 4% of its energy during each step. At the end of
each of these steps the multiple scattering angle is selected according to some theoretical
distribution. Catastrophic events, here a single knock-on electron, sets other particles in
motion. These particles are followed separately in the same fashion. The original particle, if
it is does not fall below the transport threshold, is also transported. In general terms, this
is exactly what the electron transport logic simulates.

13.3.2 Typical multiple scattering substeps

Now we demonstrate in fig. 13.8 what a multiple scattering substep should look like.

A single electron step is characterised by the length of total curved path-length to the end
point of the step, t. (This is a reasonable parameter to use because the number of atoms
encountered along the way should be proportional to t.) At the end of the step the deflection
from the initial direction, Θ, is sampled. Associated with the step is the average projected
distance along the original direction of motion, s. There is no satisfactory theory for the
relation between s and t! The lateral deflection, ρ, the distance transported perpendicular
to the original direction of motion, is often ignored by electron Monte Carlo codes. This is
not to say that lateral transport is not modelled! Recalling fig. 13.7, we see that such lateral
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deflections do occur as a result of multiple scattering. It is only the lateral deflection during
the course of a substep which is ignored. One can guess that if the multiple scattering steps
are small enough, the electron track may be simulated more exactly.

13.4 Examples of electron transport

13.4.1 Effect of physical modeling on a 20 MeV e− depth-dose

curve

In this section we will study the effects on the depth-dose curve of turning on and off
various physical processes. Figure 13.9 presents two CSDA calculations (i.e. no secondaries
are created and energy-loss straggling is not taken into account). For the histogram, no
multiple scattering is modeled and hence there is a large peak at the end of the range of
the particles because they all reach the same depth before being terminating and depositing
their residual kinetic energy (189 keV in this case). Note that the size of this peak is very
much a calculational artefact which depends on how thick the layer is in which the histories
terminate. The curve with the stars includes the effect of multiple scattering. This leads to
a lateral spreading of the electrons which shortens the depth of penetration of most electrons
and increases the dose at shallower depths because the fluence has increased. In this case, the
depth-straggling is entirely caused by the lateral scattering since every electron has traveled
the same distance.

Figure 13.10 presents three depth-dose curves calculated with all multiple scattering turned
off - i.e. the electrons travel in straight lines (except for some minor deflections when sec-
ondary electrons are created). In the cases including energy-loss straggling, a depth strag-
gling is introduced because the actual distance traveled by the electrons varies, depending
on how much energy they give up to secondaries. Two features are worth noting. Firstly,
the energy-loss straggling induced by the creation of bremsstrahlung photons plays a sig-
nificant role despite the fact that far fewer secondary photons are produced than electrons.
They do, however, have a larger mean energy. Secondly, the inclusion of secondary electron
transport in the calculation leads to a dose buildup region near the surface. Figure 13.11
presents a combination of the effects in the previous two figures. The extremes of no energy-
loss straggling and the full simulation are shown to bracket the results in which energy-loss
straggling from either the creation of bremsstrahlung or knock-on electrons is included. The
bremsstrahlung straggling has more of an effect, especially near the peak of the depth-dose
curve.
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Figure 13.1: Hard bremsstrahlung production in the field of an atom as depicted by a
Feynman diagram. There are two possibilities. The predominant mode (shown here) is a
two-body interaction where the nucleus recoils. This effect dominates by a factor of about
Z2 over the three-body case where an atomic electron recoils (not shown).
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Figure 13.2: Feynman diagrams depicting the Møller and Bhabha interactions. Note the
extra interaction channel in the case of the Bhabha interaction.
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Figure 13.3: Feynman diagram depicting two-photon positron annihilation.
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13.5 Electron transport logic

Figure 13.12 is a schematic flow chart showing the essential differences between different kinds
of electron transport algorithms. EGS4 is a “class II” algorithm which samples interactions
discretely and correlates the energy loss to secondary particles with an equal loss in the
energy of the primary electron (positron).

There is a close similarity between this flow chart and the photon transport flow chart.
The essential differences are the nature of the particle interactions as well as the additional
continuous energy-loss mechanism and multiple scattering. Positrons are treated by the same
subroutine in EGS4 although it is not shown in fig. 13.12.

Imagine that an electron’s parameters (energy, direction, etc.) are on top of the particle stack.
(STACK is an array containing the phase-space parameters of particles awaiting transport.)
The electron transport routine, picks up these parameters and first asks if the energy of this
particle is greater than the transport cutoff energy, called ECUT. If it is not, the electron is
discarded. (This is not to that the particle is simply thrown away! “Discard” means that the
scoring routines are informed that an electron is about to be taken off the transport stack.) If
there is no electron on the top of the stack, control is given to the photon transport routine.
Otherwise, the next electron in the stack is picked up and transported. If the original
electron’s energy was great enough to be transported, the distance to the next catastrophic
interaction point is determined, exactly as in the photon case. The multiple scattering step-
size t is then selected and the particle transported, taking into account the constraints of the
geometry. After the transport, the multiple scattering angle is selected and the electron’s
direction adjusted. The continuous energy loss is then deducted. If the electron, as a result
of its transport, has left the geometry defining the problem, it is discarded. Otherwise,
its energy is tested to see if it has fallen below the cutoff as a result of its transport. If
the electron has not yet reached the point of interaction a new multiple scattering step is
effected. This innermost loop undergoes the heaviest use in most calculations because often
many multiple scattering steps occur between points of interaction (see fig. 13.7). If the
distance to a discrete interaction has been reached, then the type of interaction is chosen.
Secondary particles resulting from the interaction are placed on the stack as dictated by the
differential cross sections, lower energies on top to prevent stack overflows. The energy and
direction of the original electron are adjusted and the process starts all over again.
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Chapter 14

Electron step-size artefacts and
PRESTA

In the first half of this chapter we shall discuss electron step-size artefacts, the reasons for
calculation of spurious results under some circumstances, and simple ways by which these
calculational anomalies may be avoided. In the second half of the chapter, we shall discuss a
more sophisticated electron transport algorithm, called PRESTA, which solves this problem
of step-size dependence in most cases.

The chapter will proceed within the context of the EGS4 code [NHR85] although the
ideas put forth apply to all electron transport codes which use condensed-history methods.
Calculations which signal the existence of step-size anomalies will be presented along with
the improvements to the electron transport algorithm which were used to circumvent the
problem.

14.1 Electron step-size artefacts

14.1.1 What is an electron step-size artefact?

An electron step-size artefact is characterized by the dependence of some calculated result
upon arbitrary “non-physics” parameters of the electron transport. This is illustrated by the
example given in fig. 16.1. In this example, 1 MeV electrons were incident normally upon a
3r0/2 thick slab of water. The quantity r0 is the range calculated in the continuous-slowing-
down approximation (CSDA). The energy deposited between r0/2 and r0 was scored. Two
ways of calculating the energy deposition are depicted. The first, (EGS (with PLC), lower
dashed line) is the default EGS calculation. “PLC” stands for path-length correction, which
includes the effect of electron path curvature for each electron step. The second, (EGS (no
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Figure 14.1: The relative energy deposit from 1 MeV electrons incident normally on a 3r0/2
slab of water. The energy deposited between r0/2 and r0 is shown. The upper dashed line is
an EGS calculation without the electron step-size shortened by ESTEPE and without path-
length corrections (PLC’s). The lower dashed line is an EGS calculation without ESTEPE
control and including the default PLC employed by EGS.
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PLC), upper dashed line) neglects this correction. Rogers [Rog84b] added an electron step-
size limit, ESTEPE, the maximum allowable fractional kinetic energy loss per electron step
to “continuous” energy-loss processes in order to obtain better agreement in the low-energy
region. One notices a dramatic increase in the “with PLC” curve with smaller ESTEPE and
a commensurate decrease in the “no PLC” curve. Why should a calculated result depend so
strongly on an arbitrary parameter such as electron step-size unless some basic constraints
of the underlying theory are being violated? What is the role of path-length corrections?
Does the electron transport algorithm have enough physics’ content to accurately simulate
electron transport? An even more important question is “What is the correct answer?”. (If
a correct answer is to be obtained for a case that exhibits step-size dependence, it is always
found at smaller step-sizes within certain constraints that we shall discuss later.)

As another example of dramatic step-size effects, consider the irradiation geometry depicted
in fig. 16.2. In this case, a 1 MeV zero-area beam of electrons was incident on the center

Figure 14.2: The irradiation geometry of the “thin tube” simulation. A zero-area beam of 1
MeV electrons was incident on the center of the end of a 2 mm diameter, 20 cm long tube
of air.

of the end of an air tube which was 2 mm in diameter and 20 cm long. The results are
plotted in fig. 16.3. The dose deposited in the air cylinder was scored as a function of
SMAX, the maximum geometrical step-length allowed. This parameter was also introduced
by Rogers [Rog84b] in adapting the EGS code to low-energy simulations. The default EGS
simulation (equivalent to setting SMAX = 20 cm, the length of the tube) is wrong since
most often the electrons only take one step through the tube, as depicted in fig. 16.4. All
the “continuous” energy deposition associated with this step is deposited within the air tube
resulting in too high a value being calculated. Reducing SMAX to 10 cm, half the length
of the tube, almost halves the energy deposition, as seen in fig. 16.3. In this case, most of
the electrons that are transported 10 cm immediately scatter out of the tube, as depicted
in fig. 16.5. Further reduction of SMAX reduces the energy deposited to the tube as the
electron transport simulation becomes more and more accurate. Finally, a flat region of
“convergence” is obtained in the vicinity of 0.2 to 1.0 cm, a scale of magnitude comparable
to the diameter of the tube. As seen in fig. 14.6, the small transport steps allow the electron
to escape the tube or be transported down it, in accord with the random selection of the
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Figure 14.3: The relative dose deposited in the air cylinder is plotted as a function of
SMAX. In the “default EGS” case, the electrons are usually transported the length of the
tube resulting in an anomalously high calculated dose to the tube.

Figure 14.4: In the default EGS calculation the electrons most often travel the length of the
tube. Note that the vertical scale in this and the next two figures is greatly exaggerated.
The tube is actually 2 mm in diameter and 20 cm long. The ×’s mark the end-points of
each electron step.
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Figure 14.5: If SMAX is reduced to 10 cm, half the length of the tube, then the electrons
that are transported 10 cm usually scatter out of the tube immediately.

multiple scattering angle for each step. In this region, the transport is being simulated more

Figure 14.6: When the transport steps are shortened to a length comparable to the diameter
of the tube, the electron may or may not scatter out of the tube, obeying the probabilistic
laws of multiple scattering.

or less accurately.

At step-sizes in the vicinity of 1 mm and smaller we observe another artefact in fig. 16.3. We
again notice anomalously high results. The reason for the occurrence of this artefact has to do
with the minimum step-size that can be accommodated by the multiple scattering formalism
used by the EGS code. (EGS uses the Molière formalism [Mol47, Mol48] as expressed by
Bethe [Bet53].) At these smaller step-sizes multiple scattering formalism should be replaced
by a “few-scattering” or “single-scattering” formalism. EGS does not do this but rather
“switches off” the multiple scattering formalism and no elastic electron-electron or electron-
nucleus scattering is modelled. Once more the electrons are transported in straight lines
down the length of the tube. We must, therefore, qualify a statement expressed earlier in
the chapter. If a correct answer is to be obtained with the EGS code for a case that exhibits
a step-size dependence, it is obtained by using small step-sizes with the proviso that the
multiple scattering is not “switched off” for a substantial number of the electron transport
steps. The various limits on transport step-size will be discussed in more detail later in the
chapter.

The previous example was contrived to show large changes in calculated results with step-size.
It represents the extreme limit of what the EGS code is capable of. As a final example we
show a large step-size dependence for a case where the electrons are almost in a state of equi-
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librium. This is the case of a thick-walled ion chamber exposed to 60Co photons. We show, in
fig. 14.7, the variation with ESTEPE of the calculated response of a 0.5 g/cm2 carbon-walled

Figure 14.7: Calculated response of a thick-walled carbon chamber (0.5 g/cm2 carbon walls,
2 cm diameter, 2 mm thick cylindrical air cavity), exposed to 1.25 MeV photons incident
normally on a flat circular end.

ion chamber with a cylindrical air cavity 2 mm in depth and 2 cm in diameter exposed to a
monoenergetic beam of 1.25 MeV photons incident normally upon one of the flat ends. The
results are normalized to the theoretical predictions of Spencer-Attix theory [SA55] cor-
rected for photon attenuation, photon scatter and electron drift affects [BRN85, RBN85].
According to the theorem of Fano [Fan54], the electron fluence in the chamber in the vicinity
of the cavity is almost unperturbed by the presence of the cavity in this situation. (Strictly
speaking, Fano’s theorem only applies to density changes in one medium. However, carbon
and air are not too dissimilar except for their densities and Fano’s theorem may be applied
with negligible error.) The electrons in this simulation are almost in complete equilibrium.
Non-equilibrium effects requiring corrections to Spencer-Attix theory amount to only a few
percent of the total response. Why then, should the electron step-size play such a critical
role in a simulation where electron transport does not matter a great deal to the physics?
We observe, in fig. 14.7 a step-size variation of about 40% when ESTEPE is changed from
1% to 20%! To answer this question requires some closer examination of the various elements
of electron transport.
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14.1.2 Path-length correction

To illustrate the concept of path-length correction, we consider the example of 10 MeV
electrons incident normally upon a 1 cm slab of water. The top curve in fig. 14.8 depicts

Figure 14.8: A 10 MeV electron being transported through a 1 cm slab of water as simulated
by EGS in its default configuration (no ESTEPE or SMAX control, note that the electron
takes only one step to cross the water slab) and with an ESTEPE of 10, 5, 2, and 1%.

a typical EGS electron transport step through this slab with the EGS system used in its
default configuration (no ESTEPE or SMAX control). Note that the electron went through
in only one step. The other curves in fig. 14.8 depict similar histories except that ESTEPE
has been adjusted to 10, 5, 2, or 1%. As ESTEPE gets smaller and smaller, the electron
tracks begin to “look” like real electron tracks, similar to those that one would observe,
for example, in bubble chamber photographs. We know that electron steps are curved, as
depicted in the previous figures. Must we use exceedingly small electron steps to calculate
accurately in Monte Carlo simulations? The answer depends upon the application. If one is
interested in accurate physical “pictures” of electron tracks, then short step-sizes, consistent
with the resolution desired, must be used. However, imagine that we are only interested in
calculating the energy deposited in this slab. Then, considering fig. 14.8 with the realization
that the energy deposited is proportional to the total curved path, it would be possible to
simulate passage through this slab using only one step if one could accurately correct for the
actual path-length the electron would have travelled if one had used very small steps.

Figure 14.9 depicts the relationship between the total curved path of a step and its straight-
line path in the direction of motion at the start of the step. For a given value of the curved
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Figure 14.9: A pictorial representation of the total curved path-length of an electron step, t,
and the straight-line path-length, s, in the direction of motion at the beginning of the step.
The average lateral deflection of a transport step, ρ, is related to t. The displacements s and
ρ are mutually orthogonal.

path-length, t, the average straight-line path in the starting direction of motion, s, are related
by eq. 17.1 which has been attributed to Lewis [Lew50],

s =

∫ t

0

dt′〈cosΘ(t′)〉, (14.1)

where Θ(t′) is the multiple scattering angle as a function of the actual curved path-length
along the path, t′, and the average value, 〈〉, is to be computed using the probability distribu-
tion of any multiple scattering theory. Several strategies have been developed for calculating
s using the Lewis equation. Yang [Yan51] advocated an expansion of eq. 17.1 to second
order in Θ and the use of a small-angle multiple scattering theory to compute the average
value. This is the strategy employed in the EGS code where the Fermi-Eyges multiple scat-
tering theory [Eyg48] is used to compute the average value. (As mentioned previously, the
multiple scattering in EGS is performed using Bethe’s formulation of the Molière theory.)
Unfortunately, this approach has been shown to produce path-length corrections, (t− s)/s,
a factor of 2 too high [HW55, BR87]. Berger [Ber63] advocated the relation,

s =
1

2
t[1 + cos(Θ(t))], (14.2)

and he showed that s calculated using this equation agrees with that calculated using eq. 17.1
in the limit of small angle if the multiple scattering theory of Goudsmit and Saunder-
son [GS40a, GS40b] is used. Bielajew and Rogers [BR87] expanded eq. 17.1 to 4th order
in Θ and evaluated the average value using Bethe’s version of Molière’s multiple scattering
theory. They showed that this approach and s calculated using eq. 17.3 agree, even for large
average scattering angles of the order of a radian. The proof that this approach is valid is
given later in the chapter.

The path-length correction can be quite large, as seen in fig. 14.10, where the path-length
correction, (t− s)/s, in water is plotted versus electron kinetic energy for various step-sizes
as measured by ESTEPE. If one wishes to reduce computing time by using large electron
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Figure 14.10: The path-length correction in water versus kinetic energy for various step-sizes
as measured by ESTEPE. The line t = tmax shows the maximum step-size allowed by the
Molière theory.
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steps, then one must correct for path-length curvature. The larger the step, the greater the
correction. Greater corrections are needed for lower energies as well. Recall that the path-
length correction used by EGS is about a factor of 2 too high. This fact is almost entirely
responsible for the step-size artefact seen in fig. 16.1. Too much curvature correction resulted
in too much energy being deposited in the first r0/2 slab and, by conservation of energy, too
little in the second. In the “no PLC” case, the opposite prevailed. The failure to account
for electron path-length curvature leads to less energy deposition in the upstream slab and
too much in the downstream one. As the step-size is reduced, however, the electron tracks
are modelled more and more correctly, relying on multiple scattering selected for each of
the steps for the development of curvature of the tracks. If one uses a correct path-length
correction, such as that proposed by Berger [Ber63] or Bielajew and Rogers [BR87], then
most of the step-size artefact vanishes, as exhibited in fig. 14.11. The residual step-size

Figure 14.11: The deep energy deposition problem described for fig. 16.1. In this case, a
“proper” (i.e. demonstrably correct) path-length correction is used to eliminate most of the
step-size dependence.

dependence has to do with other neglected features of electron transport that we have yet
to discuss.

We now return to the ion chamber simulation and see what effect the use of a correct path-
length correction has. Figure 14.12 shows the improvement of the ion chamber calculation,
a reduction in the step-size dependence with use of a proper path-length correction. Yet,
there still remains a considerable dependence on ESTEPE. Some physics must be missing
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Figure 14.12: The ion chamber calculation described for fig. 14.7 with a reduction of the step-
size dependence with the use of a “proper” path-length correction. A significant step-size
dependence remains.
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from this simulation!

14.1.3 Lateral deflection

Returning to fig. 14.8, we see that as the step-size is made smaller and the electron histories
are simulated with increasing accuracy, not only does the electron path acquire curvature,
it is also deflected laterally. If one is faced with a simulation in which lateral transport
is important (for example, the air tube of figs. 16.2 and 16.3), but one wishes to use as
few electron steps as possible, one ought to account for the the lateral deflection during the
course of each electron step. If we use a sufficiently small step-size, this lateral deflection will
occur naturally as the multiple scattering angle selected for each electron step deflects the
electron, accomplishing the lateral transport. We saw that in the example of the air tube,
if the step-size was restricted to be of the order of the diameter of the tube, the effects of
lateral transport were incorporated properly in the simulation. Therefore, if one wishes to
use fewer transport steps in a simulation of this nature, a more sophisticated approach is
needed.

Figure 14.9 illustrates the basic concept of the lateral deflection. An average lateral de-
flection, ρ, is associated with an electron transport step characterized by the total curved
path of the step, t. Berger [Ber63] has provided a method that correlates ρ with t and the
multiple scattering angle, Θ, for the electron step,

ρ =
1

2
t sinΘ(t). (14.3)

This is called the “lateral correlation” because the displacement, ρ, is correlated to the
multiple scattering angle [Ber63]. The proof that this prescription is valid will be given
later. Figure 14.13 shows that this correction is large for large step-sizes and small energies.
We shall show, in another section, evidence of the reduction of step-size artefacts through
the use of Berger’s lateral correlation algorithm.

14.1.4 Boundary crossing

A general Monte Carlo method should be able to simulate electron trajectories in complex
geometries. The condensed-history technique, whether the multiple scattering is performed
through the use of the theories of Fermi-Eyges, Molière, or Goudsmit-Saunderson, is limited
by the fundamental constraints of these theories. These theories are strictly applicable in
only infinite or semi-infinite geometries. Some theories (e.g. Fermi-Eyges, Molière) are
applicable only for small average scattering angles as well. It would be far too complex to
construct a multiple scattering theory that applies for all useful geometries. In particular,
how should a Monte Carlo electron transport algorithm treat the approach and retreat from



14.1. ELECTRON STEP-SIZE ARTEFACTS 223

Figure 14.13: The average angular correlation versus electron kinetic energy for various step-
sizes as measured by ESTEPE. The reader is referred to ref. [BR87] for the calculational
details used in the construction of this figure.
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arbitrarily shaped boundaries yet still not violate the basic constraints of the underlying
theories? Unless multiple scattering theories become much more sophisticated, there is only
one solution — shorten the electron steps in the vicinity of boundaries so that for a majority
of electron steps in the simulation, any part of the total curved path is restricted to a single
medium. In other words, the underlying theories rely upon the particle transport taking place
in an infinite, or semi-infinite medium. Therefore, in the vicinity of a boundary, the electron
step should be shortened enough so that the underlying theory is not violated, at least for
most of the transport steps. The details of how this boundary crossing is accomplished is
very much code-dependent. However, the above “law” should apply for all condensed-history
Monte Carlo methods. The details of how this can be accomplished with the EGS code will
be given later.

