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Abstract
With the advent of MRI-guided radiotherapy, reference dosimetry must be 
thoroughly addressed to account for the effects of the magnetic field on 
absorbed dose to water and on detector dose response. While Monte Carlo 
plays an essential role in reference dosimetry, it is also crucial for determining 
quality correction factors in these new conditions. The Fano cavity test is 
recognized as fundamental to validate Monte Carlo transport algorithms. In the 
presence of magnetic fields, it is necessary to define special conditions under 
which such a test can be performed. The present theoretical study proposes 
two conditions in which the validity of Fano’s theorem is demonstrated in the 
presence of a magnetic field and the analytic expression of energy deposition 
is verified. It is concluded that the proposed conditions form a valid basis for 
two types of Fano cavity tests in the presence of a magnetic field.

Keywords: reference dosimetry, MRI-guided radiotherapy, Fano theorem, 
Fano cavity test, Monte Carlo radiation transport, magnetic fields, ionisation 
chamber response

(Some figures may appear in colour only in the online journal)

1. Introduction

Monte Carlo plays an important role in the calibration of radiotherapy machines. While ion-
isation chambers are usually calibrated for standard conditions (Almond et al 1999, Andreo 
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et al 2001), quality correction factors, which are meant to account for the dependence of 
 calibration coefficients on beam quality, have been tabulated for standard beams based on 
Monte Carlo simulations (Andreo and Brahme 1986, Kosunen and Rogers 1993, Andreo 1994, 
Rogers and Yang 1999, Muir and Rogers 2010, Muir et al 2011, McEwen et al 2014). For 
nonstandard beams, such as small fields and modulated beams, these factors are also evalu-
ated mostly with Monte Carlo methods (Alfonso et al 2008, Francescon et al 2008, Scott et al 
2008, Francescon et al 2011, Cranmer-Sargison et al 2012, Francescon et al 2012, Gago-Arias  
et al 2012, Scott et al 2012, Sterpin et al 2012, Czarnecki and Zink 2013, Underwood et al 
2013, Benmakhlouf et al 2014, Francescon et al 2014a, 2014b, Kamio and Bouchard 2014, 
Papaconstadopoulos et al 2014). With the advent of MRI-guided radiotherapy, the simulation 
of detector dose response to megavoltage photon beams in the presence of an external magnetic 
field is of increasing interest. Recent Monte Carlo studies showed that significant correction 
factors are expected for the calibration of MRI-guided radiotherapy machines when performed 
with ionisation chambers calibrated under standard reference conditions (Meijsing et al 2009, 
Reynolds et al 2013). However, the accuracy of the results reported in these studies remains 
debatable to this day, since no appropriate method to validate the simulations has yet been pro-
posed. The recent publication by Smit et al suggested agreement between experimental and 
simulated ionisation chamber dose response in a MRI-linac prototype (Smit et al 2013) and 
proposed to adapt standard reference dosimetry techniques (Almond et al 1999, Andreo et al 
2001) by correcting the chamber reading for the effect of the magnetic field on its response. This 
approach alone is potentially confusing. The chamber reading, once corrected for polarity and 
recombination effects, is the ionisation produced in the sensitive volume and does not need fur-
ther corrections; what requires correction is the chamber calibration coefficient, and one needs to 
also account for the effect of the magnetic field on absorbed dose to water in the absence of the 
detector. Note that in general, the magnetic field could also have an effect on the detector yield 
(e.g. ion recombination, compatibility of alanine/EPR in magnetic fields, etc) and these effects 
are currently under investigation. Therefore, the accurate determination of quality correction 

factors (i.e. kQ Q
f f

,
,

B
B ), which account for the change in beam quality and its effect on the detector, is 

yet to be achieved with Monte Carlo and might require experimental data.
To benchmark Monte Carlo radiation transport algorithms, the Fano cavity test (or Fano 