14.2 PRESTA

14.2.1 The elements of PRESTA

So far we have discussed electron step-size artefacts and how they can be circumvented by
shortening the electron transport step-size. The occurrences of artefacts were related to a
shortcoming in, or the lack of, a path-length correction, the lack of lateral transport during
the course of an electron step, or the abuse of the basic constraints of the multiple scattering
theory in the vicinity of boundaries describing the geometry of the simulation. PRESTA,
the Parameter Reduced Electron-Step Transport Algorithm [BR87], attempts to address
these shortcomings with the EGS code. The general features of PRESTA are applicable to
all condensed-history codes. The fine details, only a few of which we shall discuss, are not.
Before plunging ourselves into the features of PRESTA, we return to the examples dealt
with earlier in the chapter and show how PRESTA handles the difficulties.

We have discussed the energy deposition in the middle of three r0/2 slabs due to 1 MeV
electrons. Recall that in fig. 16.1 we saw large step-size artefacts produced by the EGS
code that could be “healed” by using short step-sizes. Later in fig. 14.11 we cured most
of the problem by using a correct path-length correction. In fig. 14.14, we also include
lateral deflections and a careful boundary crossing algorithm, (the remaining components
of PRESTA), and all residual variation with step-size disappear. In this example, it was
the correct path-length correction which was responsible for most of the improvement. The
correct path-length correction method is one of the major components of PRESTA.

In the ion chamber simulation of figs. 14.7 and 14.12, the improvement of ion chamber
response was quite dramatic but still incomplete. The evidence of step-size dependence was
still quite strong. Once PRESTA is used for the simulation, however, the step-size artefact
vanishes, as evidenced in fig. 14.15. It is the inclusion of lateral transport that is responsible
for the remaining improvement in this case.
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Figure 14.14: The energy deposition to the middle of three r0/2 water slabs due to 1 MeV
electrons. This simulation was discussed previously in figs. 16.1 and 14.11. When PRESTA
is used, all evidence of step-size dependence vanishes.
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Figure 14.15: The ion chamber response calculation visited already in figs. 14.7 and 14.12.
The use of PRESTA virtually eliminates any step-size dependence in this calculation.

Finally, the improvement in the air tube calculation of fig. 16.3 is shown in fig. 14.16. In
this case, it is the boundary crossing algorithm that is almost entirely responsible for the
improvement.

Therefore, path-length correction, lateral deflection and a careful boundary crossing algo-
rithm are essential elements of a general purpose, accurate electron transport algorithm. It
remains to be proven in a more rigorous fashion that these components are physically valid
in a more general context other than the examples given. Otherwise the improvements may
be fortuitous. To do this requires a brief introduction to the Molière theory, specifically on
the limits on electron step-size demanded by this multiple scattering formalism.

14.2.2 Constraints of the Molière Theory

In this section we briefly discuss the physical constraints of the Molière multiple scattering
theory. Rather than present many mathematical formulae, we concentrate on graphical
representations of the various limits. For further detail, the reader is encouraged to examine
refs. [NHR85, BR87] for the implementation of the Molière theory in the EGS code. The
original papers are enlightening [Mol47, Mol48], and the exposition of Molière’s theory by
Bethe [Bet53] is a true classic of scientific literature.
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Figure 14.16: The air tube calculation of fig. 16.3 is dramatically improved by the use of
PRESTA. The label blcmin= 1.989 refers to a parameter that controls the boundary crossing
algorithm. This point is discussed later.
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The Molière theory is constrained by the following limits:

• The angular deflection is “small”. (The Molière theory is couched in a small angle
approximation.) Effectively, this constraint provides the upper limit on step-size.

• The theory is a multiple scattering theory, that is, many atomic collision participate to
cause the electron to be deflected. Effectively, this constraint provides the lower limit
on step-size.

• The theory applies only in infinite or semi-infinite homogeneous media. This constraint
provides the motivation for treating the electron transport very carefully in the vicinity
of interfaces.

• Energy loss is not built into the theory.

Bethe [Bet53] carefully compared the multiple scattering theories of Molière [Mol47, Mol48]
and Goudsmit-Saunderson [GS40a, GS40b]. The latter theory does not resort to any small-
angle approximation. Bethe showed that the small angle constraint of the Molière theory can
be expressed as an equation that yields the maximum step-size [NHR85, BR87]. Below this
limit, the two theories are fundamentally the same. This upper limit is used by PRESTA.
(The default EGS upper limit is actually about 0.8 of the PRESTA limit.) Bethe’s upper
limit is plotted in fig. 14.17 as the curve labelled tmax. Also plotted in this figure is the
CSDA range [BS83]. We note that at larger energies, greater than about 3 MeV in water,
the CSDA range is a more stringent restriction on electron step-size. This means that for
large energies, step-sizes can be quite large, up to the range of the electron. However, one
must recall that the Molière theory does not incorporate energy loss directly. Therefore, if
we wish to approach the upper limit on step-size, we must treat the energy loss part of the
problem carefully. This topic will be discussed in a later section.

There is a critical parameter in the Molière theory, Ω0, that can be interpreted as the number
of atoms that participate in the multiple scattering. Molière considered his development to
be valid for Ω0 ≥ 20. It has been found that sensible results can be obtained for Ω0 ≥
e [BR87]. The lower limit, Ω0 = e, represents the “mathematical” limit below which
Molière’s formalism breaks down mathematically. It is interesting that Molière’s theory can
be “pushed” into the “few-scattering” regime and still produce reliable answers. We shall
return to this point later. The minimum step-size, tmin, obeying Ω0 = e is plotted versus
electron kinetic energy in fig. 14.17 for water. We see in this figure, that the minimum and
maximum step-sizes are the same at about 230 eV in water. Therefore, this represents the
absolute minimum energy for which multiple scattering can be modelled using the Molière
theory. (In this energy region, atomic binding effects begin to play an increasingly important
role requiring the use of more sophisticated low-energy theories.) As the energy increases, so
does the range over which the Molière theory is valid. The lower limit reaches an asymptotic
bound at about 4 × 10−4 cm, while the upper limit continues upwards monotonically with
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Figure 14.17: The minimum and maximum step-size limits of the Molière theory, tmin and
tmax respectively. These limits are for water and the behavior for other materials can be
obtained elsewhere [NHR85, BR87]. The dashed curve is the CSDA range [BS83].



230 CHAPTER 14. ELECTRON STEP-SIZE ARTEFACTS AND PRESTA

increasing energy. Thus, for high energy, the applicable range in water extends from about
4 microns to the electron CSDA range.

In a previous section we discussed a type of artefact that can be problematic with the EGS
code. That is, if one demands a step-size that is too short, EGS “turns off” the simulation of
multiple scattering. We saw a dramatic example of this in fig. 16.3. Figure 14.18 compares

Figure 14.18: Electron step-size is plotted versus kinetic energy for various values of ESTEPE
and tmin. These curves apply for water. For other media, consult ref. [NHR85, BR87]. If
one demands a 0.1% ESTEPE in water, then multiple scattering cannot be modelled using
the Molière theory for electrons below about 500 keV.

tmin with step-sizes measured by various values of ESTEPE as calculated for water. Note
that if one demands a step-size of 1% ESTEPE, then multiple scattering will not be simulated
for electrons with energies less than about 40 keV. To circumvent this problem, PRESTA
does not allow the ESTEPE restriction to reduce step-size below tmin.

The answer to the question, “Is the Molière theory valid between these upper and lower
limits?”, is a complicated one. The benchmarking of PRESTA can be construed as a verifi-
cation of the consistency of the Molière theory. If the Molière theory contained any intrinsic
step-size dependence, then so would the results calculated using PRESTA, barring some
highly fortuitous coincidences. In the next few subsections, we examine all the components
of PRESTA, trying the utmost to omit unnecessary complications.
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14.2.3 PRESTA’s path-length correction

In section 14.1.2 we discussed a new path-length correction. This method used the Lewis
formula, eq. 17.1, expanded it to 4th order in Θ, and evaluated the mean values using the
Molière distribution functions [BR87]. We have seen impressive reductions in step-size
dependences exhibited in figs. 14.11 and 14.12. It now remains to prove that this path-
length correction is valid in more general applications. To this end, we modify our electron
transport algorithm in the following fashion to conform with all the constraints of the Molière
theory:

• Energy loss mechanisms are “switched off”, including losses to “continuous” and “dis-
crete” processes.

• Bounding surfaces of all kinds are eliminated from the simulations. The transport
takes place in an infinite medium.

• The step-size constraints of the Molière theory are obeyed.

We performed the following simulations: An electron was set in motion in a given direction,
which defines the z-axis for the problem. A history was defined by having the total curved
path, summed over all electron steps, exactly equal to the Molière upper limit. This was
achieved by choosing the step to be a divisor of tmax. That is, one simulation was done
with t = tmax, another with t = tmax/2, another with t = tmax/3, . . . tmax/N , where N is an
integer. The quantity “scored” was the average displacement along the z-axis, 〈z〉N , at the
end of the history. The sum of the curved paths of the N steps always equals tmax. We note
that lateral displacements play no role in this simulation because they would average out to
zero. We argue that if the path-length correction and the Molière theory are both consistent,
then the 〈z〉N ’s should be independent of N, or equivalently, step-size independent.

We show two extreme cases in figs. 14.19 and 14.20. The former, for 10 MeV electrons in wa-
ter, plots 〈z〉N versus the inverse number of steps, 1/N . For contrast, the default path-length
correction algorithm of EGS and simulations performed without a path-length correction are
shown. Recall that there is no energy loss in these simulations. As an indicator of scale, we
have included a line indicating the step-size (measured in 1/N) equal to the CSDA range
in water. We have seen before that at high energies,above 3 MeV in water, the Molière
upper limit exceeds the CSDA range. We have also included the ESTEPE=20% line, ap-
proximately the default EGS step-size in water. If one used the default EGS simulation, one
would make path-length related errors of only a few percent. The new path-length correction
would allow the default upper limit on step-size in EGS to be extended upwards, allowing
steps approaching the full CSDA range, without introducing artefacts! The new path-length
correction thus shows a potential of speeding up high energy simulations! Benchmarks have
yet to be performed in this area.
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Figure 14.19: A test of the step-size dependence of the Molière theory with the new path-
length correction and with other path-length correction methods. This case is for 10 MeV
electrons in water.
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Figure 14.20: A test of the step-size dependence of the Molière theory with the new path-
length correction and with other path-length correction methods. This case is for 10 keV
electrons in water.
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Figure 14.20 depicts a similar set of simulations at 10 keV, three orders of magnitude less
than the previous example. The ESTEPE=20% line, near the default EGS step-size, is close
to the Molière upper limit. Path-length corrections are very important here. We also show
Molière’s lower limit, the Ω0 = 20 line. It was mentioned previously that Molière’s lower
limit was found to be too conservative and that sensible results could be expected for Ω0 ≥ e.
This is shown in fig. 14.20. The new path-length correction (or the Molière theory) show
evidence of breakdown only in the vicinity of Ω0 = e. It is more likely, however, that this is
a numerical problem as various functions, which become singular near this limit, are difficult
to express numerically. Similar tests have been performed for other energies and materials.
In all cases the step-size independence of the path-length correction and the Molière theory
is demonstrated.

14.2.4 PRESTA’s lateral correlation algorithm

In section 14.1.3, we discussed the importance of lateral transport for each electron step
in certain calculations. Berger’s algorithm [Ber63], eq. 17.4, is used by PRESTA. To test
this algorithm, we used a test very similar to that used to prove the viability of the path-
length correction of the previous section. Again, we modify our electron transport algorithm
to conform with all the constraints of the Molière theory. Energy loss mechanisms were
“switched off”, all bounding surfaces were eliminated from the simulations to make it seem
as if the transport took place in an infinite medium, and the step-size constraints of the
Molière theory were obeyed. We performed the following simulations: An electron was set
in motion in a given direction, which defines the z-axis for the problem. As before, a history
was defined by having the total curved path, summed over all electron steps, exactly equal to
the Molière upper limit. The quantity “scored” was the average displacement perpendicular
to the z-axis, 〈r〉N , at the end of the history. The sum of the curved paths of the N steps
always equals tmax. Path-length corrections play a minor role in these simulations because
the geometric straight-line transport distances are somewhat dependent upon the amount
of curvature correction applied to the electron steps. However, as shown in the previous
section, the path-length correction and the Molière theory are both consistent. If the lateral
correlation algorithm is also consistent, then the 〈r〉N ’s should also be independent of N, or
equivalently, step-size independent.

We show one representative case in fig. 14.21 for 100 keV electrons in water, which depicts
〈r〉N versus the inverse number of steps, 1/N . We also show two other calculations of rN
which do not include the lateral correlation algorithm. One is the default EGS calculation
with its default path-length correction and the other has no path-length correction. The
relatively small difference between these two curves indicates that this test depends only
weakly upon the path-length correction used. (If the new path-length correction was used
without a lateral correlation algorithm, it would lie somewhere between these two curves.)
A great reduction of step-size dependence in this calculation is demonstrated. Only for
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Figure 14.21: Step-size independence test of the lateral correlation algorithm. Also shown
are two calculations without lateral displacements, with and without the default EGS path-
length correction. This test depends only weakly upon the path-length correction used. This
case is for 100 keV electrons in water.
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the large step-sizes is there any evidence of deviation. This feature has been observed at
all energies [BR87]. However, we shall see in the next section that the remaining depen-
dence is eliminated when energy loss is incorporated. The “ESTEPE=20%” line shows the
approximate step-size used by EGS in its default configuration.

14.2.5 Accounting for energy loss

The underlying Molière theory does not treat energy loss directly. Actually, it is not too
difficult to use the Molière theory in a more general fashion and incorporate energy loss.
One merely has to convert integral equations in the following fashion:

∫ t

0

dt′f(t′, E(t′)) =⇒
∫ E0

Ef

dE ′f (t′(E ′), E ′) /|s(E ′)|, (14.4)

where f() is any function of the curved path-length, t, and the energy, E. The function, s(),
is the stopping power. The familiar equation relating E and t directly is obtained by making
the substitution, f() → 1 in the above equation. However, such equations prove to be difficult
to handle numerically and it is not really necessary. In all the formulae used in regards to
multiple scattering and the various elements of PRESTA, an integration over t′ is involved.
It is then sufficiently accurate to make the approximation that the energy is constant if it is
evaluated at the midpoint of the step. In more concrete terms, we approximate,

∫ t

0

dt′f (t′, E(t′)) ≈
∫ t

0

dt′f(t′, Ẽ), (14.5)

where Ẽ = 1
2
[E0+ ts(Ẽ)]. Note that this latter equation for Ẽ is really an iterative equation

and it has been found that it is sufficient to evaluate it only to first order. That is, we
make the approximation that Ẽ ≈ 1

2
{E0 + ts(1

2
[E0 + ts(E0)])}. Some justification for this

treatment can be obtained from the following relation,

I =

∫ E0

Ef

dE f(E) = ∆E

{

f(Ẽ) +
1

24
(∆E)2f ′′(Ẽ) . . .

}

, (14.6)

where Ẽ = (E0+Ef )/2, ∆E = E0−Ef , and f
′′(E) is the second derivative of with respect to

E. Thus, if ∆E is not large with respect to E, and f ′′() is not too large, the approximation,
I ≈ ∆Ef(Ẽ) is valid.

Further justification may be obtained by viewing the step-size independence of 〈z〉N and
〈r〉N with energy loss incorporated by the above method i.e. evaluating all energy-related
expressions at the mid-point of the step. The results are shown in figs. 14.22 and 14.23,
respectively. In each case, the step-size was chosen to be a fixed value of Molière’s upper
limit. However, as the particle loses energy this step-size changes owing to it’s inherent energy
dependence. In each case, the electron’s endpoint energy, at which point the transport was
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Figure 14.22: A similar test of the path-length correction done for figs. 14.19 and 14.20 but
with energy loss incorporated. Electron histories were terminated when the kinetic energy,
EKCUT, reached 1% of the starting energy, except in the 10 keV case where it was 10%.
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Figure 14.23: A similar test of the lateral correlation done for fig. 14.21 but with energy loss
incorporated. Electron histories were terminated when the kinetic energy, EKCUT, reached
1% of the starting energy, except in the 10 keV case where it was 10%.
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terminated, was chosen to be 1% of the starting energy. The only exception was 10 keV,
where the endpoint energy was 1 keV. We note that both 〈z〉N and 〈r〉N exhibit step-
size independence. Even more remarkable is the fact that the minor step-size dependence
exhibited by 〈r〉N , shown in fig. 14.21, has vanished. This improvement appears to be
fortuitous resulting form cancellations of second-order effects. More research is needed to
study the theories concerning lateral displacements.

14.2.6 PRESTA’s boundary crossing algorithm

The final element of PRESTA is the boundary crossing algorithm. This part of the algorithm
tries to resolve two irreconcilable facts: that electron transport must take place across bound-
aries of arbitrary shape and orientation, and that the Molière multiple scattering theory is
invalid in this context.

If computing speed did not matter, the solution would be obvious—use as small a step-size
as possible within the constraints of the theory. With this method, a great majority of the
transport steps would take place far removed from boundaries and the underlying theory
would only be “abused” for that small minority of steps when the transport takes place in
the direct vicinity of boundaries. This would also solve any problems associated with the
omission of lateral translation and path-length correction. However, with the inclusion of a
reliable path-length correction and lateral correlation algorithm, we have seen that we may
simulate electron transport with very large steps in infinite media. For computing efficiency,
we wish to use these large steps as often as possible.

Consider what happens as a particle approaches a boundary in the PRESTA algorithm.
First we interrogate the geometry routines of the transport code and find out the closest
distance to any boundary. As well as any other restrictions on electron step-size, we restrict
the electron step-size, (total, including path-length curvature) to the closest distance to any
boundary. We choose to restrict the total step-size so that no part of the electron path could
occur across any boundaries. We then transport the particle, apply path-length corrections,
the lateral correlation algorithm, and perform any “scoring” we wish to do. We then repeat
the process.

At some point this process must stop, else we encounter a form of Zeno’s paradox. We will
never reach the boundary! We choose a minimum step-size which stops this sort of step-size
truncation. We call this minimum step-size t′min. If a particle’s step-size is restricted to t′min,
we are in the vicinity of a boundary. The particle may or may not cross it. At this point,
to avoid ambiguities, the lateral correlation algorithm is switched off, whether or not the
particle actually crosses the boundary. If we eventually cross the boundary, we transport
the particle with the same sort of algorithm. We start with a step t′min. We then let the
above algorithm take over. This process is illustrated in fig. 14.24. This example is for a 10
MeV electron incident normally upon a 1 cm slab of water. The first step is t′min in length.
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Figure 14.24: Boundary crossing algorithm example: A 10 MeV electron enters a 1 cm slab
of water from the left in the normal direction. The first step is t′min in length. Since the
position here is less than t′min away from the boundary, the next step is length t′min as well.
The next 4 steps are approximately 2t′min, 4t

′
min, 8t

′
min, and 16t′min in length, respectively.

Finally, the transport begins to be influenced by the other boundary, and the steps are
shortened accordingly. The electron leaves the slab in 3 more steps.

Since the position at this point is less than t′min away from the boundary (owing to path
curvature), the next step is length t′min as well. The next 4 steps are approximately 2t′min,
4t′min, 8t

′
min, and 16t′min in length, respectively. Finally, the electron begins to “see” the

other boundary, shortens its steps accordingly. For example, the total curved path “a” in
the figure is associated with the transport step “b”. The distance “a” is the distance to the
closest boundary.

Finally, what choice should be made for t′min? One could choose t′min= tmin, the minimum
step-size constraint of the Molière theory. Although this option is available to the PRESTA
user, practice has shown it to be too conservative. Larger transport steps may be used
in the vicinity of boundaries. The following choice, the default setting for t′min, has been
found to be be a good practical choice, allowing both accurate calculation and computing
efficiency: Choose t′min to equal tmax for the minimum energy electron in the problem (as
set by transport cut-off limits). Then scale the energy-dependent parts of the equation for
t′min accordingly, for higher energy electrons. The reader is referred to ref. [BR87] for the
mathematical details. As an example, we return to the “air tube” calculation of fig. 14.16.
In that figure, the choice of “blcmin”, the variable in PRESTA which controls the boundary
crossing algorithm and which is closely related to t′min, was set to 1.989. This causes t′min

to be equal to tmax for 2 keV electrons. A transport cut-off of 2 keV is appropriate in this
simulation because electrons with this energy have a range which is a fraction of the diameter
of the tube. In most practical problems, if one chooses the transport cut-off realistically,
PRESTA’s default selection for t′min produces accurate results. Again, the reader is referred
to the PRESTA documentation [BR87] for further discussion.
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PRESTA, as the name implies, was designed to calculate quickly as well as accurately, since
it wastes little time taking small transport steps in regions where it has no need to. There
is no space to go into further discussion about this although there is a brief discussion in
Chapter 17. Again, the reader is referred elsewhere [BR87]. Typical timing studies have
shown that PRESTA, in its standard configuration, executes as quickly, and sometimes much
more quickly, then EGS with ESTEPE set so as to produce accurate results. For problems
with a fine mesh of boundaries, for example a depth-dose curve with a r0/40 mesh, the timing
is about the same. For other problems, with few boundaries, the gain in speed is about a
factor of 5.

14.2.7 Caveat Emptor

It would leave the reader with a mistaken impression if the chapter was terminated at this
point. PRESTA has demonstrated that step-size dependence of calculated results has been
eliminated in many cases and that computing time can be economized as well. By under-
standing the elements of condensed-history electron transport, some problems have been
solved. Calculational techniques that isolate the effects of various constituents of the elec-
tron transport algorithm have been developed and used to prove their step-size independence.
However, PRESTA is not the final answer because it does not solve all step-size dependence
problems, in particular, backscattering. This is demonstrated by the example shown in
fig. 14.25. In this example, 1.0 MeV electrons were incident normally on a semi-infinite
slab of water. The electron transport was performed in the CSDA approximation. That is,
no δ-rays or bremsstrahlung γ’s were set in motion and the unrestricted collision stopping
power was used. The ratio of backscattered kinetic energy to incident kinetic energy was
calculated. The default EGS calculation (with ESTEPE control) is shown to have a large
step-size dependence. The PRESTA calculation is much improved but still exhibits some
residual dependence on step-size.