test) is widely recognized as a major requirement, especially in the context of ionisation cham-
ber dose response simulation. Based on Fano’s theorem (Fano 1954), this test is the only 
known method allowing the validation of charged particle energy deposition in heterogeneous 
media against an analytic expression, this way testing the self consistency and implementation 
of the charged particle step algorithms, which is typically composed of a multiple scattering 
model and a boundary crossing algorithm (Kawrakow 2000a). The Fano test was first proposed 
by Smyth (1986) and further adapted by other authors in EGS4 (Bielajew 1990a, 1990b, Foote 
and Smyth 1995), EGSnrc (Kawrakow 2000b), PENELOPE (Sempau and Andreo 2006, Yi 
et al 2006) and GEANT4 (Poon and Verhaegen 2005, Elles et al 2008, Sterpin et al 2014). For 
detector dose response simulations, the level to which the Fano test is achieved is often inter-
preted as the accuracy of the code, to which a level of 0.1% was first reached with EGSnrc for 
cobalt-60 (Kawrakow 2000b) and electrons (Seuntjens et al 2002), later with PENELOPE for 
the same types of beam (Sempau and Andreo 2006, Yi et al 2006) and GEANT4 and PENH 
for proton beams (Sterpin et al 2014). By definition, the Fano test is applicable to a hetero-
geneous geometry where the properties are spatially uniform, such that the interaction cross 
sections are directly proportional to the mass density. The test requires a special condition on 
the primary source in order to obtain a spatially uniform charged particle fluence (a condition 
also known as charged particle equilibrium), either by simulating a parallel photon beam and 
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removing the effect of the beam attenuation (i.e. the regeneration technique (Bielajew 1990a, 
1990b)), or by using an isotropic primary electron source being uniform per unit mass. The 
expected absorbed dose in any scoring region is then equal to the energy transferred to charged 
particle per unit mass from the primary source.

In the presence of an external magnetic field distribution, we recently showed that Fano’s 
theorem (Fano 1954), on which Fano tests rely, cannot hold for arbitrary source and field dis-
tributions (Bouchard and Bielajew 2015). The work was initially presented at the International 
Workshop on Monte Carlo Techniques in Medical Physics in Québec City in 2014 (Bouchard 
and Bielajew 2014). One can intuitively understand why Fano’s conditions could be vio-
lated in magnetic fields by representing a geometry of varying mass density subject to a uni-
form magnetic field. Since the field does not scale with the mass density, the magnetic force 
remains uniform (for given energy and direction), while the electron stopping power, also 
being a force, is proportional to the mass density. Therefore the ratio of the magnetic force 
over the stopping power is inversely proportional to the mass density, and so is the ratio of 
the electron range over the bending radius of the magnetic force. Although the magnetic force 
do no work, its bending effect on the electron trajectory results in fluence perturbations near 
the boundary of regions having distinctive mass densities. Therefore, in a varying-density 
geometry irradiated by a uniform and parallel photon source, which would establish charged 
particle equilibrium in the absence of a magnetic field, one should expect the electron fluence 
not to be uniform, unless special conditions are fulfilled.

The invalidity of Fano’s theorem has the consequence of limiting our ability to validate 
the implementation of the Lorentz force in Monte Carlo codes simulating charged particle 
transport in dense matter. To develop an appropriate test under such new constraints, the Fano 
test must be adapted by defining conditions under which Fano’s theorem is valid. Once estab-
lished, special Fano tests will allow evaluating the accuracy of Monte Carlo codes coupled to 
magnetic fields, especially in the context of detector dose response simulation.

Based on the modified Boltzmann transport equation we proposed which accounts for the 
presence of external magnetic fields (Bouchard and Bielajew 2015), the present paper reports 
the theoretical investigation of two special conditions under which charged particle equilibrium 
can be established. Under these conditions, Fano’s theorem is verified by demonstrating that 
the charged particle fluences are independent of mass density variations. An analytic expression 
for energy deposition is also obtained in agreement with the classical Fano test. This allows 
completing the design of two special Fano tests applicable in the presence of magnetic fields.

The paper is structured as follows. The next section provides relevant mathematical defini-
tions to explore the theory of transport in the presence of magnetic fields. In the third section, 
the classical Fano theorem is described and it is explained in detail why it does not hold gener-
ally in the presence of magnetic fields. In the fourth section, the two special conditions are rig-
orously addressed from a theoretical point of view. Before concluding on the expected impact 
of this work, the energy deposition for the proposed special Fano tests are derived in the fifth 
section, showing perfect agreement of the analytic expression with classical Fano tests.

2. Definitions

 • →r: a vector corresponding to the particle position in space (in cm), i.e. = ( )→r x y z, , .
 • →p: a vector corresponding to the particle momentum (in MeV s cm−1), i.e. = ( )→p p p p, ,x y z  

and = ∣ ∣→p p .

 • →u: a unit vector in the direction of the particle momentum →p, i.e. =→
→

u p

p
.
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 • t: the time (in s).
 • s: the path travelled by the particle (in cm).
 • ρ sd : an infinitesimal step of mass-thickness trajectory (in g cm−2).
 • mass-thickness trajectory: particle trajectory in a homogeneous medium in terms of 

mass-thickness spatial coordinates. These coordinates are obtained by multiplying the 
spatial coordinates (x, y, z) by the mass density, i.e. ρ ρ ρ( )x y z, , .

 • β: the particle velocity relative to the speed of light.

 • γ: the Lorentz factor defined as 
β−

1

1 2
.