In general, problems that depend strongly on backscatter will exhibit a step-size dependence,
although the severity is much reduced when one uses PRESTA. We may speculate on the
reason for the existence of the remaining step-size dependence. Recall that the path-length
correction, which relates the straight-line path length, s, and t, the curved path-length of
the transport step, really calculates only an average value. That is, given t, the value of s is
predetermined and unique. It is really a distributed quantity and should be correlated to the
multiple scattering angle of the step. In other words, we expect the distribution to be peaked
in the backward direction if Θ = π and peaked in the forward direction if Θ = 0. To this
date, distributions of this sort which are accurate for large angle scattering are unknown. If
they are discovered they may cure PRESTA’s remaining step-size dependence.
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Figure 14.25: Fractional energy backscattered from a semi-infinite slab of water with 1.0 MeV
electrons incident normally. The electron transport was performed in the CSDA approxima-
tion. (No δ-rays or γ’s were set in motion). The default EGS and PRESTA calculations are
contrasted. There is still evidence of step-size dependence in the PRESTA calculation.
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Chapter 15

Advanced electron transport
algorithms

In this chapter we consider the transport of electrons in a condensed history Class II
scheme [Ber63]. That is to say, the bremsstrahlung processes that result in the creation of
photons above an energy threshold Eγ , and Møller knock-on electrons set in motion above
an energy threshold Eδ, are treated discretely by creation and transport. Sub-threshold
processes are accounted for in a continuous slowing down approximation (CSDA) model.
For further description of the Class II scheme the reader is encouraged to read Berger’s
article [Ber63] who coined the terminology and gave a full description and motivation for
the classification scheme. Figure 15.1 gives a graphical description of the transport.

-e

δ γ

Figure 15.1: This is a depiction of a complete electron history showing elastic scattering,
creation of bremsstrahlung above the Eγ threshold, the setting in motion of a knock-on
electron above the Eδ threshold and absorption of the primary and knock-on electrons.
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The electron transport processes between the particle creation, absorption vertices is gov-
erned by the Boltzmann transport equation as formulated by Larsen [Lar92]:
[

1

v

∂

∂t
+ ~Ω · ~∇+ σs(E)−

∂

∂E
L(E)

]

ψ(~x, ~Ω, E, t) =

∫

4π

dΩ′ σs(~Ω·~Ω′, E)ψ(~x, ~Ω′, E, t) , (15.1)

where ~x is the position, ~Ω is a unit vector indicating the direction of the electron, E is the
energy of the electron and t is time. σs(~Ω · ~Ω′, E) is the macroscopic differential scattering
cross section,

σs(E) =

∫

4π

dΩ′ σs(~Ω · ~Ω′, E) (15.2)

is the total macroscopic cross section (probability per unit length), L(E) is the restricted
stopping power appropriate for bremsstrahlung photon creation and Møller electrons beneath
their respective thresholds Eγ and Eδ, v is the electron speed and ψ(~x, ~Ω, E, t) d~x dΩdE is

the probability of there being an electron in d~x about ~x, in dΩ about ~Ω and in dE about E
at time t. The boundary condition to be applied to each segment in Figure 15.1 is:

ψ(~x, ~Ω, E, 0) = δ(~x)δ(ẑ − ~Ω)δ(En − E) , (15.3)

where the start of each segment is translated to the origin and rotated to point in the z-
direction. (ẑ is a unit vector pointing along the z-axis.) The energy at the start of the n-th
segment is En.

For our considerations within the CSDA model, we note that E and t can be related since
the pathlength, s,

s = vt =

∫ En

E

dE ′

L(E ′)
, (15.4)

permitting a slight simplification of Eq. 15.1:
[

∂

∂s
+ ~Ω · ~∇+ σs(E)

]

ψ(~x, ~Ω, s) =

∫

4π

dΩ′ σs(~Ω · ~Ω′, E)ψ(~x, ~Ω′, s) . (15.5)

The cross section still depends on E which may be calculated from Eq. 15.4.

Lewis [Lew50] has presented a “formal” solution to Eq.15.5. By assuming that ψ can be
written in an expansion in spherical harmonics,

ψ(~x, ~Ω, s) =
∑

lm

ψlm(~x, s)Ylm(~Ω) , (15.6)

one finds that
[

∂

∂s
+ κl

]

ψlm(~x, s) = −
∑

λµ

~∇ψλµ(~x, s) · ~Qλµ
lm , (15.7)

where

κl(E) =

∫

4π

dΩ′ σs(~Ω · ~Ω′, E)[1− Pl(~Ω · ~Ω′)] , (15.8)
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and
~Qλµ
lm =

∫

4π

dΩY ∗
lm(

~Ω) ~ΩYλµ(~Ω) . (15.9)

If one considers angular distribution only, then one may integrate over all ~x in Eq. 15.7
giving:

[

∂

∂s
+ κl

]

ψl(s) = 0 , (15.10)

resulting in the solution derived by Goudsmit and Saunderson [GS40a, GS40b]:

ψ(~Ω, s) =
1

4π

∑

l

(2l + 1)Pl(ẑ · ~Ω) exp
(

−
∫ s

0

ds′ κl(E)

)

. (15.11)

Eq. 15.7 represents a complete formal solution of the Class II CSDA electron transport
problem but it has never been solved exactly. However, Eq. 15.7 may be employed to
extract important information regarding the moments of the distributions. Employing the
definition,

kl(s) = exp

(

−
∫ s

0

ds′ κl(E)

)

, (15.12)

Lewis [Lew50] has shown the moments 〈z〉, 〈z cosΘ〉, and 〈x2 + y2〉 to be:

〈z〉 =
∫ s

0

ds′ k1(s
′) , (15.13)

〈z cosΘ〉 = k1(s)

3

∫ s

0

ds′
1 + 2k2(s

′)

k1(s′)
, (15.14)

and

〈x2 + y2〉 = 4

3

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1− k2(s

′′)

k1(s′′)
. (15.15)

It can also be shown using Lewis’s methods that

〈z2〉 = 2

3

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1 + 2k2(s

′′)

k1(s′′)
, (15.16)

and

〈x2 + y2 + z2〉 = 2

∫ s

0

ds′ k1(s
′)

∫ s′

0

ds′′
1

k1(s′′)
, (15.17)

which gives the radial coordinate after the total transport distance, s. Note that there was an
error1 in Lewis’s paper where the factor 1/3 was missing from his version of 〈z cosΘ〉. In the

1The correction of Lewis’s Eq. 26 is:

Hl1 =

√

1

4π(2l+ 1)
kl(s)

∫ s

0

ds′
lkl−1(s

′) + (l + 1)kl+1(s
′)

k1(s′)

The reader should consult Lewis’s paper [Lew50] for the definition of the H-functions.
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limit that s −→ 0, one recovers from Eqs. 15.14 and 15.16 the results lims−→0〈z cosΘ〉 = s
and lims−→0〈z2〉 = s2 which are not obtained without correcting the error as described in the
footnote. Similar results for the moments have been derived recently by Kawrakow [Kaw96a]
using a statistical approach.

Before leaving this introductory section it warrants repeating that these equations are all “ex-
act” within the CSDA model and are independent of the form of the elastic scattering cross
section. It should also be emphasized that Larsen analysis [Lar92] proves that the condensed
history always gets the correct answer (consistent with the validity of the elastic scattering
cross section) in the limit of small step-size providing that the “exact” Goudsmit-Saunderson
multiple-scattering formalism is employed (and that its numerical stability problems at small
step-size can be solved). Larsen analysis also draws some conclusions about the underlying
Monte Carlo transport mechanisms and how they relate to convergence of results to the cor-
rect answer. Some Monte Carlo techniques can be expected to be less step-size dependent
than others and converge to the correct answer more efficiently, using larger steps.

The ultimate goal of a Monte Carlo transport algorithm should be to make electron con-
densed history calculations as stable as possible with respect to step-size. That is, for a
broad range of applications there should be step-size independence of the result. Hence, it
would be most efficient to use steps as large as possible and not be subject to calculation
errors. While we have not yet achieved this goal, we have made much progress towards it
and describe some of this progress in a later section.

15.1 What does condensed history Monte Carlo do?

Monte Carlo calculations attempt to solve Eq. 15.5 iteratively by breaking up the transport
between discrete interaction vertices, as depicted in Figure 15.2. The first factor determining
the electron step-size distance is the distance to a discrete interaction. These distances are
stochastic and characterized by an exponential distribution. Further subdivision schemes
may be employed and these can be classified as numeric, physics’ or boundary step-size
constraints.

15.1.1 Numerics’ step-size constraints

A geometric restriction, say s ≤ smax may be used.A geometric restriction of this form was
introduced by Rogers [Rog84b] in the EGS Monte Carlo code [NHR85, BHNR94]. This has
application in graphical displays of Monte Carlo histories. One wants the electron tracks to
have smooth lines and so the individual pathlengths should be of the order of the resolution
size of the graphics display. Otherwise, the tracks look artificially jagged, as they do in
Figure 15.2. Of course, there are some real sharp bends in the electron tracks associated
with large angle elastic scattering, but these are usually infrequent. One can predict the
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Figure 15.2: This is how a Monte Carlo calculates of the complete electron history as depicted
in Figure 15.1. The transport takes place in steps, the vertices of which are marked with the
symbol “×”.

number of steps required to follow a particle to termination. For this case N = r(Ei)/smax,
where r(Ei) is the range of an electron with starting energy Ei.

Another popular choice is a constant fractional energy loss per electron step, i.e. ∆E/E =
constant. This has a slight disadvantage that the electron steps get shorter and shorter
as the energy of the electrons in the simulation gets smaller and smaller. In terms of the
dynamic range of the energies of the particles in the simulation, generally the lower ones
play a lesser important role (there are exceptions to this of course!) and so, despite its
popularity, it is probably wasteful in many applications. One can predict the number of steps
required to follow a particle to termination in this case as well. For this case N = log(1 −
∆E/E)/log(Emin/Ei) where Emin is the minimum electron energy for which transport takes
place. One sees that as Emin is pushed downwards by the requirements of some applications,
that the number of steps acquires a slow logarithmic growth, unlike the geometric restriction.
The constant fractional energy loss per electron step is built into the ETRAN Monte Carlo
code [Ber63, Sel89, Sel91] and its well-known progeny, the ITS system [HKM+92] and
the electron component of MCNP [Bri86, Bri93]. In these code systems, the value of the
constant is kept in internal tables and its value determined through trial and error. In the
EGS system [NHR85, BHNR94], it is available to the user as a “tuning” parameter, to be
adjusted (lowered) until the answer converges to the (presumably correct) result.

There are other schemes of step-size restriction that will not be discussed. However, we see
that the two discussed thus far play the role of an “integration mesh-density”. To get better
results one must increase the resolution. To be practical, the mesh density ought to be as
large as possible, consistent with target accuracy of the application. Larsen [Lar92] has
made an interesting analysis of Monte Carlo algorithms and how they should be expected
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to converge. He showed that the ETRAN scheme proposed by Berger [Ber63] contains
O(∆s) errors. Thus, one expects that accurate calculation with ETRAN methods would
converge slowly and require small step-sizes to get the answer correct. Indeed, this was the
case with the EGS code as well, motivating the step-size restrictions introduced into EGS
by Rogers [Rog84b].

Larsen [Lar92] also proposed an alternative Monte Carlo method (calling it “Method 3”) to
enable faster convergence since it contains O(∆s2) errors. The algorithm for each sub-step,
∆s, is that first it must be broken into two parts. The first part is a drift of length ∆s/2
in the initial direction of motion, and a deduction in energy due to continuous energy losses
over the first part of this step. The multiple-scattering angle is sampled at this new energy
but for a deflection angle assuming that the particle as gone the full sub-step distance,
∆s, and deflection by this angle. The sub-step is then completed by executing a drift of
distance ∆s/2 in the new direction. Although this method may seem as is if is doubling the
number of steps, this is actually not the case since the most computer-intensive part of the
process, namely sampling the multiple-scattering angle and rotation, is performed only once
per sub-step.

The result of the “Method 3” procedure is to impart longitudinal and lateral distributions
to the sub-step, both correlated to the multiple-scattering angle, Θ. Assuming the particle
starts at the origin and is directed along the z-axis, after a total sub-step pathlength of ∆s,
the final resting place will be:

∆x = (∆s/2) sinΘ cosΦ

∆y = (∆s/2) sinΘ sinΦ

∆z = (∆s/2)(1 + cosΘ) , (15.18)

where Φ is a randomly selected azimuthal angle and it is understood that Θ is sampled
from the Goudsmit-Saunderson [GS40a, GS40b] multiple-scattering theory at the mid-point
energy.

Only two previously published Monte Carlo methods have followed this prescription. Berger’s
method [Ber63] is similar except that he proposed a straggling term for the lateral compo-
nents and the energy dependence was taken account for directly. However, the longitudinal
and lateral distributions have only been recently been implemented into ETRAN [Sel91].

The other method is the PRESTA algorithm [BR86, BR87] that has been incorporated
into EGS. This algorithm is different from Method-3 in that the final longitudinal position
was determined by its average rather than the distribution implied by Eq. 15.18. However,
this only contributes to the O(∆s2) error. The other very important distinction is that the
PRESTA algorithm employs the Molière multiple-scattering method method [Mol47, Mol48]
with corrections and limitations discussed by Bethe [Bet53].

There has also been a recently-published method called the Longitudinal and Lateral Corre-
lation Algorithm (LLCA) proposed by Kawrakow [Kaw96a]. It incorporates the Method-3
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transport scheme except that the multiple-scattering theory, while representing an improve-
ment over Molière’s method is still an approximation [Kaw96b] to the Goudsmit-Saunderson
method. However, there is one important improvement over Method-3 in that the lateral
position of the electron at the end of the sub-step is connected to the multiple-scattering
angle by means of a distribution, rather than direct correlation as implied by Eq. 15.18.
For the present, this distribution function has only been calculated using single-scattering
methods (analog Monte Carlo or event-by-event elastic scattering). Presumably, this is an
O(∆s2) or higher correction.

15.1.2 Physics’ step-size constraints

There are also step-size restrictions related to keeping the step-sizes within range of the
validity of the theories underlying the condensed history method. This is important, for
example, when using the Molière multiple-scattering theory [Mol47, Mol48]. Bethe [Bet53]
analyzed Molière multiple-scattering theory, comparing it to the “exact” theory of Goudsmit
and Saunderson [GS40a, GS40b] and provided a correction that improves the large-angle
behaviour of Molière theory for large angles as Molière theory is couched in the small-angle
formalism of Bothe [Bot21] and Wentzel [Wen22]. The electron step-size constraint arises
from not allowing the multiple-scattering angle to attain values greater than 1 radian.

Small-angle multiple scattering theories still play an important role in electron Monte Carlo
calculations of the Class II variety since Class II condensed history techniques sample the
multiple-scattering distributions “on-the-fly” as the pathlength can, in principle be any-
thing within the constraints already discussed. Class I algorithms, as defined in Berger’s
work [Ber63], demand that the electrons follow a predetermined energy grid, allowing the
multiple-scattering distributions to be pre-calculated. While Class I and Class II have their
attributes and shortcomings, the use of an approximate multiple-scattering theory in Class
II calculations, considered with the conclusion of the previous section, forces the realiza-
tion that one can not necessarily expect that the limit of small step-size will produce the
correct answer for Class-II/approximate multiple-scattering algorithms! It should also be
remarked that Class-I/exact multiple-scattering schemes are subject to numerical instabil-
ities as smaller step-sizes require an increasing number of terms in the Legendre serious of
Eq. 15.11 to be summed. There have been studies demonstrating that one can converge to
the incorrect answer in a Class-II/approximate multiple-scattering algorithm [Rog93, Bie96].

Step-size instability of the Molière theory [Mol48] has been studied extensively [AMB93,
Bie94] and comparisons with Goudsmit-Saunderson theory [GS40a, GS40b] have been
performed [Bet53, Win87] as well as comparisons with single-elastic scattering Monte
Carlo [Bie94]. This has motivated the development of a new multiple-scattering theory
based on Goudsmit-Saunderson theory [GS40a, GS40b] but formulated in such a way as
to allow sampling “on-the-fly” as required by Class II algorithms and eliminating the small
step-size numerical instability of the Goudsmit-Saunderson Legendre summation that arises
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from the form expressed in Eq. 15.11. This recent work [KB98] will be discussed in a later
section. However, this new multiple-scattering theory will guarantee that condensed his-
tory Monte Carlo will always converge to the correct answer in the limit of small electron
step-size.

15.1.3 Boundary step-size constraints

The final category of electron step-size constraint we consider relates to the geometry, specifi-
cally interfaces and material boundaries. Although the transport theory expressed in Eq. 15.5
and the various solutions to it describe electron transport in infinite, unbounded uniform
media, practical applications contain boundaries and interfaces between media. Except
for the stopping of electrons at interfaces and the updating the material-dependent trans-
port data, this problem was not considered until the EGS/PRESTA algorithm was devel-
oped [BR86, BR87]. This algorithm requires knowledge of the nearest distance to any
interface and shortens the electron step-size accordingly, by setting s = s⊥min where s⊥min is
the nearest distance to any interface. This is always a perpendicular distance (as suggested
by the notation) unless the closest distance happens to be along an intersection of two sur-
faces. This procedure requires more information from the geometry2 but it is necessary to
avoid potential misuse of the underlying transport theory. Of course this shortening can not
continue indefinitely as the electron would never reach the surface, a transport equivalent of
Xeno’s paradox. PRESTA continues the procedure until the transport steps approach the
lower limit of validity of Molière theory, usually from about 3 to 20 mean-free-path distances,
and then allows the electron to reach the surface, does not model the lateral components
of sub-step transport given in Eq. 15.18 (This is a necessary part of the transport logic,
otherwise the lateral transport takes the electron away from the surface, in either medium),
updates material-dependent data and carries on in the next medium. The initial distance
is again related to the lower limit of validity of Molière theory and thereafter the algorithm
adjusts step-sizes according to s⊥min. As a particle recedes from a boundary, its steps grow
and grow, allowing for efficient, rapid transport away from interfaced. This behaviour is
depicted in Figure 15.3.

However, this technique is not without its difficulties. Because lateral transport is not
modeled for the steps that touch the boundary, the multiple-scattering deflection is performed
at the end of the sub-step. Electron can thus backscatter from a surface, requiring careful
handling of the transport logic in the vicinity of interfaces [Bie95]. This “boundary-crossing
algorithm” as implemented in PRESTA also pushes the Molière theory towards the edge of
its region of validity. Granted, the misuse of Molière theory is minimized but it still exists.

2The general requirements for electron transport in a geometry composed entirely of planar and quadric
surfaces (i.e. spheroids, cones, hyperboloids, paraboloids) has recently been developed [Bie95]. Although
the distance of intersection to any quadric surface along the particle trajectory requires finding the root of
a quadratic equation, the nearest distance to a quadric surface is the root of an nth-order equation where
n ≤ 6!
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Figure 15.3: This is a depiction of operation of the PRESTA algorithm, which adjusts
electron step-sizes in the vicinity of boundaries.

A more fundamental shortcoming was pointed out by Foote and Smyth [FS95] who pointed
out that the deflection at the interface can cause a spurious events whereby an electron,
having crossed a boundary can assume a trajectory that is parallel, or nearly so, to the
surface at this point. The artefact shows up interfaces between condensed materials and
gases. An electron penetrating the gas may be scattered into a near-parallel trajectory with
the boundary. Even step-sizes of the order of several mean-free-path distances may be too
large in the gas.

This artefact can be eliminated through use of a condensed history method that “evaporates”
to a single-scattering method in the vicinity of interfaces [Bie96]. The algorithm is sketched
in Figure 15.4. Using the new method, the only way that an electron can cross the interface
is through a “no scatter drift” across the interface which involves no approximation. This
technique, coupled with the new multiple-scattering theory will allow for error-free Monte
Carlo calculations in the limit of small step-size in applications with arbitrarily complex
geometries, interfaces and media.

15.2 The new multiple-scattering theory

The “exact” multiple-scattering angular distribution of Eq. 15.11 may be integrated easily
over azimuthal angles (assuming that the cross section does not depend on polarisation) and
written:

ψ(cosΘ, s) =
∑

l

(l + 1/2)Pl(cosΘ) exp

(

−
∫ s

0

ds′ κl(E)

)

, (15.19)
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Figure 15.4: This is a depiction of the new boundary-cross algorithm which eliminates
boundary-related artefacts.

and then reorganized in the following form [KB98]:

ψ(cosΘ, s) = e−λδ(1−cosΘ)+λe−λσ̃+(1−e−λ−λe−λ)
∑

l

(l+1/2)Pl(cosΘ)
e−λgl − 1− λgl
e−λ − 1− λ

,

(15.20)
where

λ =

∫ s

0

ds′ σs(E) (15.21)

is the distance measured in mean-free-path taking into account the change in energy of the
scattering cross section, and e−λ is the probability that the electron can go a distance λ
without scattering even once,

σ̃ =
1

λ

∫ s

0

ds′ σs(cosΘ, E) (15.22)

is the angular distribution of a single-scattering event with probability λe−λ taking into
account energy loss, and

gl =
1

λ

∫ s

0

ds′
∫ π

0

d(cosΘ) σs(cosΘ, E)Pl(cosΘ) , (15.23)

which is related to the κl defined in Eq. 15.8.



15.3. LONGITUDINAL AND LATERAL DISTRIBUTIONS 255

The general from of Eq. 15.21 was suggested by Berger and Wang [BW89] as a way of
reducing some of the singularity in Eq. 15.11 to make the summation for large-l tractable.
This approach has some moderate success for Class I pre-calculations but Class II algorithms
must still sample “on-the-fly”. Therefore, we have adopted an alternative approach.