 • mc2: the particle rest mass energy (in MeV).
 • T: the particle kinetic energy (in MeV). For photons, T   =   pc, and for electrons and posi-

trons, = − −T p c m c mc2 2 2 4 2.
 • ( )⎯→ ⎯→⎯f r p,i : the fluence differential in energy and direction (in cm−2 MeV−1sr−1) of the par-

ticle type i (i.e. photons, electrons or positrons) corresponding to the number of particles 
at →r  with momentum →p per unit energy, per unit area perpendicular to →u and per unit solid 
angle θ θ ϕ=→ud sin d d  .

 • σ ( → )′→ →p pji : the differential cross section per unit energy and solid angle (in cm2 MeV−1 
sr−1) for a particle of type j with momentum ′→p  to generate a particle of type i with 
momentum →p through any interaction (i.e. photoelectric effect, Compton scattering,  
Mϕller scattering, etc). Note that the cross section can also be expressed as a function 
of the energy of the primary and secondaries, i.e. ′T  and T, as well as the cosine of the 
scattering angle χ = ⋅ ′→ →u ucos .

 • μ ( )pi : the macroscopic cross section (in cm2 g−1) for a particle of type i with momentum 
p to interact locally with the medium.

 • N: the number of interaction sites per unit mass (in g−1).
 • ρ: the mass density of the medium (in g cm−3).
 • 

→
B: a position-dependent vector corresponding to the magnetic field (in T) at →r , i.e. 

≡ ( )
→ → →B B r .

 • ( )→ →S r p,i : the primary source term representing the number of particles of momentum →p 
generated at →r by an external source per unit mass, energy and direction (in g−1 MeV−1sr−1).

 • ∇
→

r: the gradient operator in the space coordinates defined as ∇ = + +∂
∂

∂
∂

∂
∂

→
x y zˆ ˆ ˆr x y z

.

 • ∇
→

p: the gradient operator in the moment coordinates defined as θ ϕ∇ = + +
θ θ ϕ

∂
∂

∂
∂

∂
∂

→ →u ˆ ˆ
p p p p

1 1

sin
.

 • Spatial uniformity: this terminology is applied either to a mathematical function or to 
atomic properties. A mathematical function F is spatially uniform if and only if ∇ =

→ →
F 0r . 

Atomic properties are spatially uniformity if physical properties of a given geometry, 
such as the mean excitation energy (I-value), the effective atomic number (or elemental 
composition) and the density effect parameter δ are uniform in space. This allows the 
macroscopic cross section of any interaction type to scale directly with the mass density.

 • Isotropy: this terminology is applied to a mathematical function being independent on the 
particle direction (or angular distribution). A mathematical function F is isotropic if and 

only if = =
θ ϕ

∂
∂

∂
∂

0F F  for all θ and ϕ.

3. Fano’s theorem and its breakdown in external magnetic fields

In our previous approach (Bouchard and Bielajew 2015), we provided a formal proof of the 
statement that Fano’s theorem cannot apply in the presence of external electromagnetic fields 
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unless special conditions are met. To illustrate this in more detail, it is worth representing 
Fano’s theorem in such a way that presence of the Lorentz force requires special conditions 
for Fano’s theorem to hold.

3.1. An alternative representation of the classical Fano theorem

In the absence of a magnetic field, Fano’s theorem states the following (Fano 1954):

  In a medium with uniform atomic properties irradiated by a source of primary particles 
being spatially uniform, the charged particle fluence is also uniform and independent of 
the mass density distribution.

An intuitive proof of the theorem can be constructed by reformulating Fano’s statement as 
follows:

  In a medium where the charged particle mass-thickness trajectories are independent of 
the mass density and the source of primary particles irradiating the medium is spatially 
uniform, the charged particle fluence is also uniform and independent of the mass density 
distribution.

Here the statement is modified by replacing the requirement of uniform atomic properties 
with the condition that the mass-thickness trajectories of secondary particles are independ-
ent of the mass density. These arguments are equivalent. The fact that the medium is defined 
to have spatially uniform atomic properties means that the macroscopic cross sections of all 
physical interactions are directly proportional to the mass density, and therefore one can rep-
resent mass-thickness trajectories independently of the mass density. Equivalently, charged 
particle mass-thickness trajectories can only be independent of the mass density if the medium 
atomic properties are uniform. Therefore if one describes the change in energy and direction 
of the particle as a function of its path in of terms of mass thickness, the equations of motion 
are independent of the mass density distribution.

Let us show that this rationale applies in the cases of energy loss and scattering. Charged 
particle stopping power can be written in terms of mass thickness as follows:

ρ
= − ( )T

s
S T

d

d
,m (1)

where Sm is the mass stopping power. As Sm is independent of the mass density (keeping the 
density effect parameter aside), this equation of motion describing the mass-thickness trajec-
tory is also independent of the mass density. Note that for a given material, the density effect 
parameter δ varies with the mass density, and therefore Fano tests must be applied with spa-
tially uniform values at each energy (e.g. δ of vapor is replaced by δ of water).

Charged particle scattering angles are also independent of the mass density, fundamentally 
because particle directions represent relative coordinate displacements in a given frame of ref-
erence. Representing the particle mass-thickness trajectory, each dimension of the trajectory is 
equally scaled and therefore the scattering angle is independent of the mass density. This can 
be further illustrated using the example of multiple elastic scattering (MS) using the theory 
of Lewis (1950), which describes the average lth-order Legendre polynomial of the scattering 
angle χ, is written as follows

∫ ∫χ( ) = πρ σ χ θ θ θ− ( )[ − ( )] ′
π

P cos e ,l
N T P s2 ,cos 1 cos sin d d

s

l
0 0

el (2)
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with σ χ( )T , cosel  the elastic scattering cross section differential in solid angle, being a  function 
of the particle energy and the cosine of the scattering angle. Note that l   =   1 corresponds to 
the average cosine of the scattering angle, as χ χ( ) =P cos cos1 . Using the continuous slowing 
down approximation (CSDA), as stated by equation (1), the particle energy can be entirely 
determined by the path in mass thickness. Therefore one can write the following

∫ ∫χ( ) =
π σ χ θ θ θ− ( ) ( )[ − ( )]

π

P cos e ,l
N

S T
T P T2 1 ,cos 1 cos sin d d

Ti

Tf

m
l

0
el (3)

with Ti and T f  the initial and final energy defining the particle step (in mass thickness). This 
expression is clearly independent of the mass density. Therefore in the absence of magnetic 
field, one can draw the conclusion that a medium with uniform atomic properties is equivalent 
to particle mass-thickness trajectories to be independent of the mass density.

3.2. Violation of Fano’s theorem due to external magnetic fields

Based on this representation, it is valuable to investigate how a uniform magnetic field affects 
the particle’s mass-thickness trajectory. The change in direction from the Lorentz force can be 
expressed as follows (Bielajew 2001)

ρ ργβ
= ×

→
→ →u

s

q

mc
u B

d

d
. (4)

In this representation, the right-hand side of the equation  shows a dependence on ρ. 
Therefore, in an arbitrary magnetic field one can conclude that the particle mass-thickness 
trajectory is not independent of the mass density. From the point of view of Fano’s theorem, 
one can draw the conclusion that the presence of a uniform magnetic field is equivalent to not 
having uniform medium atomic properties, and therefore violating the required condition for 
the theorem to hold.

Figure 1 illustrates this effect in a plane perpendicular to a uniform magnetic field. The 
mass-thickness trajectory of a 1 MeV electron is calculated in uniform media of different den-
sities subject to uniform transverse magnetic fields of various strengths. The transport model 
uses CSDA and ignores scattering effects and secondary particles, similarly to the approach of 
Jette (2000) without multiple scattering effects. Results show that particle trajectories signifi-
cantly vary as a function of the mass density in the presence of strong magnetic fields, while 
this dependence diminishes as the field becomes weaker. These results are in agreement with 
what can be concluded from equations (1), (3) and (4).

Based on this example, one could intuitively build two special conditions where Fano’s 
theorem is applicable in the presence of magnetic fields. One of these conditions requires a 
constraint on the source and is based on the rationale that the magnetic field only affects the 
direction of the particles. Therefore, an isotropic distribution of charged particles in equi-
librium should not be perturbed by the presence of the magnetic field. It is shown in the 
next section that particle isotropy allows the magnetic field-dependent term of the Boltzmann 
transport equation to vanish, leaving the same solution as in the absence of field, indepen-
dently of the field strength or direction. The second condition requires a constraint on the 
magnetic field. It is based on the idea of modifying the magnetic field so that mass-thickness 
trajectories are independent of the mass density, and therefore Fano’s theorem can hold. This 
leaves the trivial solution where one defines a uniform magnetic field scaling proportionally 
to the mass density. In this case, the right-hand side of equation (4) is independent of mass 
density and so are the equations of motion of the mass-thickness trajectory. Figure 2 illustrates 
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one of the two conditions, showing how scaling the field strength with the mass density yields 
to the same trajectory, combining several fields strengths and mass densities. A rigorous deri-
vation of the applicability of Fano’s theorem under these two special conditions is provided 
in the next section.

4. Special conditions for Fano’s theorem to hold in external magnetic fields

To allow benchmarking Monte Carlo simulations in the presence of magnetic fields based on 
Fano’s theorem, let us propose two conditions and demonstrate their validity in the form of 
theorems.