This approach is based on a similar analysis of the small-angle multiple-scattering prob-
lem [Bie94]. Consider the part of Eq. 15.20 that describes two or more scatterings. Defining
the notation

ψ(2+)(µ, s) =
∑

l

(l + 1/2)Pl(µ)
e−λgl − 1− λgl
e−λ − 1− λ

, (15.24)

where µ = cosΘ. The change of variables,

u = (1 + a)

(

1− 2a

1− µ+ 2a

)

(15.25)

allows us to write an alternate form of ψ(2+)(µ, s), namely

q(2+)(u, s)du = ψ(2+)(µ, s)dµ , (15.26)

where for the moment, a is an arbitrary parameter.

The motivation for this transformation is quite subtle. The magnitude of the derivative of
u with respect to µ is:

du = (1 + a)

(

1− 2a

1− µ+ 2a

)

, (15.27)

which resembles a screened Rutherford cross section with an arbitrary screening angle, a. As
discovered in the small-angle study, most of the shape of the multiple-scattering distribution,
which is peaked strongly in the forward direction for the usual case of small screening angles,
resembles a screened Rutherford cross section with some effective width. The “effective
screening” angle a can then be fixed by th requirement that q(2+)(u, s) be as flat as possible for
all angles and all transport distances. The procedure is described elsewhere. It suffices to say
that the q(2+)-surfaces produced, starting with a screened Rutherford cross section employing
the Molière screening angle [Mol47] along with Mott [Mot29, Mot32] that includes spin
and relativistic corrections [Mot29, Mot32], are flat enough so that a linear interpolation
table that is accurate to within 0.2% can be represented in a few hundred kB of data for 100
atomic elements suitable for applications from 1 keV upwards3.

15.3 Longitudinal and lateral distributions

In this section we consider longitudinal and lateral transport components of Monte Carlo
sub-step. Although the transport scheme represented by Eq. 15.18 has been shown to yield

3We are grateful to Dr Stephen Seltzer for providing the Mott cross section data.
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results correct to O(∆s), it can be shown that all the moments represented by Eqs. 15.13–
15.17 are not correct. Thus, even average penetration distances and lateral diffusion are not
accounted for correctly. For most applications, electrons scatter for many elastic and inelastic
scatterings before tallying some result. After many scatterings, the only information that
really matters are the first few moments. There are, of course exceptions, the most important
one being low energy electron backscatter. In the application, single and plural events can
lead to backscatter from a foil. The “boundary-crossing algorithm” discussed previously may
come to the rescue, however. This is because electrons must penetrate using single-scattering
methods to a skin-depth of several mean-free-path distances before the condensed history
algorithm is allowed to take over. If single and plural scattering from within the skin-depth
is contributing in a significant way to the backscatter events, then this will automatically be
accounted for.

We now describe a transport algorithm that gives exactly the Lewis moments, 〈z〉, 〈z cosΘ〉,
〈z2〉, and 〈x2 + y2〉 with only a little more computational effort4.

We create the ansatz:

∆x/s = [β(s)− δ‖(s, ξx)] sinΘ cos[Φ− δφ(s, ξφ)] + δ⊥(s, ξx)

∆y/s = [β(s)− δ‖(s, ξx)] sinΘ sin[Φ− δφ(s, ξφ)] + δ⊥(s, ξy)

∆z/s = [β(s)− δ‖(s, ξz)] cosΘ + [α(s)− δ‖(s, ξx)] , (15.28)

where δ⊥, δ‖ and δφ are transverse, longitudinal and azimuthal straggling functions and
ξi is a uniform random variable between 0 and 1. The lateral and longitudinal straggling
functions have the property that their average is exactly zero, i.e.

∫ 1

0
dξ δ⊥(s, ξ) = 0 and

∫ 1

0
dξ δ‖(s, ξ) = 0 while the azimuthal straggling function’s average value represents the

average angle between the direction of motion and the azimuthal component of the straggling
function [Kaw96a]. It also has a straggling component. This function has been determined
by single-scattering calculations [Kaw96a]. The functions α(s) and β(s) can be found by
insisting that 〈z〉 and 〈z cosΘ〉 comply with 〈z〉 in Eq. 15.13 and with 〈z cosΘ〉 in Eq. 15.14.

The values of
∫ 1

0
dξ δ2⊥(s, ξ) and

∫ 1

0
dξ δ2‖(s, ξ) can be determined by forcing agreement with

〈z2〉, and 〈x2 + y2〉. It should be remarked that the shape of the straggling functions is not
determined by this approach. We can derive more information about them by calculating
higher Lewis moments. This will lead to information about

∫ 1

0
dξ δn⊥(s, ξ) and

∫ 1

0
dξ δn‖ (s, ξ),

where n > 2. Since we do not know the exact shape of the straggling functions, we have
to guess. Small-angle theory suggests Gaussian’s for the lateral straggling functions. This
work remains to be done. The use of the previously-computed azimuthal straggling function,
should guarantee compliance with 〈x sinΘ cosΦ〉 and 〈y sin Θ sinΦ〉.
Before ending this section, we make a few remarks on the computational efficiency of this

4It is very important remark that more advanced methods have to be computationally efficient. It is
pointless to develop complicated calculational schemes that cost more to execute than simply turning down
the step-size to obtain the same degree of accuracy!
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new method. The most computationally intensive part of Eq. 15.28 is sampling the multiple-
scattering distribution, which is required by any method. The straggling functions can be
pre-calculated and put into interpolation tables, a task no more difficult than the multiple-
scattering table described in the previous section. Alternatively, since the shape of the
distributions is arbitrary, simple forms may be used and sampling these distributions may
be very rapid.

One possible criticism of this approach is that it is bound to produce the occasional un-
physical result of the form x2 + y2 + zs > s2. It is anticipated that this type of event will
be rare, and some indication of this has been given by Berger [Ber63], who first suggest
Gaussian straggling terms for the lateral component. Another criticism is that the ansatz in
Eq. 15.28 is not general enough. Indeed, although moments of the type 〈zn〉 can be used to

determine
∫ 1

0
dξ δn‖ (s, ξ), they will likely be in conflict with higher order moments of the sort

〈zn cosmΘ〉. Actually, this criticism is coupled directly to the previous one and results from
our incomplete understanding of the solution to the complete transport problem. Further
research along these lines, such as the Fokker-Planck solution to this problem, while approx-
imate will shed more insight on the general transport solution. However, it is also likely that
Eq. 15.28 represents a significant advance in condensed history methods and may provide
true step-size independence for a large class of electron transport problems.

15.4 The future of condensed history algorithms

We conclude with some comments on the future of condensed history algorithms to place
its research in some sort of larger perspective. We investigate briefly two scenarios that are
pointed to by present computer hardware developments. Will condensed history continue to
play a role when computers get much faster? and Will analog-based condensation techniques
ever replace our analytic-based ones?.

Will condensed history continue to play a role when computers get much faster?

The other was of asking this question is: Will analog Monte Carlo techniques replace con-
densed history methods for most future applications?

Depending on the application, condensed history techniques “outrun” single-scattering cal-
culations by a factor 103—105. Computing power per unit cost increases by approximately
a factor of 2 every year. This means that an application that runs today with condensed
history calculations can be done in the same amount of time by analog methods in about
10–17 years!

The answer to this is that the problems usually expand in complexity as the technology to
address them advances. In the next decade or two we will not be asking the same questions!
The questions will be more complex and the simpler, cruder method of condensed history,
whatever it evolves to in that time, will still have an important role to play.



258 CHAPTER 15. ADVANCED ELECTRON TRANSPORT ALGORITHMS

A perfect example of this is radiotherapy treatment planning calculations. Presently, con-
densed history techniques are not used because it takes a few hours to perform on a workstation-
class computer. Software and hardware technology may reduce this to seconds in about 5
years, making it feasible for routine use. In a few more years, calculation times will be
microseconds and Monte Carlo will be used in all phases of treatment planning, even the
most sophisticated such as inverse planning and scan-plan-treat single pass tomotherapy
machines.

Condensed history gets this answer to sufficient accuracy and medical physics will not resort
to single-scattering methods that take 103—105 longer to execute for marginal (and and
largely unnecessary) gain in accuracy. Once calculation error has been reduced to about 2%
or so, its contribution to the overall error of treatment delivery will be negligible.

Will analog-based condensation techniques ever replace our analytic-based ones?

One approach to addressing the problem of slow execution for single-scattering Monte Carlo
is to pre-compute electron single-scattering histories and tally the emergence of particles from
macroscopic objects of various shapes, depending on the application. Then one transports
these objects in the application rather than electrons! Ballinger et. al. [BRM92] used
hemispheres as his intended application was primarily low-energy backscatter from foils.
Ballinger et. al. did their calculations within the hemispheres almost completely in analog
mode, for both elastic and inelastic events.

Neuenschwander and Born [NB92] and later Neuenschwander et. al. [Nel95] used EGS4 [NHR85,
BHNR94] condensed history methods for pre-calculation in spheres for the intended appli-
cation of transport within radiotherapy targets (CT-based images) and realized a speed
increase of about 11 over condensed history. Svatos et. al. [SBN+95] is following up on this
work by using analog methods.

Since these “analog-based condensation” techniques play a role in specialized applications it
begs the question whether or not these techniques can play a more general role. To answer
this, consider that we are seeking the general solution to the problem: given an electron
starting at the origin directed along the z-axis for a set of energies En, what is the complete
description of the “phase space” of particles emerging from a set spheres5 of radii rn? That is,
what is ψ(~x, ~Ω, E, s, q;En, rn), where ~x is the final position on the sphere, ~Ω is the direction
at the exit point of the sphere, E is the exit energy, s is the total pathlength, q is the charge
(3 possible values in our model, electrons, positrons or photons), En is the starting energy,
and rn is the radius of the sphere. Now, imagine that we require n-points to fit some input or
output phase-space variable (e.g. 100 different values of E) and that we must provide storage
for N decades of input energy. (The input and output energies would likely be tabulated on
a logarithmic mesh.) The result is that one would require 3Nn8 real words of data to store
the results of the general problem!

5We will use this geometry as an example. A set of spheres is necessary so that geometry-adaptive
techniques may be employed.
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To make the example more concrete, imagine that we wish to store 9 decades in input energy
(from, say, 1 keV to 100 TeV) and set n = 100. This would require 1.2 exabytes (1.2× 1018)
bytes of information. Estimating current on-line storage capability at about 10 terabytes/m3,
the required storage would be 1.2 × 105 m3, or a cube about 50 m on a side. This class of
solution would require storage densities of the order 102–103 greater than current technology,
something for the distant future, perhaps in 50 years or so?

However, this solution really reflects a paucity of clever ideas. In a previous section we have
already seen how multiple-scattering angles can be represented compactly. It is likely that
further research may give us more insight into how to represent the data to the entire problem
in a compact way. It may turn out that the future of this class of Monte Carlo calculations
may be with pre-computed distributions. However, condensed history research will provide
the most sensible way to interpolate the data. The better the interpolation scheme, the
more compact the data will be. This may be the surviving contribution of condensed history
research in the distant future.
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Chapter 16

Electron Transport in Electric and
Magnetic Fields

In this lecture we discuss the fundamentals of electron transport in static external electric
and magnetic fields in vacuum and dense media. By “static” and “external” is meant that
macroscopic ~E and/or ~B fields are set up in the region where the electron transport is taking
place. For example, a high-energy particle detector may be placed in a constant magnetic
field so that the momentum of charged particles may be analyzed. The external fields are
considered to be static in the sense that they do not change with time during the course of the
simulations. This is not a fundamental constraint but it is imposed for simplicity. The bulk
of the discussion concerns the theoretical viability of performing electron transport in dense
media in the presence of external fields. The trajectories of particles in this case can be quite
complicated. The particles can be subjected to a myriad of forces—de-accelerations due to
inelastic processes with orbital electrons, elastic deflections due to attraction or repulsion in
the nuclear electric field, acceleration or de-acceleration by the external electric field, and
deflections by the external electric and magnetic fields.

In comparison to the effects of the internal processes of multiple scattering and inelastic
collisions, the effect of the external fields can be quite dramatic. Electric field strengths can
be as high as 2 MV/(g/cm2). The rate of a charged particle’s change in energy due to this
field can be equal in magnitude to the rate of energy loss of high energy electrons in matter.
We wish to establish a method, even if it is a “brute force” one, that will allow us to do
charged particle transport under these circumstances. We do not wish to treat the effects of
the external fields as perturbations on the field-free transport in media. Yet, we do not wish
to discard all the theoretical work that has been achieved in field-free transport. Rather, we
shall retain what we know about inelastic energy-loss mechanisms and multiple scattering
and attempt to include the effect of the external fields, albeit in a simple-minded fashion.

We commence the lecture with a “review” discussion of charged particle transport in external
fields. We set up the equations and then solve them in vacuum. The vacuum solutions will
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play a role in the benchmarking of the differential equations as modelled in the Monte Carlo
code. We then prove formally under what circumstances the vacuum transport equations
can be “tacked on” to the field-free transport with little error. In general, it will be shown
that the vacuum external field transport can be superimposed upon the field-free transport
as long as the charged particle steps are short enough.

In the last part of the lecture we discuss the practical application of the external field
transport equations to a Monte Carlo code. As a specific example, we shall use the EGS
code [NHR85] with which the author is most familiar. The method of application discussed
will be very general and may be applied equally well to any condensed-history electron
transport code. The ITS codes [HM84] have also been adapted for transport in external
fields [Hal74, HSV75, HSV77].

16.1 Equations of motion in a vacuum

In this section we derive the differential equations of motion for charged particles moving in
arbitrary electric and magnetic fields. In this section we consider transport in a vacuum.

The change in momentum with time due to electric, ~E, and magnetic, ~B, fields is given by
the Lorentz force equation [Jac75],

d~p

dt
= e(~E+ ~v × ~B), (16.1)

where ~p is the momentum, t is the time, e is the charge of the particle (negative for negatrons
and positive for positrons), and ~v is the velocity. This equation may be cast in the following
form:

d(γ~β)

ds
=

e

m0c2β
(~E+ c~β × ~B), (16.2)

where c is the speed of light, ~β is the velocity in units of the speed of light, ~β = ~v/c, γ is

the familiar relativistic factor, (1− ~β ·
~β)−1/2, ds is the differential path-length that can be

related to the time, t, through the relation, ds = (ds/dt)dt = (cβ)dt, and m0 is the rest mass
of the charged particle.

If one applies the differential operator to the left hand side of eq. 17.3, expresses dγ as
γ3~β(~β · d~β), and takes the inner product of both sides of the equation with ~β, then one can
obtain the equation,

d~β

ds
=

e

m0c2βγ
(~E− ~β(~E·~β) + c~β×~B). (16.3)

One can perform similar manipulations to derive a particularly useful form of this equation,

d~u

ds
=

e

m0c2β2γ
(~E− ~u(~E · ~u) + cβ~u× ~B), (16.4)
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where ~u is the unit direction vector of the charged particle1. We note, from eq. 17.5, that
~u · (d~u/ds) = 0. This means that the change in the direction vector is transverse to it’s
direction. This also follows directly from the fact that the magnitude is, by fiat, unity, i.e.
~u · ~u = 1, from which it follows that d(~u · ~u) = 2~u·d~u = 0. We shall make use of eq. 17.5
when applying external field transport to a Monte Carlo code.

16.1.1 Special cases: ~E =constant, ~B = 0; ~B =constant, ~E = 0

In this section we present the solutions for the special cases of uniform electric and magnetic
fields in vacuum. These solutions may be used by Monte Carlo codes for transport in
vacuum and they may be used for “benchmarking” the transport equations. Rather than
repeat derivations which demand much careful arithmetic manipulation, we simply present
the solutions and encourage the reader to verify them at his leisure.

It can be shown that the general solution for the equation of motion in the constant electric
field case takes the form,

x‖ =
m0c

2γ0
eE

(

cosh

(

eEx⊥
m0c2γ0β⊥0

)

− 1 + β‖0 sinh

(

eEx⊥
m0c2γ0β⊥0

))

, (16.5)

where x(‖,⊥) is the distance from the origin in the direction (parallel, perpendicular) to ~E,

γ0 is the value of γ at x‖ = 0 and x⊥ = 0, E = |~E|, and β(‖,⊥)0 is the initial component of ~β

in the direction (parallel, perpendicular) to ~E.

This equation contains two interesting limiting cases. In the “weak-field” limit (WFL),
eEx⊥

m0c2γ0β⊥0

→ 0, eq. 17.6 becomes,

lim
WFL

x‖ −→
β‖0x⊥
β⊥0

+
eEx2⊥

2m0c2γ0β2
⊥0

. (16.6)

The non-relativistic limit (NRL) may be obtained from eq. 17.7 by taking the limit, γ0 → 1,
with the result,

lim
NRL

x‖ −→ v‖0t +
eEt2

2m0
, (16.7)

where v(‖,⊥)0 = cβ(‖,⊥)0, and t, the time, is expressed as t = x⊥0/v⊥0. The NRL solution, a
parabola, should be familiar from elementary mechanics.

Note that the previous three equations, eqs. 17.6–17.8, are valid for positions (e = |e|) and
negatrons (e = −|e|). As well, if the particle starts out in a direction opposing the electric

1This equation, with ~B = 0, was stated erroneously in a previous reference [RBMG84]. The error, ~u

was mistakenly set to ~β in eq. 17.5, was inconsequential since β ≈ 1 in the calculations associated with that
report.
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force, then x‖ can be a double-valued function of x⊥ or t. Additionally, as a consequence
of the decomposition into parallel and perpendicular components, the motion always takes
place in the plane defined by β‖0 and β⊥0.

The equation of motion in a constant magnetic field should be familiar from elementary
mechanics for either relativistic or non-relativistic charged particles. The development of
the solution is considerably simplified owing to the fact that the magnetic field does not
alter the particle’s energy. This results directly from the force and the particle’s velocity
being always perpendicular. The equations of motion are,

x⊥1 =
p0⊥2

eB

(

(1− cos(
eBx‖
p0‖

)

)

+
p0⊥1

eB
sin(

eBx‖
p0‖

), (16.8)

and

x⊥2 = −p
0
⊥1

eB

(

1− cos(
eBx‖
p0‖

)

)

+
p0⊥2

eB
sin(

eBx‖
p0‖

). (16.9)

In these equations, B = |~B|, and the direction of motion has been resolved into 3 components,

(x⊥1, x⊥2, x‖), forming an orthogonal triad with x‖ aligned with the ~B-field. The momentum
is also resolved into the three components, (p⊥1, p⊥2, p‖), with initial values, (p0⊥1, p

0
⊥2, p

0
‖)

when (x0⊥1, x
0
⊥2, x

0
‖)=(0, 0, 0). The component of momentum parallel to ~B is a constant of

the motion, i.e. p‖=p
0
‖, as is the energy and the velocity in the direction of the ~B-field.

As seen from eqs. 17.9 and 17.10, the motion in the x⊥1–x⊥2 plane is a circle centered at
(p0⊥2/eB, −p0⊥1/eB) with radius |p0⊥/(eB)| where |p0⊥| =

√

(p0⊥1)
2 + (p0⊥2)

2. For relativistic
particles one should substitute p0 = m0γ0cβ and p0 = m0v0 may be used for non-relativistic
particles. In other words, the particle “spirals” along the ~B-axis with a constant speed and
radius. If one “sights” along the ~B-axis, positrons move in the counter-clockwise direction
while negatrons move in the clockwise direction.

16.2 Transport in a medium

The transport of charged particles in media with external electric and magnetic fields can
be quite complicated and difficult to handle theoretically. However, we still can accomplish
the simulation of charged particle transport in media with certain approximations. In this
section we state these approximations using a very general development.

Consider the motion of a charged particle in a medium with external electric and magnetic
fields. Besides the coupling to the external fields, the particle is acted upon by elastic and
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inelastic forces. Assuming the medium is isotropic and homogeneous, the equation of motion
takes the general form,

d~p

dt
= ~Fret(E(t)) + ~Fms(E(t)) + ~Fem(~x(t), E(t), ~u(t)), (16.10)

where ~p is the momentum, t is the time, ~Fret is the force due to inelastic (retarding) forces,
~Fms is the force due to elastic (multiple scattering) forces, and ~Fem is the force due to
external (electric and magnetic) forces. We may integrate eq. 16.10 implicitly to obtain,

~v = ~v0 +
1

m0γ(E)

∫ t

0

dt′ {~Fret(E(t
′)) + ~Fms(E(t

′)) + ~Fem(~x(t
′), E(t), ~u(t′))}. (16.11)

~x = ~x0 + ~v0t+

∫ t

0

dt′′~v(t′′) (16.12)

These are very complex equations of motion with much interplay among all the constituents.
~Fret accounts for inelastic processes having to do mostly with electron-electron interactions
and bremsstrahlung photon creation in the nuclear field. This force affects mostly E, the
energy, and consequently v, the magnitude of the velocity, ~v. There is some deflection as
well but angular deflection is dominated by multiple scattering. ~Fret couples to ~Fms and
~Fem because they all depend on E. ~Fms accounts for elastic processes having to do mostly
with deflections caused by the nuclei of the medium. It changes the direction of the velocity.
Consequently, ~Fms couples to ~Fem since the latter depends on ~u, the direction of motion of
the particle. (By definition, ~u is a unit vector.) The energy lost to the nuclear recoil can

usually be ignored and ~Fms does not couple to ~Fret. ~Fem accounts for the interaction with the
external electric and magnetic fields. It depends on E, ~u and also ~x if the external fields are
spatially dependent. ~Fem can alter both the magnitude and direction of ~v thereby coupling
directly to both ~Fms and ~Fret. Moreover, outside the integral in eq. 16.11 is an overall factor
of 1/(m0γ(E)), owing to the fact that the mass changes when the energy changes.