4.1. Radiation transport equations in an external magnetic field

The adapted Boltzmann transport equation  for charged particle fluence in the presence of 
an external magnetic field 

→
B and absence of an external electric field can be written using 

an expression we previously derived (Bouchard and Bielajew 2015). To represent the cou-
pled transport of photons, electrons and positrons in a medium, the following system of 

Figure 1. Mass-density dependence of the mass-thickness trajectory of a 1 MeV 
electron slowing down in a uniform medium subject to a transverse magnetic field: 
(a) B   =   1000 mT; (b) B   =   100 mT; (c) B   =   10 mT.
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Figure 2. The impact of scaling the magnetic field with the mass density on the 
mass-thickness trajectory of a 1 MeV electron in different media: (a) ρ = 1 g cm−3; 
(b) ρ = 0.1 g cm−3; (c) ρ = 0.01 g cm−3. Each of the four trajectories are identical in 
all three figures.
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equations based on coupled transport (Tervo 2007, Bouchard 2012, Bouchard et al 2012) is 
used:

ρ⋅ ∇ = [ + { }] − × ⋅ ∇→ → → → →
u f S I f f f q u B f, ,r i i i i p i1 2 3 (5)

with i   =   1,2,3, the indices representing photons, electrons and positrons, respectively, so that 
q1   =   0 and q2   =   −  q3. The left-hand side of the equation equals the net amount of particles 
generated per unit volume at →r , described by the divergence of the time-integrated phase-space 
current density distribution →ufi. On the right-hand side, the first two terms, being the source 
and interaction terms multiplied by the mass density, correspond to the net contribution of 
particles per unit volume from an external source and from interactions with the medium, 
respectively. The third term corresponds to the net contribution of particles per unit volume 
from the magnetic force and is equal to the scalar product of the magnetic force and the gradi-

ent in the momentum space of the time-integrated phase-space density distribution 
β

f
c i

1 .
For a fixed geometry defined by σji and ρ, the set of particle fluences { }f f f, ,1 2 3  are uniquely 

determined by the set of sources { }S S S, ,1 2 3 . Each interaction term Ii (in g−1 MeV−1 sr−1) is 
an operator representing the production of particles of type i by particles of all types and is 
defined as follows:

∫ ∫∑μ σ{ }= − ( ) ( ) + ( ) ( → )′ ′ ′ ′
π=

→ → → → → → →I f f f p f r p N T f r p p p u, , , d , d ,i i i
j

T

T

j ji1 2 3
1

3

4

max

 (6)

with θ θ ϕ=′ ′ ′ ′→ud sin d d . Note here that θ ϕ( )p, ,  represents the vector →p in spherical coordi-

nates and = − −T p c m c mc2 2 2 4 2 (with m   =   0 for photons). On the right hand side, the 

first term corresponds to the loss of particles of type i with momentum →p, where particles of 
all types (j   =   1, 2, 3) with momentum ≠′→ →p p and ⩽′p p may be produced. The second term 
corresponds to the gain of particles of type i with momentum →p, which may be produced by 
particles of all types (j   =   1, 2, 3) with momentum ≠′→ →p p and ⩾′p p.

4.2. Condition I: isotropic and spatially uniform sources

Theorem. In a medium with spatially uniform atomic properties subject to a magnetic field, 
the particle fluences resulting from spatially uniform and isotropic primary sources are 
also spatially uniform and isotropic, independently of the mass density and magnetic field 
distributions.
Proof. Consider a geometry with spatially uniform atomic properties such that for all  interaction 
types, the cross sections σij are spatially uniform and the mass density distribution is arbitrary, 
i.e. ρ ρ= ( )→r . Let the sources Si be spatially uniform and isotropic but otherwise arbitrary and 
let { }g g g, ,1 2 3  be the fluences satisfying the following equilibrium equation system

( ) + { } =S p I g g g, , 0i i 1 2 3 (7)

for i   =   1, 2, 3. Since the sources Si(p) are spatially uniform and isotropic, one would expect 
the solutions gi to be also spatially uniform and isotropic, but is worth verifying this explicitly.

To show spatial uniformity, let us apply the gradient operator on equation (7), which yields

{∇ ∇ ∇ } =
→ → → →

I g g g, , 0.i r r r1 2 3  (8)
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for i   =   1,2,3. Note that equation  (7) is scalar, while equation  (8) is vectorial. But putting 
Si   =   0 in equation (7) satisfies each component of the vector equation (8), and therefore, since 
the solution of the equation system is unique (i.e. yielding a unique set of solutions), ∇

→
gr i are 

the trivial solutions for Si   =   0 (i.e. in the absence of sources). That is, the equilibrium solution 
satisfies

∇ =
→ →

g 0r i (9)

for i   =   1,2,3.
To show isotropy, we make expansions in terms of orthogonal functions. This is without 

loss of generality because the functions being expanded are probability distributions. Let us 
expand gi in spherical harmonics as follows:

∑ ∑( ) = ( ) ( )
=

∞

=−

→ →g p g T Y u .i
l m l

l

i l
m

l
m

0
, (10)

Thus, one can write

∫ ∫∑ ∑ ∑μ σ{ } = − ( ) ( ) + ( ) ( ) ( → )′ ′ ′ ′ ′
π

→ → → → →I g g g g T Y u N g T T Y u p p u, , d d .i i
l m

i l
m

l
m

j l m
T

T

j l
m

l
m

ji1 2 3
,

,
,

,
4

1 1

1

1

1
1

1 1

max

1

1

1
1

 (11)
Using the Legendre polynomials to expand the cross sections σ ( → )′→ →p pji , one can write

∑σ χ( → ) = ( → ) ( )′ ′
=

∞
→ →p p a T T P cos .ji

l

ji l l

0

,

2

2 2 (12)

Using the addition theorem (Arfken and Weber 2011), one writes

∑χ π( ) =
+

( ) *( )′
=−

→ →P
l

Y u Y ucos
4

2 1
,l

m l

l

l
m

l
m

2
2

2 2

2

2
2

2
2 (13)

and therefore

∑ ∑σ π( → ) =
+

( → ) ( ) *( )′ ′ ′
=

∞

=−

→ → → →p p
l

a T T Y u Y u
4

2 1
.ji

l m l

l

ji l l
m

l
m

0 2
,

2 2 2

2

2 2
2

2
2 (14)

This leads to

∫ ∫

∑

∑ ∑ ∑

μ

π

{ } = − ( ) ( )

+
+

( → ) ( ) ( ) ( )

*( )

′ ′ ′ ′

′ ′

π

→

→ →

→ →

I g g g g T Y u

N
l

a T T g T T Y u Y u

Y u u

, ,

4

2 1
d

d .

i i
l m

i l
m

l
m

j l m l m T

T

ji l j l
m

l
m

l
m

l
m

1 2 3
,

,

, , 2
, ,

4

1 1

1

1

1
1

1 1 2 2
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2 1

1

1
1

2
2

2
2

 (15)

H Bouchard et alPhys. Med. Biol. 60 (2015) 6639



6648

Now let us isolate the equation for ( )g Ti l
m
,  using the orthogonality of the spherical harmon-

ics. Let us write

∫ ∫

∫

∫ ∫

∫

∫

∑

∑ ∑ ∑

∑

∑ ∑ ∑

∑

μ

π

μ δ δ

π

δ δ δ δ

μ π

{ } *( ) = − ( ) ( ) *( )

+
+

( → ) ( )

( ) *( ) ( ) *( )

= − ( )

+
+

( → ) ( )

= − ( ) +
+
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′ ′ ′

′ ′ ′

′ ′ ′

′ ′ ′

π π

π π
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→ → → → → →

I g g g Y u u g T Y u Y u u

N
l

a T T g T T

Y u Y u u Y u Y u u
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N
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a T T g T T

g T N
l

a T T g T T

, , d d

4

2 1
d

d d

4

2 1
d

4

2 1
d ,

i l
m

i
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l
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l
m
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T

T

ji l j l
m

l
m

l
m

l
m

l
m

i
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i l
m

l l m m
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T
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m
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m
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T
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m

4
1 2 3

,
,

4
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,
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1
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1
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(16)

for an arbitrary choice of l and m. Hence equation (7) can be transformed as follows:

∫ ∫

∫
∫

∫

∑

∑

π μ

π

π δ δ μ π

= ( ) *( ) + { } *( )

= ( ) ( ) *( ) − ( )

+
+

( → ) ( )

= ( ) − ( ) +
+
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π π

π
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N
l

a T T g T T
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a T T g T T
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2 d

4

2 1
d

2
4

2 1
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m
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m
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m

i i l
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j T

T
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i l m i i l
m

j
T

T

ji l j l
m

4 4
1 2 3

4
0
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,

, ,

0 0 , , ,
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 (17)

For each i, the solution ( )→g pi  is entirely determined by Si(p). Since gi l
m
,  are linearly independ-

ent with l and m, the equation can be solved independently for each combination l, m. Since 
the source is isotropic, it is clear that =g 0i l

m
,  satisfies the equation  for all ≠l 0 and ≠m 0. 