To complicate matters even further, we do not know the exact nature of ~Fret and ~Fms. For
“microscopic” Monte Carlo methods, where we model every electron interaction, we can
only say something about the momentum before and after the interaction. For complete
rigour, one would have to solve the quantum mechanical equations of motion incorporating
external fields. However, unless the external fields are very strong, they may be treated in a
perturbation formalism for microscopic Monte Carlo methods.

In this lecture we restrict ourselves to “condensed-history” Monte Carlo, for which the argu-
ments are even more subtle. For complete rigour, one should incorporate the external fields
into the Boltzmann transport equation and solve directly. To our knowledge, this has not
been attempted. Instead, we attempt to superimpose the transport in the external fields
upon “field-free” charged particle transport and discuss what approximations need to be
made.



270CHAPTER 16. ELECTRON TRANSPORT IN ELECTRIC ANDMAGNETIC FIELDS

A major difficulty arises from the fact that during a condensed-history transport step the
trajectory of the particle is not known nor are the exact forms of ~Fret and ~Fms known.
Instead we wish to make use of the already existing statistical treatments of ~Fret and ~Fms,
for example, Bethe-Bloch slowing down theory [Bet30, Bet32, Blo33] and Molière [Mol47,
Mol48] multiple scattering theory. If the external fields are different for the different possible
particle trajectories, we are faced an unresolvable ambiguity. Therefore, we must demand
that the transport steps be small enough so that the fields do not change very much over the
course of the step. With this approximation, eq. 16.11 becomes,

~v = ~v0 +
1

m0γ(E)

∫ t

0

dt′ {〈~Fret(E(t
′))〉+ 〈~Fms(E(t

′))〉+ ~Fem(~x0, E(t), ~u(t
′))}, (16.13)

where ~x0 is the position at the beginning of the particle’s step and the 〈~F〉’s denote that we
are now employing the statistical formulations of the physical effects produced by 〈~F〉.
We make the further approximation that the energy does not change very much during the
course of a particle step. With the approximation of small energy losses, eq. 16.13 becomes,

~v = ~v0 +
1

m0γ(E0)

{

〈~Fret(E0)〉t+ 〈~Fms(E0)〉t+
∫ t

0

dt′ ~Fem(~x0, E0, ~u(t
′))

}

, (16.14)

where E0 is the energy evaluated at the beginning of the particle’s step.

Finally, we make the approximation that the direction angle ~u does not change much over
the course of the step. While this can be accomplished by reducing the size of the step for
most of the charged particle steps, occasionally large angle scatterings associated with single
nucleus-electron interactions will occur. Therefore, this approximation must break down at
least some of the time. Fortunately, multiple scattering is dominated by small angle events
with only relatively few large angle ones [Ber63]. With this approximation,

~v = ~v0 +
t

m0γ(E0)
{〈~Fret(E0)〉+ 〈~Fms(E0)〉+ ~Fem(~x0, E0, ~u0)}. (16.15)

where ~u0 is the direction vector evaluated at the beginning of the particle’s step. At this
point, by virtue of the approximations we have made, the ~F’s are decoupled. Note that
nothing has been said about the sizes of the ~F’s relative to one another except that they do
not perturb the “force-free” trajectory too much.

To make a closer connection to applying the equations to Monte Carlo simulations, we recast
the equations so that they are dependent upon the total path-length of the step, s, rather
than the time. To this end we write,

t =

∫ s

0

ds

v
, (16.16)

which, to 1st-order may be written,

t =
s

v0

(

1 +
∆v(E0)

v0

)

, (16.17)
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where ∆v(E0) = v0 − v(E0) accounts for energy losses in the relationship expressed by

eq. 16.16. From eq. 16.15, we find that to 1st-order in the ~F’s,

∆v(E0) = − s

m0γ(E0)v0
~u0 · {〈~Fret(E0)〉+ 〈~Fms(E0)〉+ ~Fem(~x0, E0, ~u0)}, (16.18)

where ~u0 is the direction vector evaluated at the start of the electron step. Using eqs. 16.12,
16.15–16.18 we find that the new direction vector, ~u = ~v/|~v| takes the form,

~u = ~u0 +∆~u, (16.19)

where,

∆~u =
s

m0γ(E0)v20
{〈~F⊥,ret(E0)〉+ 〈~F⊥,ms(E0)〉+ ~F⊥,em(~x0, E0, ~u0)}, (16.20)

The ~F⊥’s are the components of the ~F’s in the direction perpendicular to ~u0. In similar
fashion we find that,

~x = ~x0 + ~u0s+
s

2
∆~u (16.21)

We may write eq. 16.21 slightly differently as,

~x = ~x0 + ~u0s+~ǫ
(1)
⊥,ret+ms +~ǫ

(1)
⊥,em, (16.22)

where the ~ǫ(1)’s are the 1st-order perturbations of the trajectory due to inelastic slowing
down plus multiple scattering and the deflection and energy change in the external electric
and magnetic fields. Since the ~ǫ(1)’s are decoupled, we may calculate ~ǫ

(1)
⊥,ret+ms as if there

were no external fields and ~ǫ
(1)
⊥,em as if the transport had occurred in a vacuum. We note that,

to 1st-order, the deflections are perpendicular to the initial trajectory. If we had carried out
the analysis to 2nd-order in the ~F’s, we would obtain an equation of the form,

~x = ~x0 + ~u0s(1− ǫ
(2)
‖ ) +~ǫ

(1)
⊥,ret+ms +~ǫ

(1)
⊥,em +~ǫ

(2)
⊥ , (16.23)

where ~ǫ
(2)
⊥ is the 2nd-order perpendicular deflection, and 1−ǫ(2)‖ can be identified as the path-

length correction, a quantity that accounts for the curvature of the charged particle step.
Rather than transporting the charged particle the full path-length s in the initial direction,
this distance must be shortened owing to the deflection of the particle during the step. This
is seen to be a 2nd-order effect. We have seen in Lecture 16 that these corrections can be
quite large if one attempts to use large step-sizes in field-free simulations. Clearly, if the 1st-
order effects of multiple scattering, slowing down or speeding up, and deflection due to the
external field are to be considered small in a perturbation sense, then one should ensure the
the 2nd-order affects should be commensurately smaller. A reliable method for calculating
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path-length corrections in field-free transport is discussed in Lecture 16. The terms ~ǫ
(2)
⊥ and

ǫ
(2)
‖ contain “mixing terms” between the field-free and external field components. To our
knowledge, no theory has yet been developed to encompass all of these effects. Until such
time that such a theory is developed, we restrict ourselves to charged particle steps that
are small enough so that the 1st-order equations discussed herein are valid. However, if we
make this restriction, we may transport particles in any medium with any external field
configuration, no matter how strong.

16.3 Application to Monte Carlo, Benchmarks

At the start of a transport step in a medium with external fields present, we know ~x0, the
position, ~u0, the unit direction vector, E0, the energy (which one may easily use to find

v0, the magnitude of the velocity, or β0 = v0/c), ~D0, the macroscopic electric field strength

at ~x0, and ~H0, the macroscopic magnetic field strength at ~x0. In the condensed-history
approach to electron Monte Carlo transport, aside from those discrete interactions which
we consider explicitly, the interactions are grouped together and treated by theories which
consider the medium in which the transport takes place to be a homogeneous, bulk medium.
Therefore, using the macroscopic fields, ~D and ~H, rather than the microscopic fields, ~E and
~B, is consistent with the condensed-history approach. After the transport step, we wish to
know ~xf , ~uf , and Ef , the final position, unit direction vector, and energy.

If we make the identification,

~F⊥,em(~x0, E0, ~u0) = e(~D0 − ~u0(~u0 · ~D0) + ~v0 × ~H0), (16.24)

we may use the results of the previous section and write directly the equation, for ~uf ,

~uf = ~u0 +∆~ums,ret +∆~uem, (16.25)

where the deflection due to multiple scattering and inelastic collisions is:

∆~ums,ret =
s

m0γ(E0)v20
{〈~F⊥,ret(E0)〉+ 〈~F⊥,ms(E0)〉}, (16.26)

and the deflection due to the external electromagnetic field is:

∆~uem =
es

m0γ(E0)v
2
0

(~D0 − ~u0(~u0 · ~D0) + ~v0 × ~H0). (16.27)

Using the results of the previous section, we may also write directly the equation for ~xf ,

~xf = ~x0 + ~u0s+
s

2
(∆~ums,ret +∆~uem). (16.28)
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We may also have written these equations from the results of the vacuum transport section,
sec. 16.1, by superimposing the inelastic and multiple scattering forces on the transport in
a vacuum but with external electric and magnetic fields.

We wish to ensure that new direction vector remains properly normalized, i.e. |~uf | = 1.
Therefore, after the transport has taken place according to eqs. 16.24–16.28, we normalize
~uf using,

~u′
f =

~uf
√

1 + |∆~ums,ret|2 + 2∆~ums,ret ·∆~uem + |∆~uem|2
. (16.29)

Note that there is no inherent contradiction introduced by eq. 16.29 because the normaliza-
tion uses terms that are higher than 1st-order in the ∆~u’s. We remark that ~uf is already
normalized to 1st-order in the ∆~u’s, consistent with our development. For repeated trans-
port steps, the ~uf we calculate becomes the ~u0 of the next step. We have assumed that ~u0

is properly normalized in our development. Unless we obey this normalization condition to
all orders, the 2nd and higher-order terms will eventually accumulate and cause substantial
error.

Finally, we calculate the energy loss from the equation,

Ef = E0 −∆Eret + e~D0 · (~xf − ~x0), (16.30)

where ∆Eret is the energy loss due to inelastic collisions. It takes the form,

∆Eret =

∫ s

0

ds′|dE/ds′|, (16.31)

where |dE/ds′| is the stopping power.

At this point we should re-state the constraints we must impose so that our method is valid.
The condition that the fields not change very much over the transport step takes the form,

|~D(~xf) − ~D(~x0)|
|~D(~x0|)

≡ δD ≪ 1, (16.32)

and,
|~H(~xf)− ~H(~x0)|

|~H(~x0)|
≡ δH ≪ 1. (16.33)

The constraint that the energy does not change very much over the transport step takes the
form,

∆Eret

E0,kinetic

≡ δret ≪ 1, (16.34)

and,
|∆Eem|
E0,kinetic

≡ δem ≪ 1. (16.35)
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Finally, the constraint that the direction does not change very much over the transport step
takes the form,

|∆~ums,ret| ≪ 1, (16.36)

and,

|∆~uem| ≪ 1. (16.37)

Recall that all of the constraints expressed by eqs. 16.32–16.37 can be satisfied by using a
small electron step-size except |∆~ums,ret| ≪ 1, which must be violated some of the time if
the multiple scattering model includes large-angle single-event Rutherford scattering. We
have argued that this occurs infrequently enough so that the error introduced is negligible.
The error, if any, would show up in high-Z media subjected to strong magnetic fields, since
high-Z media produce more large-angle events and the magnetic force is direction dependent.

An algorithm for electron transport in media subjected to external electric and magnetic
fields would be of the following form:

• Choose a total path-length for the step, s, consistent with the constraints expressed in
eqs. 16.32–16.37.

• Calculate ~uf using eqs. 16.25–16.27. The inelastic and elastic scattering portions,

〈~F⊥,ret(E0)〉 and 〈~F⊥,ms(E0)〉, can be calculated using any slowing-down and multiple
scattering theory.

• Transport the particle according to eq. 16.282.

• Normalize the direction vector, ~uf , using eq. 16.293.

• Calculate the new energy according to eqs. 16.30 and 16.31.

• Repeat.

To proceed further would entail detailed knowledge of a specific Monte Carlo code. This
would take us beyond the scope of this lecture. Rather, we assert that this has been done

2The EGS code simplifies the procedure even more [RBMG84] and ignores the lateral transport caused

by 〈~F⊥,ret〉, 〈~F⊥,ms〉, and ~F⊥,em at this stage. If the steps are short enough, accurate electron transport
will be accomplished through the deflection of the direction vector, ~u. (For a discussion of the importance
of lateral transport during an electron step caused by multiple scattering, see Lecture 16.)

3Although this guarantees that the direction vector remains normalized, a different procedure has been
adopted for the EGS code. This normalization was applied for the electric field deflection only. For deflection
by the magnetic field, only the components transverse to the magnetic field are normalized. Within the
structure of the EGS code, this guarantees that the parallel component of ~u does not change thereby
imposing conservation of momentum in the direction parallel to the magnetic field.
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both for the EGS code [RBMG84] and the ITS codes [Hal74, HSV75, HSV77]. We simply
give examples of some benchmark calculations.

First we present a test of transport in a vacuum in a constant electric field. In fig. 16.1

Figure 16.1: Electron trajectories influenced by a constant electric field in vacuum calculated
using the EGS4 Monte Carlo code compared with an exact analytical solution.

we compare electron trajectories calculated using the EGS Monte Carlo code and the exact
analytical solution, eq. 17.6 discussed in sec. 16.1.1. In this example, the electric field is
aligned with the ordinate with a field strength of 511 kV/cm. Three positron trajectories
are depicted with energies 0.1, 1.0, and 10 MeV initially directed at a 45◦ angle against the
electric field. We also show two negatron (e−) trajectories with energies 2.0 and 20 MeV
initially directed perpendicular to the electric field. The Monte Carlo calculated trajectories
are depicted by the solid lines while the exact analytical solutions are shown with dotted
lines. The electron step-size limits were obtained by letting the change in kinetic energy be
at most two percent (the constraint expressed by eq. 16.35) and the deflection be at most
0.02 (the constraint expressed by eq. 16.37). We see only minor evidence that the neglect of
lateral transport during the course of a step causes error. This error can be further reduced
by shortening the step-sizes even more.

Next we present a test of transport in a vacuum in a constant magnetic field. In fig. 16.2
we compare 0.1 MeV negatron and 1.0 MeV positron trajectories calculated using the EGS
Monte Carlo code and the exact analytical solution, eqs. 17.9 and 17.10 also discussed in
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Figure 16.2: Electron trajectories influenced by a constant magnetic field in vacuum calcu-
lated using the EGS4 Monte Carlo code compared with exact analytical solutions.

sec. 16.1.1. In this case the magnetic field is aligned with the abscissa with a field strength
of 0.17 Tesla. The initial velocities are directed 45◦ away from the ~B-axis. The analytic
solutions are represented by the solid lines. The agreement is excellent in both cases.

The “vacuum” tests were designed to verify that the differential equations of electron trans-
port in external fields are being correctly integrated during the course of the electron simu-
lation. We have verified that the relatively crude “first-order” method presented in sec. 16.2
works acceptably well in vacuum. If more accuracy is desired, then one merely has to shorten
the electron step-size. We may have been much more sophisticated if we were interested in
rapid and accurate transport in vacuum. For constant, or nearly constant fields, we may
have employed the exact analytic solutions expressed in sec. 16.1 into the Monte Carlo code
directly. If the simulations take place in finite geometries, then one would have to find so-
lutions of the intersection points of the electron trajectories with the surfaces enclosing the
geometry in which the simulation takes place. This is a straightforward but tedious problem
for most classes of bounding surfaces, for example, cones or cylinders.

For electron transport in spatially varying fields or simulations in tenuous media where the
multiple scattering and retardation forces may be considered to be perturbations upon the
deflections and energy losses due to the external fields, one may use more sophisticated inte-
gration techniques to obtain electron trajectories more quickly. For example, the ITS series
of codes uses a fifth-order Runge-Kutta technique to integrate the external field transport
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equations [Hal74, HSV75, HSV77].

When one is interested in electron transport in dense media, unless more theoretical work is
done to elucidate the complex interplay of multiple scattering, retardation and external field
forces, one must resort to a method similar to that presented at the start of this section.
We have verified that this method works well and now wish to perform benchmarks in dense
media. Unfortunately, the authors are not aware of clear-cut benchmark experiments of
this sort. Instead, we present three examples which verify at most semi-quantitatively, that
external field transport in dense media is possible.

The first example is that of a 10 MeV negatron through 10 m of air with a magnetic field with
strength 0.17 T aligned with the electron’s initial direction of motion. An “end-on” view is

Figure 16.3: An “end-on” view of a 10 MeV negatron being transported through air. The
particle’s initial direction and the magnetic field direction are normal to and out of the plane
of view. The vertical axis is 10 cm long.

shown in fig. 16.3. Because the initial direction and the magnetic field are aligned, there is
no deflection by the magnetic field until the particle is deflected by the medium. The initial
deflection, a creation of a low energy δ-ray in the left-hand side of the figure, caused the
initial deflection in this example. Afterwards, the negatron spirals in the counter-clockwise
direction. The electron transport cut-off energy in this example is 10 keV at which point
the simulation of δ-ray transport is seen to come to an abrupt end. An interesting feature of
this example is that a relatively high-energy δ-ray was produced spiraling many times before
losing all its energy. The δ-ray actually drifted about 20 cm in the direction of the magnetic
field.
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A second example is a representation of electric field focusing of electrons. In this case, a

Figure 16.4: 10 MeV electrons incident on water containing a uniformly charged cylinder.
The charge on the cylinder strongly focusses the electrons. The horizontal axis is 5 cm long.

uniformly charged cylinder with radius 0.5 cm, is placed 2.5 cm deep in a water target. The
target is irradiated by a broad, parallel beam of 10 MeV negatrons. The electric potential is
Φ(ρ)[MV] = − ln(2ρ), which is zero on the surface of the cylinder, and is sufficient to “bind”
any electron which strikes the surface of the water. The variable ρ is the distance away from
the cylinder’s axis measured in centimeters. The electric field outside the water is zero as
well as inside the cylinder. We note the strong focusing of the electrons although in a few
cases, the multiple scattering turns particles away from the cylinder.

Finally, we present an example that provides some quantitative support for the viability of
electron transport in dense media in the presence of strong electric fields. It is somewhat
related to the previous example, having to do with focusing of electrons into a cylinder held
at high potential [RBMG84]. Some explanation is required beforehand, however.

When electrons bombard insulating materials and come to rest as a result of slowing down in
the medium, they become trapped and can set up large electric fields in the medium. Subse-
quent bombardments may be greatly perturbed by the presence of these fields, and this may
result in a deleterious effect on the accuracy of dosimetry measurements in these insulating
materials [RBMG84]. It was common practice to place a radiation detection device in a
cylindrical hole drilled in a plastic phantom and subject it to electron bombardment. The
air in the cylinder becomes ionized and conducting during bombardment and large amounts
of positive charge may be induced to the cylinder to bring its surface to constant potential.
Therefore, electrons are focussed to the cylinder causing one to measure an artificially high
response in the detector. These effects were calculated by Monte Carlo methods [RBMG84]
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but the benchmark of the Monte Carlo code is not “clear-cut”. The electric field strength
had to be estimated and it was further assumed that the electric field strength at the surface
of the cylinder was proportional to the total amount of charge bombarding the insulating
material.

Figure 16.5: Measured and calculated response enhancement due to the presence of large
electric fields versus total electron dose responsible for the stored charge causing the focusing
effect. The incident electron energy was 5.7 MeV and the 0.7 cm diameter cylinder was
located 1.5 cm deep in a polymethylmethacrylate (PMMA) medium.

Given these approximations, a comparison of the calculated and measured enhancement of
detector response is presented in fig. 16.5. In this comparison, the incident electron energy
was 5.7 MeV and the cylinder in which the detector was placed was 0.7 cm in diameter
placed at a depth of 1.5 cm in a polymethylmethacrylate (PMMA) medium. In this case, the
maximum field strength exceeded 1MV/cm! We note that the experimental and calculated
results agree to within the 1% accuracy of the simulations.
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Chapter 17

Variance reduction techniques

In this chapter we discuss various techniques which may be used to make calculations more
efficient. In some cases, these techniques require that no further approximations be made
to the transport physics. In other cases, the gains in computing speed come at the cost
of computing results that may be less accurate since approximations are introduced. The
techniques may be divided into 3 categories: those that concern electron transport only, those
that concern photon transport only, and other more general methods. The set of techniques
we discuss does not represent an exhaustive list. There is much reference material available
and we only cite a few of them (refs. [Kah56], [HH64], [MI75], [Car81], [Lun81]). An
especially rich source of references is McGrath’s book [MI75], which contains an annotated
bibliography. Instead we shall concentrate on techniques that have been of considerable use
to the authors and their close colleagues. However, it is appropriate to discuss briefly what
we are trying to accomplish by employing variance reduction techniques.

17.0.1 Variance reduction or efficiency increase?

What we really mean to do when we employ variance reduction techniques is to reduce the
time it takes to calculate a result with a given variance. Analogue Monte Carlo calculations
attempt to simulate the full stochastic development of the electromagnetic cascade. Hence,
with the calculated result is associated an estimated variance, s2. The method by which s2 is
estimated was discussed in Chapter 5 Error estimation. Let us assume that it is calculated
by some consistent method as discussed previously. If the estimated variance is too large
for our purposes we run more histories until our criterion is satisfied. How do we estimate
how many more histories are needed? How do we know that the estimated variance is
meaningful? Assuming we can do this, what do we do if it is too expensive to simulate the
requisite number of histories? We may need a more subtle approach than reducing variance
by “grinding out” more histories.

Let us say we devise some “tricks” that allow us to reduce the variance by, say, a factor of 10
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using the same number of histories. Let’s also imagine that this new subtle approach we have
devised takes, say, 20 times longer on average to complete a particle history. (For example,
our variance reduction technique may involve some detailed, expensive calculation executed
every particle step.) Although we have reduced the variance by a factor of 10, we take 20
times longer to calculate each particle history. We have actually reduced the efficiency by a
factor of two! To add to the insult, we have wasted our own time implementing a technique
which reduces efficiency!