Therefore, the function

∑ ∑

π

( ) = ( ) ( )

= ( ) ( )

= ( )

=

∞

=−

→ →

→

g p g T Y u

g T Y u

g T
1

2

i
l m l

l

i l
m

l
m

i

i

0
,

,0
0

0
0

,0
0

 (18)
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resolves equation (7) for all i and is independent of the direction →u. Using this result leads to

∇ =
∂
∂

→ →g
g

p
up i

i
 (19)

for i   =   1, 2, 3. Therefore, since ×→ →
u B is perpendicular to →u, one can write

× ⋅ ∇ =→ → →
q u B g 0i p i (20)

for all i   =   1, 2, 3. Since the equilibrium solutions gi satisfy the equilibrium equation system 
(equation (7)), they are independent of mass density, and from equations (9) and (20), they 
also satisfy the general transport equation system (equation (5)).� 

4.3. Condition II: spatially uniform sources and density-scaled magnetic field

Theorem. In a medium with spatially uniform atomic properties subject to an external mag-
netic field of fixed direction and with strength proportional to the mass density, the particle 
fluences resulting from spatially uniform primary sources are also spatially uniform, indepen-
dently of the mass density distribution.
Proof. Let us define the geometry with spatially uniform atomic properties such that for all 
interaction types, the cross sections σij are spatially uniform and the mass density distribution 
is arbitrary, i.e. ρ ρ= ( )→r . Let us define the magnetic field to be given by ρ=

→ →
B Bm, with 

→
Bm a 

constant vector, and the sources Si to be spatially uniform with arbitrary angular distribution. 
Then the density ρ is a common factor to the right hand side of equation (5) and the following 
equilibrium equation system can be written

( ) + { } − × ⋅ ∇ =→ → → →
S p I g g g q u B g, , 0i i i m p i1 2 3 (21)

for i   =   1, 2, 3. Since the sources ( )→S pi  are spatially uniform, one would expect the solutions gi 
to be spatially uniform. Applying the spatial gradient operator on equation (21), one obtains

{∇ ∇ ∇ } − × ⋅ ∇ (∇ ) =
→ → → → → → → →

I g g g q u B g, , 0i r r r i m p r i1 2 3 (22)

for i   =   1, 2, 3. Clearly this is the solution of the equation system (21) for Si   =   0 (i.e. the 
absence of sources) and therefore ∇ =

→ →
g 0r i , the solution being unique for each i. For such con-

figuration, gi are also solution of the equation system (5), independently of ρ.� 

5. Energy deposition in special Fano cavity tests

To complete the design of the special Fano tests proposed herein, it is worth verifying that the 
analytic expression of energy deposition, being the typical metric used to benchmark Monte 
Carlo codes, is identical to Fano conditions in the absence of magnetic fields.

5.1. Condition I: spatially uniform and isotropic sources

The energy absorbed per unit mass (in Gy) is defined as the balance of interactions as follows 
(Bouchard 2012)
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∫ ∫∑= − { }
π=

→D k T T I f f f ud , , d ,
i

T

i

1

3

0 4
1 2 3

max

 (23)

with = × −k 1.6022 10 10 Gy MeV−1 g. Consider a geometry with uniform atomic properties 
subject to an arbitrary magnetic field distribution. Let us study the energy deposited locally 
from a set of spatially uniform and isotropic sources. We showed mathematically that this 
implies ∇ =

→ →
f 0r i  and × ⋅ ∇ =→ → →

u B f 0p i . From equation (5) one writes

∫ ∫∑= ( )
π=

→D k T T S p ud d .
i

T

i

1

3

0 4

max

 (24)

For i   =   1,2,3, let us define the source spectrum ( ) = ( )πs T S pi N i
4

i
 (in MeV−1), with

∫ ( ) =s T Td 1
T

i
0

max

 (25)

and Ni the number of particles emitted per unit mass in the source (in g−1). The energy absorbed 
per unit mass (in Gy) is then given by

∫∑

∑

= ( )

=

=

=

D k N s T T T

k N T

d

.

i

i

T

i

i

i i

1

3

0

1

3

max

 (26)

with T i the average kinetic energy (in MeV) over the source of particles of type i. Note that 
this result is independent of the magnetic field distribution and therefore is the same in the 
absence of magnetic fields, i.e. such as in a standard Fano test. It is also worth noting that in 
the case of photons being used to generate electrons through their interactions, this relation 
equals collision kerma. If electrons are generated randomly by a spontaneous source, Ni and 
T i must be defined as a simulation input.