We require a measure that we may use to estimate gains in efficiency of a given “variance
reduction” technique. It is common to use the efficiency, ǫ, defined by:

ǫ =
1

s2T
, (17.1)

where T is a measure of the computing time used (e.g. CPU seconds). The motivation for
this choice comes from the following: We can safely assume that mean values of quantities
calculated by Monte Carlo methods are distributed normally. This is a consequence of the
the Central Limit Theorem1 as discussed in Chapter 5 Error estimation. It follows then that
for calculations performed using identical methods, the quantities s2N and s2T , where N is
the number of histories, are constant, on average, as long as one is in the region of validity of
the Central Limit Theorem. This is so because N should be directly proportional to T . By
considering the efficiency to be constant, eq. 17.1 may be used to estimate the total computing
time required to reach a given statistical accuracy if a preliminary result has already been
obtained. For example, if one wishes to reduce the uncertainty, s, by a factor of 2, one
needs 4 times as many histories. More importantly, eq. 17.1 allows us to make a quantitative
estimate of the gain (or loss!) in efficiency resulting from the use of a given “variance
reduction” technique since it accounts for not only the reduction in variance but also the
increased computing time it may take to incorporate the technique. In the aforementioned
example, using eq. 17.1 we would obtain ǫ(with subtlety)/ǫ(brute force) = 0.5, a reduction
of 1/2. In the following sections we attempt to present more successful variance reduction
techniques!

1Invoking the Central Limit Theorem requires that the population variance of a score or tally exists.
While one can imagine score distributions where the population variance does not exist, they usually appear
under contrived circumstances and rarely physical ones in radiation transport. If a population variance does
not exist then one can always appeal to the Strong Law of Large Numbers [Fel67] which states that as long
as a population mean exists, then repeated simulations should bring one closer to the true population mean.
However, the way that this mean is approached may be much slower than that suggested by the Central
Limit Theorem. If the population mean does not exist, then estimates of the sample mean are guaranteed
not to be meaningful. An example of such a distribution would be

p(x)dx = x−2dx , 1 ≤ x ≤ ∞ , (17.2)

that can be sampled straightforwardly but that does not have a mean!
A careful discussion of a score, especially one that has not been previously studied, ought to include a

study of the underlying distribution or a crude but somehow representative analytic model that may be able
to characterize the distribution.
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17.1 Electron-specific methods

17.1.1 Geometry interrogation reduction

This section might also have been named “Code optimisation” or “Don’t calculate what
you don’t really need”, or something equivalent. We note that there is a fundamental dif-
ference between the transport of photons and electrons in a condensed-history transport
code. Photons travel relatively long distances before interacting and their transport steps
are often interrupted by boundary crossings (i.e. entering a new scoring region or element
of the geometry). The transport of electrons is different, however. In addition to hav-
ing its step interrupted by boundary crossings or the sampling of discrete interactions, the
electron has other constraints on step-size. These constraints may have to do with ensur-
ing that the underlying multiple scattering theories are not being violated in any way (See
Chapter 14 Electron step-size artefacts and PRESTA), or the transport may have to be
interrupted so that the equations of transport in an external electromagnetic field may be
integrated [Bie89]. Therefore, it is often unnecessary to make repeated and expensive checks
with the geometry routines of the transport code because the electron is being transported
in an effectively infinite medium for most of the transport steps. The EGS4 code [NHR85],
has an option that allows the user to avoid these redundant geometry subroutine calls. With
this option switched on, whenever the geometry must be checked for whatever reason, the
closest distance to any boundary is calculated and stored. This variable is then decremented
by the length of each transport step. If this variable is greater than zero, the electron can not
be close enough to a boundary to cross it and the geometry subroutines are not interrogated.
If this variable drops to zero or less, the geometry subroutines are called because a boundary
crossing may occur.

By way of example, consider the transport of an electron between two boundaries as depicted
in figure 17.1. For the sake of argument, each transport step (between either the x’s and
o’s has a distance

√
2 and the transport trajectory is directly diagonal between the two

boundaries. For simplicity, we neglect scattering in this example. When the geometry
routines are interrogated, the start of the step is delineated by an x. When the geometry
routines can be skipped, the start of the step is delineated by an o.

This is the way the algorithm works. The closest distance to any boundary is usually
calculated in EGS4 by SUBROUTINE HOWFAR. This distance is called DNEAR and it is calculated
before the particle is transported. (In EGS4/PRESTA, it is calculated before the call to
SUBROUTINE HOWFAR.) After transport by distance VSTEP in the case of electrons or USTEP
in the case of photons, DNEAR is decremented by VSTEP or USTEP. On the subsequent step,
if the next USTEP is less than DNEAR then is is known that the step will not cause the
particle to escape the current region and so the call to SUBROUTINE HOWFAR is avoided. (The
EGS4/PRESTA scheme is slightly more efficient since it employs a more current version of
DNEAR. However, it also calculates DNEAR for every electron step.)
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Figure 17.1: An electron is transported between two boundaries. The geometry routines are
called only when required.
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There is no approximation involved in this technique. The gain in transport efficiency is
slightly offset by the extra calculation time that is spent calculating the distance to the closest
boundary. (This parameter is not always needed for other aspects of the particle transport.)
As an example, consider the case of a pencil beam of 1 MeV electrons incident normally
on a 0.3 cm slab of carbon divided into twelve 0.025 cm slabs. For this set of simulations,
transport and secondary particle creation thresholds were set at 10 keV kinetic energy and
we used EGS4 [NHR85] setting the energy loss per electron step at 1% for accurate electron
transport [Rog84b] at low energies. The case that interrogates the geometry routines on
every step is called the “base case”. We invoke the trick of interrogating the geometry
routines only when needed and call this the “RIG” (reduced interrogation of geometry) case.
The efficiency ratio, ǫ(RIG)/ǫ(base), was found to be 1.34, a significant improvement. (This
was done by calculating DNEAR in the HOWFAR routine of a planar geometry code. A
discussion of DNEAR is given on pages 256–258 of the EGS4 manual [NHR85].)

Strictly speaking, this technique may be used for photons as well. For most practical prob-
lems, however, the mean free path for the photons in the problem is of the order, or greater
than the distance between boundaries. For deep penetration problems or similar problems,
this may not be true. However, this technique is usually more effective at speeding up the
electron transport part of the simulation.

The extra time required to calculate the distance to the closest boundary may be consid-
erable, especially for simulations involving curved surfaces. If this is so then the efficiency
gain may be much less or efficiency may be lost. It is advisable to test this technique before
employing it in “production” runs.

17.1.2 Discard within a zone

In the previous example, we may be just interested in the energy deposited in the planar
zones of the carbon slab. We may, therefore, deposit the energy of an electron entirely within
a zone if that electron’s range is less than the distance to any bounding surface of the zone in
which it is being transported. A depiction of this process can be seen in figure 17.2. We note
that we make an approximation in doing this—we neglect the creation and transport of any
bremsstrahlung γ’s that may otherwise created. For the worst possible case in this particular
example, we will be discarding electrons that have a range that is half of the zone thickness,
i.e. having a kinetic energy of about 110 keV. The radiative yield of these electrons is only
about 0.07%. Therefore, unless we are directly interested in the radiative component of the
electron’s slowing down process in this problem, the approximation is an excellent one. For
the above example, we realise a gain in the efficiency ratio, ǫ(zonal discard + RIG)/ǫ(base),
of about 2.3. In this case, the transport cut-off, below which no electron was transported,
was 10 keV. If we had used a higher cut-off the efficiency gain would have been less.

Before adopting this technique, the user should carefully analyze the consequences of the
approximation—the neglect of bremsstrahlung from the low energy electron component.
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Figure 17.2: A depiction of electron zonal discard.
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17.1.3 PRESTA!

In the previous Chapter 14, Electron step-size dependencies and PRESTA, we discussed an
alternative electron transport algorithm, PRESTA. This algorithm, by making improvements
to the physical modeling of electron transport, allows the use of large electron steps when one
is far away from boundaries. This algorithm may, therefore, be considered to be a variance
reduction technique, since it saves computing time by employing small steps only where
needed—in the vicinity of boundaries and interfaces, as depicted in figure 17.3. Continuing
with the present example, we calculate the gain in efficiency ratio, ǫ(PRESTA)/ǫ(base), to
be 6.1. RIG is always switched on with PRESTA, so it is actually fairer to calculate the
efficiency ratio, ǫ(PRESTA)/ǫ(RIG), which was found to be 4.6. If we allow zonal discard as
well, we calculate the efficiency ratio, ǫ(zonal discard + PRESTA)/ǫ(zonal discard + RIG),
to be 3.1. There is a brief discussion in the previous chapter on when PRESTA is expected
to run quickly. Basically, the fewer the boundaries and the higher the transport cutoffs, the
faster PRESTA runs. A detailed discussion is given in the PRESTA documentation [BR87].

17.1.4 Range rejection

As a final example of electron variance reduction, we consider the technique called “range
rejection”. This is similar to the “discard within a zone” except for a few differences. Instead
of discarding (i.e. stopping the transport and depositing the energy “on the spot”) the
electron because it can not reach the boundaries of the geometrical element it is in, the
electron is discarded because it can not reach some region of interest. This is depicted
in figure 17.4. For example, a particle detector may contain a sensitive volume where one
wishes to calculate energy deposit, or some other quantity. Surrounding this sensitive volume
may be shields, converters, walls etc. where one wishes accurate particle transport to be
accomplished but where one does not wish to score quantities directly. Electrons that can
not reach the sensitive volume may be discarded “on the spot”, providing that the neglect
of the bremsstrahlung γ’s causes no great inaccuracy.

As an example of range rejection, we consider the case of an ion chamber [BRN85]. In
this case, a cylindrical air cavity, 2 mm in depth and 1.0 cm in radius is surrounded by 0.5
g/cm2 carbon walls. A flat circular end is irradiated by 1.25 MeV γ-rays incident normally.
This approximates the irradiation from a distant source of 60Co. This is a “thick-walled”
ion chamber, so-called because it’s thickness exceeds the range of the maximum energy
electron that can be set in motion by the incident photons. This sets up a condition of
“near charged particle equilibrium” in the vicinity of the cavity. The potential for significant
saving in computer time is evident, for many electrons could never reach the cavity. We
are interested in calculating the energy deposited to the air in the cavity and we are not
concerned with scoring any quantities in the walls. The range rejection technique involved
calculating the closest distance to the surface of the cavity on every transport step. If this
distance exceeded the CSDA range of the electron, it was discarded. The omission of residual
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Figure 17.3: A depiction of PRESTA-like transport for the diagonal trajectory discussed
previously.
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Figure 17.4: A depiction of range rejection.
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bremsstrahlung photon creation and transport was negligible in this problem. The secondary
particle creation thresholds were set at 10 keV kinetic energy as well as the transport cut-off
energies. (ECUT=AE=0.521 MeV, PCUT=AP=0.01 MeV, and ESTEPE=0.01 for accurate
low energy simulation.) A factor of 4 increase in efficiency was realised in this case.

Range rejection is a relatively crude but effective method. The version described above
neglects residual bremsstrahlung and is applicable when the discard occurs in one medium.
The bremsstrahlung problem could be solved by forcing at least some of the electrons to pro-
duce bremsstrahlung. The amount of energy eventually deposited from these photons would
have to be weighted accordingly to keep the sampling game “fair”. Alternatively, one could
transport fully a fraction, say f , of the electrons and weight any resultant bremsstrahlung
photons by 1/f . The other problem, the one of multi-media discard, is difficult to treat in
complete generality. The difficulty is primarily a geometrical one. The shortest distance to
the scoring region is the shortest geometrical path only when the transport can occur in one
medium. The shortest distance we need to calculate for range rejection is the path along
which the energy loss is a minimum. It is not difficult to imagine that finding the “shortest”
path for transport in more than one medium may be very difficult. For special cases this
may be done or approximations may be made. The “payoff” is worth it as large gains in
efficiency may be realised, as seen in the above example.

17.2 Photon-specific methods

17.2.1 Interaction forcing

In problems where the interaction of photons is of interest, efficiency may be lost because
photons leave the geometry of the simulation without interacting. This is depicted in fig-
ure 17.5 where an optically thin region (one for which µt is small, where t is the thickness of
the slab and µ is the interaction coefficient) allows many photons to penetrate and escape
the region. Efficiency is lost because time is spent tracking photons through a geometry and
they do not contribute to the score. This problem has a simple and elegant solution.

The probability distribution for a photon interaction is:

p(λ)dλ = e−λdλ, (17.3)

where 0 ≤ λ <∞ and λ is the distance measured in mean free paths. It can easily be shown
that sampling λ from this distribution can be accomplished by the following formula2:

λ = − ln(1− ξ), (17.4)

2It is conventional to use the expression, λ = − ln(ξ), since both 1− ξ and ξ are distributed uniformly on
(0,1) but the former expression executes more slowly. However, it has a closer connection to the following
mathematical development.
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Figure 17.5: A depiction of photon interaction forcing.
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where ξ is a random number uniform on the range, 0 ≤ ξ < 1. Since λ extends to infinity
and the number of photon mean free paths across the geometry in any practical problem
is finite, there is a non-zero and often large probability that photons leave the geometry of
interest without interacting. If they don’t interact, we waste computing time tracking these
photons through the geometry.

Fortunately, this waste may be prevented. We can force these photons to interact. The
method by which this can be achieved is remarkably simple. We construct the probability
distribution,

p(λ)dλ =
e−λdλ

∫ Λ

0
e−λ′dλ′

, (17.5)

where Λ is the total number of mean free paths along the direction of motion of the photon
to the end of the geometry. (The geometry may be arbitrary.) This λ is restricted to the
range, 0 ≤ λ < Λ, and λ is selected from the equation,

λ = − ln(1− ξ(1− e−Λ)). (17.6)

We see from eq. 17.6 that we recover eq. 17.4 in the limit Λ −→ ∞. Since we have forced
the photon to interact within the geometry of the simulation we must weight the quantities
scored resulting from this interaction. This weighting takes the form,

ω′ = ω(1− e−Λ), (17.7)

where ω′ is the new “weighting” factor and ω is the old weighting factor. When interaction
forcing is used, the weighting factor, 1 − e−Λ, simply multiplies the old one. This factor is
the probability that the photon would have interacted before leaving the geometry of the
simulation. This variance reduction technique may be used repeatedly to force the interaction
of succeeding generations of scattered photons. It may also be used in conjunction with other
variance reduction techniques. Interaction forcing may also be used in electron problems to
force the interaction of bremsstrahlung photons.

On first inspection, one might be tempted to think that the calculation of Λ may be difficult
in general. Indeed, this calculation is quite difficult and involves summing the contributions
to Λ along the photon’s direction through all the geometrical elements and materials along
the way. Fortunately, most of this calculation is present in any Monte Carlo code because
it must possess the capability of transporting the photons through this geometry! This
interaction forcing capability can be included in the EGS code in a completely general,
geometry independent fashion with only about 30 lines of code [RB84]!

The increase in efficiency can be dramatic if one forces the photons to interact. For example,
for ion chamber calculations similar to those described in sec. 17.1.4 and discussed in detail
elsewhere [BRN85], the efficiency improved by the factor 2.3. In this calculation, only about
6% of the photons would have interacted in the chamber. In calculating the dose to skin
from contaminant electrons arising from the interaction of 60Co (i.e. 1.25 MeV γ’s) in 100
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cm of air [RB84], the calculation executed 7 times more efficiently after forcing the photons
to interact. In calculating the dose from 60Co directly in the skin (a 0.001 cm slice of tissue)
where normally only 6× 10−5 of the photons interact, the efficiency improved by a factor of
2600 [RB84, RB85]!

17.2.2 Exponential transform, russian roulette, and particle split-
ting

The exponential transform is a variance reduction technique designed to enhance efficiency
for either deep penetration problems (e.g. shielding calculations) or surface problems (e.g.
build-up in photon beams). It is often used in neutron Monte Carlo work and is directly
applicable to photons as well.

Consider the simple problem where we are interested in the surface or deep penetration in
a simple slab geometry with the planes of the geometry normal to the z-axis. We then scale
the interaction probability making use of the following formula:

λ̃ = λ(1− Cµ), (17.8)

where λ is the distance measured in the number of mean free path’s, λ̃ is the scaled distance,
µ is the cosine of the angle the photon makes with the z-axis, and C is a parameter that
adjusts the magnitude of the scaling. The interaction probability distribution is:

p̃(λ)dλ = (1− Cµ)e−λ(1−Cµ)dλ, (17.9)

where the overall multiplier 1− Cµ is introduced to ensure that the probability is correctly
normalised, i.e.

∫∞

0
p̃(λ)dλ = 1. For C = 0, we have the unbiased probability distribution

e−λdλ. One sees that for 0 < C < 1, the average distance to an interaction is stretched3. For
C < 0, the average distance to the next interaction is shortened. Examples of a stretched
and shortened distribution are given in fig. 17.6. In order to play the game fairly, we must
obtain the appropriate weighting function to apply to all subsequent scoring functions. This
is obtained by requiring that the overall probability be unchanged. That is, we require:

ω′p̃(λ)dλ = ωp(λ)dλ, (17.10)

where ω′ is the new weighting factor and ω is the old weighting factor. Solving eq. 17.10 for
ω′ yields,

ω′ = ωe−λCµ/(1− Cµ). (17.11)

Finally, we require a technique to sample the stretched or shortened number of mean free
paths to the next interaction point from a random number. It is easily shown that λ is
selected using the formula:

λ = − ln(ξ)/(1− Cµ), (17.12)

3Note that the average number of mean free paths to an interaction, 〈λ〉, is given by 〈λ〉 =
∫∞

0
λp̃(λ)dλ =

1

1−Cµ .
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Figure 17.6: Examples of a stretched (C = 1/2) and shortened (C = −1) distribution
compared to an unbiased one (C = 0). In all three cases, µ = 1. For all three curves
∫∞

0
p̃(λ)dλ is unity. The horizontal axis is in units of the number of mean free path’s (mfp’s).
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where ξ is a random number chosen uniformly over the range, 0 < ξ ≤ 1.

For complete generality, one must obey the restriction, |C| < 1 since the photon’s direction
is arbitrary (−1 ≤ µ ≤ 1). “Path-length stretching” means that 0 < C < 1, i.e. photons are
made to penetrate deeper. “Path-length shortening” means that −1 < C < 0, i.e. photons
are made to interact closer to the surface. For studies of surface regions, one may use a
stronger biasing, i.e. C ≤ −1. If one used C ≤ −1 indiscriminately, then nonsense would
result for particles going in the backward direction, i.e. µ < 0. Sampled distances and
weighting factors become negative. It is possible to use C ≤ −1 for special, but important
cases. (As we shall see in the next section, it is possible to remove all restrictions on C
in finite geometries by combining exponential transforms and interaction forcing.) If one
restricts the biasing to the incident photons which are directed along the axis of interest
(i.e. µ > 0) then C ≤ −1 may be used. If one uses this severe biasing, then as seen
in eq. 17.11, weighting factors for the occasional photon that penetrates very deeply can
get very large. If this photon backscatters and interacts in the surface region where one
is interested in gaining efficiency, the calculated variance can be undesirably increased. It
is advisable to use a “splitting” technique [Kah56], dividing these large weight particles
into a N smaller ones each with a new weight, ω′ = ω/N if they threaten to enter the
region of interest. Thresholds for activating this splitting technique and splitting fractions
are difficult to specify and choosing them is largely a matter of experience with a given type
of application. The same comment applies when particle weights become vary small. If this
happens and the photon is headed away from the region of interest it is advisable to play
“russian roulette” [Kah56]. This technique works as follows: Select a random number. If
this random number lies above a threshold, say α, the photon is discarded without scoring
any quantity of interest. If the random number turns out to be below α the photon is
allowed to “survive” but with a new weight, ω′ = ω/α, insuring the fairness of the Monte
Carlo “game”. This technique of “weight windowing” is recommended for use with the
exponential transform [HB85] to save computing time and to avoid the unwanted increase
in variance associated with large weight particles.

Russian roulette and splitting4 can be used in conjunction with exponential transform, but
they enjoy much use by themselves in applications where the region of interest of a given
application comprises only a fraction of the geometry of the simulation. Photons are “split”
as they approach a region of interest and made to play “russian roulette” as they recede. The
three techniques, exponential transform, russian roulette and particle splitting are part of the
“black art” of Monte Carlo. It is difficult to specify more than the most general guidelines
on when they would be expected to work well. One should test them before employing them
in large scale production runs.

Finally, we conclude this section with an example of severe exponential transform biasing
with the aim to improve surface dose in the calculation of a photon depth dose curve [RB84].

4According to Kahn [Kah56], both the ideas and terminology for russian roulette and splitting are
attributable to J. von Neumann and S. Ulam.
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In this case, 7 MeV γ’s were incident normally on a 30 cm slab of water. The results are
summarised in Table 17.1. In each case the computing time was the same. Therefore,

Table 17.1: This series of calculations examines a case where a gain in the computational
efficiency at the surface is desired. Each calculation took the same amount of computing
time. In general, efficiency at the surface increases with decreased C while efficiency worsens
at depth.

C Histories Relative efficiency on calculated dose
103 0–0.25 cm 6.0–7.0 cm 10–30 cm

0 100 ≡1 ≡1 ≡1
-1 70 1 1.0 3.5
-3 55 1.5 1.2 0.6
-6 50 3.5 2.8 0.1

the relative efficiency reflects the relative values of 1/s2. As C decreases, the calculational
efficiency for scoring dose at the surface increases while, in general, it decreases for the largest
depth bin. The efficiency was defined to be unity for C = 0 at the for each bin. For the
deepest bin there is an increase initially because the mean free path is 39 cm. At first the
number of interactions in the 10 cm–30 cm bin increases! Note that as C is deceased the
number of histories per given amount of computing time decreases. This is because more
electrons are being set it motion, primarily at the surface. These electrons have smaller
weights, however, to make the “game” fair.

17.2.3 Exponential transform with interaction forcing

If the geometry in which the transport takes place is finite in extent, one may eliminate re-
strictions on the biasing parameter, C, by combining exponential transform with interaction
forcing. By using the results of the previous two sections we find the interaction probability
distribution to be:

p(λ)dλ =
(1− Cµ)e−λ(1−Cµ)

1− e−Λ(1−Cµ)
dλ. (17.13)

The new weighting factor is:

ω′ = ω
(1− e−Λ(1−Cµ))e−λCµ

1− Cµ
, (17.14)

and the number of mean free paths is selected according to:

λ = − ln(1− ξ(1− e−Λ(1−Cµ)))

1− Cµ
, (17.15)
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where ξ is a random number chosen uniformly over the range, 0 < ξ ≤ 1.

In the case C → 0, eqs. 17.13–17.15 reduce to the equations of simple interaction forcing given
in sec. 17.2.1. In the case Λ → ∞, eqs. 17.13–17.15 reduce to the equations of exponential
transform given in the previous section. However, the equations of this section permit any
value of C to be used irrespective of the photon’s direction as long as the geometry is finite,
i.e. 0 < Λ < ∞. In particular, the strong surface biasing, C < −1 need not be restricted
to forward directed photons (µ > 0), and penetration problems may use C > 1. This latter
choice actually causes the interaction probability to increase with depth for forward directed
photons! Again, as in the previous section, the same comments about particle splitting,
russian roulette, and weight windowing apply.

17.3 General methods

17.3.1 Secondary particle enhancement

In some applications, one wishes to study the behaviour of secondary particles in an en-
ergy regime where they are highly suppressed. For example, X-rays from diagnostic X-
ray tubes arise from bremsstrahlung radiation. The bremsstrahlung cross section is much
smaller than the Møller cross section in the diagnostic regime (≈70 keV). So, calculating
the bremsstrahlung characteristics by Monte Carlo method can be difficult since most of the
effort is spent creating knock-on electrons. Another example would be the calculation of the
effect of pair production in low-Z materials in the radiotherapy regime, below 50 MeV.

One approach is to enhance the number of these secondary particles by creating many of
them, say N , once an interaction takes place and then giving them all a weight of 1/N to
keep the game “fair”. Once the interaction occurs, the secondary energy and directional
probabilities can be sampled to produce distributions in energy and angle of the secondary
particles emanating from a single interaction point. This method is more sophisticated than
“splitting” where N identical particles are produced.

It is important that the stochastic nature of the primary particle be preserved. For this
reason, the energy deducted from the primary particle is not the average of the secondary
particles produced. The proper “straggling” is guaranteed by subtracting the entire energy of
one of the secondary particles. This has the minor disadvantage that energy conservation is
violated for the incident particle history that produces the “spray” of secondaries. However,
over many histories and many interactions, energy conservation is preserved in an average
sense.

The details of the implementation this method for the bremsstrahlung interaction in the
EGS4 code is documented elsewhere [BMC89]. Examples of the use of this method in the
radiotherapy regime [FRR90] and the diagnostic regime [NNS+90] have been published.
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17.3.2 Sectioned problems, use of pre-computed results

One approach to saving computer time is to split the problem into separate, manageable parts
using the results of a previous Monte Carlo simulations as part of another simulation. These
applications tend to be very specialised and unique problems demand unique approaches.
For illustration, we shall present two related examples.

Fluence to dose conversion factors for monoenergetic, infinitely broad electron and photon
beams incident normally on semi-infinite slabs of tissue and water have been calculated
previously [RB85, Rog84a]. These factors, called KE(z), vary with depth, z, and on the
energy of the photon beam, E, at the water surface. Dose due to an arbitrary incident
spectrum as a function of depth, D(z), is calculated from the following relation:

D(z) =

∫ Emax

Emin

Φ(E)KE(z)dE, (17.16)

where Φ(E) is the electron or photon fluence spectrum and it is non-zero between the limits
of Emin and Emax. Each KE array represents a long calculation. If one uses these pre-
calculated factors, one can expect orders of magnitude gains in efficiency. If one is interested
in normally incident broad beams only, the calculated results should be quite accurate.
The only approximations arise from the numerical integration represented by eq. 17.16 and
associated interpolation errors. However, there are two important assumptions buried in
the KE ’s—the incident beams are broad and incident normally. For photons, using narrow
beams in this method can cause 10% to 50% overestimates of the peak dose. For narrow
electron beams this method is not recommended at all.

Another example is the study of the effects of scatter in a 60Co therapy unit [REBvD88]. For
the purpose of modeling the therapy unit in a reasonable amount of computing time, it was
divided into two parts. First, the source capsule itself was modeled accurately and the phase
space parameters (energy, direction, position) of those particles leaving the source capsule
and entering the collimator system were stored. About 2× 106 particles were stored in this
fashion taking about 24 hrs of VAX 11/780 CPU time for executing the simulation. This
data was then used repeatedly in modeling the transport of particles through the collimators
and filters of the therapy head. The approximation inherent in this stage of the calculation is
the interaction between the source capsule and the rest of the therapy head. However, since
the capsule is small with respect to the therapy head and we are interested in calculating the
effects of the radiation somewhat downstream from the therapy head, the approximation is
an excellent one. Another aspect of this calculation was that the effect of the contaminant
electrons downstream from the therapy head was studied. Again, this part of the calculation
was “split off” and done by the method described previously. That is, eq. 17.16 was used to
calculate the depth-dose profiles in tissue.

By splitting the problem into 3 parts, the total amount of CPU time used to simulate the
60Co therapy head [REBvD88] required 5–16 hours of CPU time for each geometry. If
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we had attempted to simulate the problem entirely without “dividing and conquering”, the
amount of CPU time required would have been prohibitive.

17.3.3 Geometry equivalence theorem

A special but important subset of Monte Carlo calculations is normal beam incidence on
semi-infinite geometries, with or without infinite planar inhomogeneities. The use of a simple
theorem, called the “geometry equivalence” or “reciprocity” theorem, provides an elegant
technique for calculating some results more quickly. First we prove the theorem.

Imagine that we have a zero radius beam coincident with the z-axis impinging on the geome-
try described above. We “measure” a response that must have the form f(z, |ρ|), where ρ is
the cylindrical radius. This functional form holds true since there is no preferred azimuthal
direction in the problem. If the beam is now shifted off the axis by an amount ρ′, then
the new functional form of the response must have the form, f(z, |ρ− ρ′|), by translational
symmetry. Finally, consider that we have a finite circular beam of radius ρb and we wish
to integrate the response over a finite-size detection region with circular radius ρd. This
integrated response has the form,

F (z, ρb, ρd) =

∫ |ρ′
|≤ρb

dρ′
∫ |ρ|≤ρd

dρ f(z, |ρ− ρ′|), (17.17)

where
∫ |ρ|≤ρd dρ is shorthand for

∫ 2π

0
dφ
∫ ρd
0
dρ. If we exchange integration indices in eq. 17.17,

then we obtain the reciprocity relationship,

F (z, ρb, ρd) = F (z, ρd, ρb). (17.18)

What eq. 17.18 means is the following: If we have a circular beam of radius ρb and a circular
detection region of radius ρd, then the response we calculate is the same if we had a circular
beam of radius ρb and a circular detection region of radius ρd! The gain in efficiency comes
when we wish to calculate the response of a small detector in a large area beam. If one does
the calculation directly, then much computer time is squandered tracking particles that may
never reach the detector. By using the reciprocity theorem one calculates the same quantity
faster.

In an extreme form the reciprocity theorem takes the form [ICR84],

lim
ǫ→0

F (z, ρb, ǫ) = lim
ǫ→0

F (z, ǫ, ρb), (17.19)

which allows one to calculate the “central axis” depth-dose for a finite radius beam by scoring
the dose in a finite region from a zero-area beam. The gain in efficiency in this case is infinite!
The radius, ρb, can even be infinite to simulate a broad beam.
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A few remarks about the reciprocity theorem and it’s derivation should be made. If the
response function, f(z, |ρ|), has a finite lateral extent, then the restriction that the geometry
should be semi-infinite may be relaxed as long as the geometry, including the inhomogeneous
slabs, is big enough to contain all of the incident beam once the detection region radius
and the beam radius are exchanged. Unfortunately, electron-photon beams always produce
infinitely wide response functions owing to radiation scatter and bremsstrahlung photon
creation. In practice, however, the lateral tails often contribute so little that simulation (and
experiments!) in finite geometries is useful. Also, in the above development it was assumed
that the detection region was infinitely thin. This is not a necessary approximation but this
detail was omitted for clarity. The interested reader is encouraged to repeat the derivation
with a detection region of finite extent. The derivation proceeds in the same manner but
with more cumbersome equations.

17.3.4 Use of geometry symmetry

In the previous section, we saw that the use of some of the inherent symmetry of the geometry
realised considerable increase in efficiency. Some uses of symmetry are more obvious, for
example, the use of cylindrical-planar or spherical-conical simulation geometries if both the
source and target configurations contain these symmetries. Other uses of symmetry are less
obvious but still important. These applications involve the use of reflecting planes to mimic
some of the inherent symmetry.

For example, consider the geometry depicted in fig. 17.7. In this case, an infinite square
lattice of cylinders is irradiated uniformly from the top. The cylinders are all uniform and
aligned. How should one approach this problem? Clearly, one can not model an infinite array
of cylinders. If one tried, one would have to pick a finite set and decide somehow that it was
big enough. Instead, it is much more efficient to exploit the symmetry of the problem. It
turns out that in this instance, one needs to transport particles in only 1/8’th of a cylinder!
To see this we find the symmetries in this problem. In fig. 17.7 we have drawn three planes
of symmetry in the problem, planes a, b, and c5. There is reflection symmetry for each of
these planes. Therefore, to mimic the infinite lattice, any particles that strike these reflecting
planes should be reflected. One only needs to transport particles in the region bounded by
the reflecting planes. Because of the highly symmetric nature of the problem, we only need
to perform the simulation in a portion of the cylinder and the “response” functions for the
rest of the lattice is found by reflection.

The rule for particle reflection about a plane of arbitrary orientation is easy to derive. Let ~u
be the unit direction vector of a particle and ~n be the unit direction normal of the reflecting
plane. Now divide the particle’s direction vector into two portions, ~u‖, parallel to ~n, and ~u⊥,

5Note that this symmetry applies only to a square lattice, where the spacing is the same for the x and
y-axes. For a rectangular symmetry, the planes of reflection would be somewhat different. There would be
no plane c as for the square lattice in fig. 17.7.
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Figure 17.7: Top end view of an infinite square lattice of cylinders. Three planes of symmetry
are drawn, a, b, and c. A complete simulation of the entire lattice may be performed by
restricting the transport to the interior of the three planes. When a particle strikes a plane
it is reflected back in, thereby mimicking the symmetry associated with this plane.
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perpendicular to ~n. The parallel part gets reflected, ~u′
‖ = −~u‖, and the perpendicular part

remains unchanged, ~u′
⊥ = ~u⊥. That is, the new direction vector is ~u′ = −~u‖ + ~u⊥. Another

way of writing this is,
~u′ = ~u− 2(~u · ~n)~n. (17.20)

Applying eq. 17.20 to the problem in fig. 17.7, we have: For reflection at plane a, (u′x, u
′
y, u

′
z) =

(−ux, uy, uz). For reflection at plane b, (u′x, u
′
y, u

′
z) = (ux,−uy, uz). For reflection at plane

c, (u′x, u
′
y, u

′
z) = (−uy,−ux, uz). The use of this reflection technique can result in great gains

in efficiency. Most practical problems will not enjoy such a great amount of symmetry but
one is encouraged to make use of any available symmetry. The saving in computing time is
well worth the extra care and coding.
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Chapter 18

Code Library

This distribution resides on AFS in ˜bielajew/Public/NE590.

Conventions:

Subroutine and code names are written in teletype font.

The subroutines are distributed as combined Fortran77 source files. They are known to
compile error-free on SunOS and Linux unix machines.
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18.1 Utility/General

Readme

A general “readme” file, an ASCII condensation of this chapter.



18.1. UTILITY/GENERAL 309

stats.f

Statistical analysis routine.

Given:
N
∑

i=1

xi ,
N
∑

i=1

x2i and N ,

calculates:

x =
1

N

N
∑

i=1

xi and sx =

√

√

√

√

(

1
N

∑N
i=1 x

2
i

)

− x2

N − 1

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine stats(sumx,sumx2,avgx,sigmax,N)

C Given a sum of values and the associated sum of squares, this routine

C computes the average and the estimated error of the mean.

implicit none

integer N ! Input: Number of samples

real

* sumx, ! Input: The sum of measurements

* sumx2 ! Input: The sum of the squares of measurements

real

* avgx, ! Ouput: The average

* sigmax ! Ouput: The estimated error of the mean

avgx = sumx/N

sigmax = sqrt(max(0e0,sumx2/N - avgx**2)/(N-1))

return

end
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18.2 Subroutines for random number generation

rngmc1.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 ≤ r ≤ 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 69069, c = 0, X0 = 123456789.

The sequence length is 230.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple multiplicative congruential pseudo random number generator using

C one of Knuth’s magic multpliers, 69069

C Sequence length: 2**30

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 69069 ! The scrambling process

rng = 0.5 + ixx*0.23283064e-09 ! The conversion to real 0 <= rng <= 1

return

end
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rngmc2.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 < r < 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 69069, c = 0, X0 = 123456789.

The sequence length is 230.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple multiplicative congruential pseudo random number generator using

C one of Knuth’s magic multpliers, 69069

C Sequence length: 2**30

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 69069 ! The scrambling process

rng = 0.5 + ixx*0.2328306e-09 ! The conversion to real 0 < rng < 1

return

end
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rngmc3.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 ≤ r ≤ 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 663608941, c = 0, X0 = 123456789.

The sequence length is 230.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple multiplicative congruential pseudo random number generator using

C the default magic multiplier, 663608941

C Sequence length: 2**30

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 663608941 ! The scrambling process

rng = 0.5 + ixx*0.23283064e-09 ! The conversion to real 0 <= rng <= 1

return

end
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rngmc4.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 < r < 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 663608941, c = 0, X0 = 123456789.

The sequence length is 230.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple multiplicative congruential pseudo random number generator using

C the default magic multiplier, 663608941

C Sequence length: 2**30

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 663608941 ! The scrambling process

rng = 0.5 + ixx*0.2328306e-09 ! The conversion to real 0 < rng < 1

return

end
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rnglc1.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 ≤ r ≤ 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 69069, c = 987654321, X0 = 123456789.

The sequence length is 232.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple congruential pseudo random number generator using

C one of Knuth’s magic multpliers, 69069

C Sequence length: 2**32

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 69069 + 987654321 ! The scrambling process

rng = 0.5 + ixx*0.23283064e-09 ! The conversion to real 0 <= rng <= 1

return

end
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rnglc2.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 < r < 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 69069, c = 987654321, X0 = 123456789.

The sequence length is 232.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple congruential pseudo random number generator using

C one of Knuth’s magic multpliers, 69069

C Sequence length: 2**32

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 69069 + 987654321 ! The scrambling process

rng = 0.5 + ixx*0.2328306e-09 ! The conversion to real 0 < rng < 1

return

end
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rnglc3.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 ≤ r ≤ 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 663608941, c = 987654321, X0 = 123456789.

The sequence length is 232.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple congruential pseudo random number generator using

C the default magic multiplier, 663608941

C Sequence length: 2**32

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 663608941 + 987654321 ! The scrambing process

rng = 0.5 + ixx*0.23283064e-09 ! The conversion to real 0 <= rng <= 1

return

end
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rnglc4.f

Calculates:
Xn+1 = mod(aXn + c, 232) ,

and returns random numbers uniform over the range 0 < r < 1.:

rn+1 = 1/2 +Xn+1/2
32 ,

where a = 663608941, c = 987654321, X0 = 123456789.

The sequence length is 232.

Restrictions: This routine only works on computer architectures that provide 2’s complement
32-bit integers.

C13456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C A simple congruential pseudo random number generator using

C the default magic multiplier, 663608941

C Sequence length: 2**32

implicit none

integer ixx ! The pseudo-random integer

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

ixx = ixx * 663608941 + 987654321 ! The scrambing process

rng = 0.5 + ixx*0.2328306e-09 ! The conversion to real 0 < rng < 1

return

end
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rngranlux.f

The original RANLUX subroutine coded by Fred James [Jam94] following the theoretical
development by Lüscher [L9̈4].

C The references are Lu:scher, Computer Physics Communications 79 (1994) 100

C and James, CPC 79 (1994) 111.

SUBROUTINE RANLUX(RVEC,LENV)

C Subtract-and-borrow random number generator proposed by

C Marsaglia and Zaman, implemented by F. James with the name

C RCARRY in 1991, and later improved by Martin Luescher

C in 1993 to produce "Luxury Pseudorandom Numbers".

C Fortran 77 coded by F. James, 1993

C

C references:

C M. Luscher, Computer Physics Communications 79 (1994) 100

C F. James, Computer Physics Communications 79 (1994) 111

C

C LUXURY LEVELS.

C ------ ------ The available luxury levels are:

C

C level 0 (p=24): equivalent to the original RCARRY of Marsaglia

C and Zaman, very long period, but fails many tests.

C level 1 (p=48): considerable improvement in quality over level 0,

C now passes the gap test, but still fails spectral test.

C level 2 (p=97): passes all known tests, but theoretically still

C defective.

C level 3 (p=223): DEFAULT VALUE. Any theoretically possible

C correlations have very small chance of being observed.

C level 4 (p=389): highest possible luxury, all 24 bits chaotic.

C

C!!! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C!!! Calling sequences for RANLUX: ++

C!!! CALL RANLUX (RVEC, LEN) returns a vector RVEC of LEN ++

C!!! 32-bit random floating point numbers between ++

C!!! zero (not included) and one (also not incl.). ++

C!!! CALL RLUXGO(LUX,INT,K1,K2) initializes the generator from ++

C!!! one 32-bit integer INT and sets Luxury Level LUX ++

C!!! which is integer between zero and MAXLEV, or if ++

C!!! LUX .GT. 24, it sets p=LUX directly. K1 and K2 ++

C!!! should be set to zero unless restarting at a break++



18.2. SUBROUTINES FOR RANDOM NUMBER GENERATION 319

C!!! point given by output of RLUXAT (see RLUXAT). ++

C!!! CALL RLUXAT(LUX,INT,K1,K2) gets the values of four integers++

C!!! which can be used to restart the RANLUX generator ++

C!!! at the current point by calling RLUXGO. K1 and K2++

C!!! specify how many numbers were generated since the ++

C!!! initialization with LUX and INT. The restarting ++

C!!! skips over K1+K2*E9 numbers, so it can be long.++

C!!! A more efficient but less convenient way of restarting is by: ++

C!!! CALL RLUXIN(ISVEC) restarts the generator from vector ++

C!!! ISVEC of 25 32-bit integers (see RLUXUT) ++

C!!! CALL RLUXUT(ISVEC) outputs the current values of the 25 ++

C!!! 32-bit integer seeds, to be used for restarting ++

C!!! ISVEC must be dimensioned 25 in the calling program ++

C!!! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

DIMENSION RVEC(LENV)

DIMENSION SEEDS(24), ISEEDS(24), ISDEXT(25)

PARAMETER (MAXLEV=4, LXDFLT=3)

DIMENSION NDSKIP(0:MAXLEV)

DIMENSION NEXT(24)

PARAMETER (TWOP12=4096., IGIGA=1000000000,JSDFLT=314159265)

PARAMETER (ITWO24=2**24, ICONS=2147483563)

SAVE NOTYET, I24, J24, CARRY, SEEDS, TWOM24, TWOM12, LUXLEV

SAVE NSKIP, NDSKIP, IN24, NEXT, KOUNT, MKOUNT, INSEED

INTEGER LUXLEV

LOGICAL NOTYET

DATA NOTYET, LUXLEV, IN24, KOUNT, MKOUNT /.TRUE., LXDFLT, 0,0,0/

DATA I24,J24,CARRY/24,10,0./

C default

C Luxury Level 0 1 2 *3* 4

DATA NDSKIP/0, 24, 73, 199, 365 /

Corresponds to p=24 48 97 223 389

C time factor 1 2 3 6 10 on slow workstation

C 1 1.5 2 3 5 on fast mainframe

C

C NOTYET is .TRUE. if no initialization has been performed yet.

C Default Initialization by Multiplicative Congruential

IF (NOTYET) THEN

NOTYET = .FALSE.

JSEED = JSDFLT

INSEED = JSEED

WRITE(6,’(A,I12)’) ’ RANLUX DEFAULT INITIALIZATION: ’,JSEED

LUXLEV = LXDFLT
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NSKIP = NDSKIP(LUXLEV)

LP = NSKIP + 24

IN24 = 0

KOUNT = 0

MKOUNT = 0

WRITE(6,’(A,I2,A,I4)’) ’ RANLUX DEFAULT LUXURY LEVEL = ’,

+ LUXLEV,’ p =’,LP

TWOM24 = 1.

DO 25 I= 1, 24

TWOM24 = TWOM24 * 0.5

K = JSEED/53668

JSEED = 40014*(JSEED-K*53668) -K*12211

IF (JSEED .LT. 0) JSEED = JSEED+ICONS

ISEEDS(I) = MOD(JSEED,ITWO24)

25 CONTINUE

TWOM12 = TWOM24 * 4096.

DO 50 I= 1,24

SEEDS(I) = REAL(ISEEDS(I))*TWOM24

NEXT(I) = I-1

50 CONTINUE

NEXT(1) = 24

I24 = 24

J24 = 10

CARRY = 0.

IF (SEEDS(24) .EQ. 0.) CARRY = TWOM24

ENDIF

C

C The Generator proper: "Subtract-with-borrow",

C as proposed by Marsaglia and Zaman,

C Florida State University, March, 1989

C

DO 100 IVEC= 1, LENV

UNI = SEEDS(J24) - SEEDS(I24) - CARRY

IF (UNI .LT. 0.) THEN

UNI = UNI + 1.0

CARRY = TWOM24

ELSE

CARRY = 0.

ENDIF

SEEDS(I24) = UNI

I24 = NEXT(I24)

J24 = NEXT(J24)
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RVEC(IVEC) = UNI

C small numbers (with less than 12 "significant" bits) are "padded".

IF (UNI .LT. TWOM12) THEN

RVEC(IVEC) = RVEC(IVEC) + TWOM24*SEEDS(J24)

C and zero is forbidden in case someone takes a logarithm

IF (RVEC(IVEC) .EQ. 0.) RVEC(IVEC) = TWOM24*TWOM24

ENDIF

C Skipping to luxury. As proposed by Martin Luscher.

IN24 = IN24 + 1

IF (IN24 .EQ. 24) THEN

IN24 = 0

KOUNT = KOUNT + NSKIP

DO 90 ISK= 1, NSKIP

UNI = SEEDS(J24) - SEEDS(I24) - CARRY

IF (UNI .LT. 0.) THEN

UNI = UNI + 1.0

CARRY = TWOM24

ELSE

CARRY = 0.

ENDIF

SEEDS(I24) = UNI

I24 = NEXT(I24)

J24 = NEXT(J24)

90 CONTINUE

ENDIF

100 CONTINUE

KOUNT = KOUNT + LENV

IF (KOUNT .GE. IGIGA) THEN

MKOUNT = MKOUNT + 1

KOUNT = KOUNT - IGIGA

ENDIF

RETURN

C

C Entry to input and float integer seeds from previous run

ENTRY RLUXIN(ISDEXT)

TWOM24 = 1.

DO 195 I= 1, 24

NEXT(I) = I-1

195 TWOM24 = TWOM24 * 0.5

NEXT(1) = 24

TWOM12 = TWOM24 * 4096.

WRITE(6,’(A)’) ’ FULL INITIALIZATION OF RANLUX WITH 25 INTEGERS:’
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WRITE(6,’(5X,5I12)’) ISDEXT

DO 200 I= 1, 24

SEEDS(I) = REAL(ISDEXT(I))*TWOM24

200 CONTINUE

CARRY = 0.

IF (ISDEXT(25) .LT. 0) CARRY = TWOM24

ISD = IABS(ISDEXT(25))

I24 = MOD(ISD,100)

ISD = ISD/100

J24 = MOD(ISD,100)

ISD = ISD/100

IN24 = MOD(ISD,100)

ISD = ISD/100

LUXLEV = ISD

IF (LUXLEV .LE. MAXLEV) THEN

NSKIP = NDSKIP(LUXLEV)

WRITE (6,’(A,I2)’) ’ RANLUX LUXURY LEVEL SET BY RLUXIN TO: ’,

+ LUXLEV

ELSE IF (LUXLEV .GE. 24) THEN

NSKIP = LUXLEV - 24

WRITE (6,’(A,I5)’) ’ RANLUX P-VALUE SET BY RLUXIN TO:’,LUXLEV

ELSE

NSKIP = NDSKIP(MAXLEV)

WRITE (6,’(A,I5)’) ’ RANLUX ILLEGAL LUXURY RLUXIN: ’,LUXLEV

LUXLEV = MAXLEV

ENDIF

INSEED = -1

RETURN

C

C Entry to ouput seeds as integers

ENTRY RLUXUT(ISDEXT)

DO 300 I= 1, 24

ISDEXT(I) = INT(SEEDS(I)*TWOP12*TWOP12)

300 CONTINUE

ISDEXT(25) = I24 + 100*J24 + 10000*IN24 + 1000000*LUXLEV

IF (CARRY .GT. 0.) ISDEXT(25) = -ISDEXT(25)

RETURN

C

C Entry to output the "convenient" restart point

ENTRY RLUXAT(LOUT,INOUT,K1,K2)

LOUT = LUXLEV

INOUT = INSEED
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K1 = KOUNT

K2 = MKOUNT

RETURN

C

C Entry to initialize from one or three integers

ENTRY RLUXGO(LUX,INS,K1,K2)

IF (LUX .LT. 0) THEN

LUXLEV = LXDFLT

ELSE IF (LUX .LE. MAXLEV) THEN

LUXLEV = LUX

ELSE IF (LUX .LT. 24 .OR. LUX .GT. 2000) THEN

LUXLEV = MAXLEV

WRITE (6,’(A,I7)’) ’ RANLUX ILLEGAL LUXURY RLUXGO: ’,LUX

ELSE

LUXLEV = LUX

DO 310 ILX= 0, MAXLEV

IF (LUX .EQ. NDSKIP(ILX)+24) LUXLEV = ILX

310 CONTINUE

ENDIF

IF (LUXLEV .LE. MAXLEV) THEN

NSKIP = NDSKIP(LUXLEV)

WRITE(6,’(A,I2,A,I4)’) ’ RANLUX LUXURY LEVEL SET BY RLUXGO :’,

+ LUXLEV,’ P=’, NSKIP+24

ELSE

NSKIP = LUXLEV - 24

WRITE (6,’(A,I5)’) ’ RANLUX P-VALUE SET BY RLUXGO TO:’,LUXLEV

ENDIF

IN24 = 0

IF (INS .LT. 0) WRITE (6,’(A)’)

+ ’ Illegal initialization by RLUXGO, negative input seed’

IF (INS .GT. 0) THEN

JSEED = INS

WRITE(6,’(A,3I12)’) ’ RANLUX INITIALIZED BY RLUXGO FROM SEEDS’,

+ JSEED, K1,K2

ELSE

JSEED = JSDFLT

WRITE(6,’(A)’)’ RANLUX INITIALIZED BY RLUXGO FROM DEFAULT SEED’

ENDIF

INSEED = JSEED

NOTYET = .FALSE.

TWOM24 = 1.

DO 325 I= 1, 24
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TWOM24 = TWOM24 * 0.5

K = JSEED/53668

JSEED = 40014*(JSEED-K*53668) -K*12211

IF (JSEED .LT. 0) JSEED = JSEED+ICONS

ISEEDS(I) = MOD(JSEED,ITWO24)

325 CONTINUE

TWOM12 = TWOM24 * 4096.

DO 350 I= 1,24

SEEDS(I) = REAL(ISEEDS(I))*TWOM24

NEXT(I) = I-1

350 CONTINUE

NEXT(1) = 24

I24 = 24

J24 = 10

CARRY = 0.

IF (SEEDS(24) .EQ. 0.) CARRY = TWOM24

C If restarting at a break point, skip K1 + IGIGA*K2

C Note that this is the number of numbers delivered to

C the user PLUS the number skipped (if luxury .GT. 0).

KOUNT = K1

MKOUNT = K2

IF (K1+K2 .NE. 0) THEN

DO 500 IOUTER= 1, K2+1

INNER = IGIGA

IF (IOUTER .EQ. K2+1) INNER = K1

DO 450 ISK= 1, INNER

UNI = SEEDS(J24) - SEEDS(I24) - CARRY

IF (UNI .LT. 0.) THEN

UNI = UNI + 1.0

CARRY = TWOM24

ELSE

CARRY = 0.

ENDIF

SEEDS(I24) = UNI

I24 = NEXT(I24)

J24 = NEXT(J24)

450 CONTINUE

500 CONTINUE

C Get the right value of IN24 by direct calculation

IN24 = MOD(KOUNT, NSKIP+24)

IF (MKOUNT .GT. 0) THEN

IZIP = MOD(IGIGA, NSKIP+24)



18.2. SUBROUTINES FOR RANDOM NUMBER GENERATION 325

IZIP2 = MKOUNT*IZIP + IN24

IN24 = MOD(IZIP2, NSKIP+24)

ENDIF

C Now IN24 had better be between zero and 23 inclusive

IF (IN24 .GT. 23) THEN

WRITE (6,’(A/A,3I11,A,I5)’)

+ ’ Error in RESTARTING with RLUXGO:’,’ The values’, INS,

+ K1, K2, ’ cannot occur at luxury level’, LUXLEV

IN24 = 0

ENDIF

ENDIF

RETURN

END
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rngranlux2.f

RANLUX “subtract-with-borrow” pseudo-random number generator, long period, luxury = 2.

Restrictions: Must be linked with rngranlux.f.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C Seeds and calls the ranlux routine with luxury level 2

implicit none

logical

* init ! Initialization switch

integer

* ixx, ! Internal: Seeding integer for ranlux

* luxury ! Internal: Luxury value for ranlux

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

data luxury/2/ ! The intialization value

save luxury ! Save it

data init/.false./ ! The intialization value

save init ! Save it

if (.not.init) then

call rluxgo(luxury,ixx,0,0) ! Initializes

init = .true. ! Flip the switch

end if

call ranlux(rng, 1)

return

end
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rngranlux3.f

RANLUX “subtract-with-borrow” pseudo-random number generator, long period, luxury = 3.

Restrictions: Must be linked with rngranlux.f.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C Seeds and calls the ranlux routine with luxury level 3

implicit none

logical

* init ! Initialization switch

integer

* ixx, ! Internal: Seeding integer for ranlux

* luxury ! Internal: Luxury value for ranlux

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

data luxury/3/ ! The intialization value

save luxury ! Save it

data init/.false./ ! The intialization value

save init ! Save it

if (.not.init) then

call rluxgo(luxury,ixx,0,0) ! Initializes

init = .true. ! Flip the switch

end if

call ranlux(rng, 1)

return

end
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rngranlux4.f

RANLUX “subtract-with-borrow” pseudo-random number generator, long period, luxury = 4.

Restrictions: Must be linked with rngranlux.f.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

real function rng()

C Seeds and calls the ranlux routine with luxury level 4

implicit none

logical

* init ! Initialization switch

integer

* ixx, ! Internal: Seeding integer for ranlux

* luxury ! Internal: Luxury value for ranlux

data ixx/123456789/ ! The intialization value

save ixx ! Must be saved for subsequent passes

data luxury/4/ ! The intialization value

save luxury ! Save it

data init/.false./ ! The intialization value

save init ! Save it

if (.not.init) then

call rluxgo(luxury,ixx,0,0) ! Initializes

init = .true. ! Flip the switch

end if

call ranlux(rng, 1)

return

end
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18.3 Subroutines for particle transport and deflection

azimuthal0.f

Uniform sampling of azimuthal direction vectors in 2-D.

The direction cosines are determined using the following method:

u = cos(2πr) and v = sin(2πr)

where r is a random number uniform on the range 0 ≤ r < 1, or 0 < r ≤ 1, or 0 ≤ r ≤ 1.

C23456789|123456789|123456789|123456789|123456789|123456789|123456789|12

subroutine azimuthal(u,v)

implicit none

C Computes unit normalized random transverse direction cosines u,v

C normalized so that u**2 + v**2 = 1

real

* u, ! Output: final x-axis direction cosine

* v ! Output: final y-axis direction cosine

real

* phi, ! Internal: azimuthal angle phi

* twopi, ! Internal: value of 2*pi

* rng ! Internal: a random number uniform on the range [0,1) or

! (0,1] or [0,1].

! (,) => exclusive

! [,] => inclusive

data twopi/6.283185/

save twopi ! Saved for repeated use.

phi = twopi*rng()

u = cos(phi)

v = sin(phi)

return

end
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rotate.f

Rotates ~u −→ ~u′ according to cos(Θ).
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subroutine rotate(u,v,w,ws)

implicit none

C Rotates the direction vectors (u,v,w) after a scatter by polar cosine ws

C Some notation conventions:

C Theta, Phi refer to the scattering angles in the reference frame where the

C z-axis is aligned with the initial particle direction

C theta, phi refer to the original particle directions with respect to the

C laboratory frame of reference

real

* u, ! Input: initial x-axis direction cosine

* ! Output: final x-axis direction cosine

* v, ! Input: initial y-axis direction cosine

* ! Output: final y-axis direction cosine

* w, ! Input: initial z-axis direction cosine

* ! Output: final z-axis direction cosine

* ws ! Input: cos(Theta)

real

* sinThetas, ! Internal: sin(Theta), scattering angle

* sintheta, ! Internal: sin(theta), initial angle theta

* sinthetai, ! Internal: 1/sin(theta)

* cosphi, ! Internal: cos(phi), initial angle phi

* sinphi, ! Internal: sin(phi), initial angle phi

* us, ! Internal: scattering x-direction cosine,

! sin(Theta)*cos(Phi)

* vs, ! Internal: scattering y-direction cosine

! sin(Theta)*sin(Phi)

* u2v2 ! Internal: u**2 + v**2 = sin(Theta)**2

C Determine the azimuthal direction cosines
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call azimuthal(us,vs) ! Unit normalized 2-D transverse direction cosines

! i.e. cos(Phi), sin(Phi)

C Convert 2-D transverse to 3-D transverse direction cosines

sinThetas = sqrt(1 - ws**2)

us = sinThetas*us ! i.e. us = sin(Theta)*cos(Phi)

vs = sinThetas*vs ! i.e. vs = sin(Theta)*sin(Phi)

u2v2 = u**2 + v**2 ! i.e. u2v2 = sin(theta)**2

if (u2v2 .gt. 0e0) then ! General scattering case

sintheta = sqrt(u2v2) ! i.e. sin(theta)

sinthetai = 1/sintheta

cosphi = u*sinthetai ! i.e. cos(phi)

sinphi = v*sinthetai ! i.e. sin(phi)

u = u*ws + us*w*cosphi - vs*sinphi

v = v*ws + us*w*sinphi + vs*cosphi

w = w*ws - us*sintheta

return

end if

C This is the scattering from the +/- Z-direction case

u = us

v = vs

w = w*ws

return

end
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18.4 Subroutines for modeling interactions

isotropic.f

Samples the z-axis direction cosine in isotropic scattering from the probability distribution:

p(θ)dθ =
sin θ dθ

2
0 ≤ θ ≤ π

where θ is the polar angle. The direct method is employed giving

cos θ = 2r − 1

where r is a random number uniform on the range 0 ≤ r < 1, or 0 < r ≤ 1, or 0 ≤ r ≤ 1.
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subroutine isotropic(costhe)

implicit none

C Computes direction cosine for isotropic scattering

real

* costhe ! Output: cos(Theta)

real

* rng ! Internal: random number

costhe = 2e0*rng() - 1e0

return

end
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rutherford.f

Samples the z-axis direction cosine in “Rutherfordian” scattering from the probability dis-
tribution:

p(µ) =
a(2 + a)

2

1

(1− µ+ a)2
; − 1 ≤ µ ≤ 1,

where µ = cos(θ). The direct method is employed giving

µ = 1− 2a
1− r

a+ 2r

where r is a random number uniform on the range 0 ≤ r < 1, or 0 < r ≤ 1, or 0 ≤ r ≤ 1.

Restrictions: a ≥ 0 otherwise the routine will stop execution. a = 0 is treated as a special
case (no scattering).
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subroutine rutherford(costhe,eta)

implicit none

C Rutherford-type scattering

real

* costhe, ! Output: cos(Theta)

* eta ! Input: screening factor

real

* rng ! Internal: random number

if (eta .gt. 0e0) then

costhe = rng()

costhe = 1e0 - 2e0*eta*(1e0 - costhe)/(eta + 2e0*costhe)

return

elseif (eta .eq. 0e0) then

costhe = 1e0

return

else

write(6,*) ’Stopped in subroutine rutherford.’

write(6,*) ’Eta was less than zero.’

stop 1

endif
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end
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18.5 Subroutines for modeling geometry

xplane.f

Geometry routine for a plane normal to the x-axis.
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subroutine xplane(p0,x0,u,s,inside,hit)

implicit none

C Calculates the distance of a particle to a planar surface normal to the

C x-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* p0, ! Input: Point at which the plane cuts the x-axis

* x0, ! Input: x-coordinate of the particle

* u , ! Input: x-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

if (

* (inside.and.u.gt.0e0) !headed towards the surface

* .or.

* (.not.inside.and.u.lt.0e0) !headed towards the surface

* )

*then

hit = .true.

s = max(0e0,(p0-x0)/u)

return

else

hit = .false.

return

endif

end
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yplane.f

Geometry routine for a plane normal to the y-axis.
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subroutine yplane(p0,y0,v,s,inside,hit)

implicit none

C Calculates the distance of a particle to a planar surface normal to the

C y-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* p0, ! Input: Point at which the plane cuts the y-axis

* y0, ! Input: y-coordinate of the particle

* v , ! Input: y-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

if (

* (inside.and.v.gt.0e0) !headed towards the surface

* .or.

* (.not.inside.and.v.lt.0e0) !headed towards the surface

* )

*then

hit = .true.

s = max(0e0,(p0-y0)/v)

return

else

hit = .false.

return

endif

end
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zplane.f

Geometry routine for a plane normal to the z-axis.
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subroutine zplane(p0,z0,w,s,inside,hit)

implicit none

C Calculates the distance of a particle to a planar surface normal to the

C z-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* p0, ! Input: Point at which the plane cuts the z-axis

* z0, ! Input: z-coordinate of the particle

* w , ! Input: z-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

if (

* (inside.and.w.gt.0e0) !headed towards the surface

* .or.

* (.not.inside.and.w.lt.0e0) !headed towards the surface

* )

*then

hit = .true.

s = max(0e0,(p0-z0)/w)

return

else

hit = .false.

return

endif

end
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csphere.f

Geometry routine for a sphere, centered at the origin.
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subroutine csphere(R,x0,y0,z0,u,v,w,s,inside,hit)

implicit none

C Calculates the distance to a sphere centered at (0,0,0)

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* R, ! Input: Radius of the cylinder

* x0, ! Input: x-coordinate of the particle

* y0, ! Input: y-coordinate of the particle

* z0, ! Input: z-coordinate of the particle

* u , ! Input: x-axis direction cosine of the particle

* v , ! Input: y-axis direction cosine of the particle

* w , ! Input: w-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

real

* A, ! Internal: Quadratic coefficient A

* B, ! Internal: Quadratic coefficient B

* C ! Internal: Quadratic coefficient C

A = 1e0 ! i.e. u**2 + v**2 + w**2 = 1

B = u*x0 + v*y0 + w*z0

C = x0**2 + y0**2 + z0**2 - R**2

call quadric(A,B,C,s,inside,hit) ! Get the generic quadric solution

return

end
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ccylz.f

Geometry routine for a circular cylinder, aligned and concentric with the z-axis
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subroutine ccylz(R,x0,y0,u,v,s,inside,hit)

implicit none

C Calculates the distance to a circular cylinder centered and aligned along

C the z-axis

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* R, ! Input: Radius of the cylinder

* x0, ! Input: x-coordinate of the particle

* y0, ! Input: y-coordinate of the particle

* u , ! Input: x-axis direction cosine of the particle

* v , ! Input: y-axis direction cosine of the particle

* s ! Output: Distance to the surface (if hit)

real

* A, ! Internal: Quadratic coefficient A

* B, ! Internal: Quadratic coefficient B

* C ! Internal: Quadratic coefficient C

A = u**2 + v**2

B = u*x0 + v*y0

C = x0**2 + y0**2 - R**2

call quadric(A,B,C,s,inside,hit) ! Get the generic quadric solution

return

end
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quadric.f

Geometry routine for the general solution of closest point-of-flight positive intersection with
a general quadric surface
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subroutine quadric(A,B,C,s,inside,hit)

implicit none

C Calculates the first positive distance to an arbitrary quadric surface

logical

* inside ! Input: inside = .true. => particle thinks it is inside

* , ! Input: inside = .false. => particle thinks it is outside

* hit ! Output: hit = .true. => particle would hit the surface

! Output: hit = .false. => particle would miss the surface

real

* A, ! Input: Quadratic coefficient A

* B, ! Input: Quadratic coefficient B

* C, ! Input: Quadratic coefficient C

* s ! Output: Distance to the surface (if hit)

real

* Q ! Internal: quadratic coefficient

Q = B**2 - A*C

if (Q .lt. 0e0) then

hit = .false.

return

end if

if (inside) then !inside the surface

if (B .le. 0e0) then !headed away from surface

if (A .gt. 0e0) then !but, surface curving up

hit = .true. !always a hit in this case

s = (sqrt(Q) - B)/A

return

else !surface curving away and headed in
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hit = .false. !never a hit in this case

return

end if

else !headed toward the surface

hit = .true. !always a hit in this case

s = max(0e0, -C/(sqrt(Q) + B))

return

end if

end if

!Must be outside the surface

if (B .ge. 0e0) then !headed away

if (A .ge. 0e0) then !surface curves away

hit = .false. !never a hit in this case

return

else !surface curves up

hit = .true. !always a hit in this case

s = -(sqrt(Q) + B)/A

return

end if

else !headed toward the surface

hit = .true. !always a hit in this case

s = max(0e0, C/(sqrt(Q) - B))

return

end if

end
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18.6 Test routines

testiso.f

Tests isotropic scattering
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implicit none

C test isotropic scattering

real

* costhe, ! Output: cos(Theta)

* sinthe, ! Output: sin(Theta)

* cosphi, ! Output: cos(Phi)

* sinphi ! Output: sin(Phi)

integer i

do i = 1,1000

call isotropic(costhe)

sinthe = sqrt(1 - costhe**2)

call azimuthal(cosphi,sinphi)

write(1,*) 0e0, 0e0

write(1,*) costhe, sinthe*cosphi

write(1,*) 0e0,0e0

write(2,*) 0e0, 0e0

write(2,*) costhe, sinthe*sinphi

write(2,*) 0e0,0e0

write(3,*) 0e0, 0e0

write(3,*) sinthe*cosphi, sinthe*sinphi

write(3,*) 0e0,0e0

end do

end
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testrng.f

Tests the random number generators

implicit none

integer i

real rng, rn0, rn

i = 0

rn0 = rng()

write(6,*) ’ Initial RN = ’,rn0

1 continue

i = i + 1

rn = rng()

if (i .le. 50 .and. i .gt. 0) write(6,*) rn

if (rn .eq. rn0) then

write(6,*) ’RNG looped, stopping, i = ’, i

write(6,*) ’Final RN = ’, rn

stop

endif

goto 1

end
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