5.2. Condition II: spatially uniform sources and density-scaled magnetic fields

Allow a geometry with uniform atomic properties subject to a magnetic field of constant 
direction and strength proportional to the mass density, i.e. ρ=

→ →
B Bm, with 

→
Bm a constant vec-

tor. Let us study the case where the sources are spatially uniform with arbitrary angular distri-
bution. Since ∇ =

→ →
f 0r i , from equation (5) and (23) one finds

∫ ∫ ∫ ∫∑ ∑= ( ) − × ⋅ ∇
π π= =

→ → → → → →D k T T S p u k q T T u B f ud d d d .
i

T

i

i
i

T

m p i
1

3

0 4
1

3

0 4

max max

 (27)

On the right hand side of the equation, the first term results in equation (26) by defining the 
source spectra for i   =   1,2,3 as

∫( ) = ( )
π

→ →s T
N

S p u
1

d .i
i

i
4

 (28)
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Note that this general definition can also be applied for an isotropic source, yielding 

( ) = ( )πs T S pi N i
4

i
 as in condition I. The second term of equation (27) can be shown to vanish 

using spherical coordinates of →p and the following integrals for i   =   1,2,3. First, expressing the 
gradient in the momentum space yields

∫ ∫ ∫

∫

θ
θ

ϕ
θ ϕ

× ⋅ ∇ = × ⋅
∂
∂

+ × ⋅
∂
∂

+ × ⋅
∂
∂

π π π

π

→ → → → → → → → → → →

→ → →

u B f u u B u
f

p
u u B

p

f
u

u B
p

f
u

d d ˆ 1
d

ˆ 1

sin
d .

m p i m
i

m
i

m
i

4 4 4

4 (29)

Clearly, the first term on the right-hand side of the equation vanishes. Using the properties 
of the scalar triple product, one obtains

∫ ∫ ∫θ
θ

ϕ
θ ϕ

× ⋅ ∇ = × ⋅
∂
∂

+ × ⋅
∂
∂π π π

→ → → → → → → → → →u B f u u B
p

f
u u B

p

f
ud ˆ 1

d ˆ 1

sin
d ,m p i m

i
m

i

4 4 4
 

(30)

which yields to

∫ ∫ ∫ϕ
θ

θ
θ ϕ

× ⋅ ∇ = − ⋅
∂
∂

+ ⋅
∂
∂π π π

→ → → → → → → →u B f u
p

B
f

u
p

B
f

ud
1 ˆ d

1 ˆ 1

sin
d .m p i m

i
m

i

4 4 4
 (31)

Expressing the resulting vectors in the spatial coordinates as follows

∫ ∫ ∫

∫ ∫

ϕ θ ϕ θ ϕ
θ

θ

θ θ ϕ θ ϕ θ
ϕ

ϕ

× ⋅ ∇ = ⋅ ( − )
∂
∂

+ ⋅ ( + − )
∂
∂

π

π π

π π

→ → → → →

→

u B f u
p

B x y
f

p
B x y z

f

d
1

d sin sin ˆ sin cos ˆ d

1
d cos cos ˆ cos sin ˆ sin ˆ d .

m p i m
i

m
i

4 0

2

0

0 0

2

 (32)
Finally, integrating the right-hand side of the equation by part yields

∫ ∫ ∫

∫ ∫

ϕ θ ϕ θ ϕ θ

θ θ ϕ θ ϕ ϕ

× ⋅ ∇ = − ⋅ ( − )

− ⋅ (− + )

=

π

π π

π π

→ → → → →

→

u B f u
p

B x y f

p
B x y f

d
1

d cos sin ˆ cos cos ˆ d

1
d cos sin ˆ cos cos ˆ d

0.

m p i m i

m i

4 0

2

0

0 0

2

 (33)

Therefore, equation (26) also applies in this case as the magnetic field does not affect the 
energy deposition.

6. Conclusion

The present study proposes special conditions under which the Fano theorem remains valid in 
the presence of an external magnetic field. The first condition requires a spatially uniform and 
isotropic source and is valid for any magnetic field distribution. The second condition requires 
a spatially uniform source and a magnetic field distribution with constant direction and strength 
proportional to the mass density of the media. In both cases, the expression for absorbed dose 
takes the same form as it does in the standard conditions under which Fano’s theorem applies, 
i.e. in the absence of a magnetic field. An important application of these special conditions is 

H Bouchard et alPhys. Med. Biol. 60 (2015) 6639



6652

the implementation of novel benchmark tests (i.e. special Fano cavity tests) for the Monte Carlo 
simulation of radiation transport with magnetic fields. We expect that this work is a crucial step 
towards accurate detector dose response simulation in the context of MRI-guided radiotherapy, 
and therefore will impact the clinical calibration of such new beams in the future.

Acknowledgments

We are grateful to Professor P Andreo for sharing an early version of an upcoming book 
entitled Fundamentals of Ionizing Radiation Dosimetry (FIORD), which provided helpful 
definitions used in this work.

References

Alfonso R et al 2008 A new formalism for reference dosimetry of small and nonstandard fields Med. 
Phys. 35 5179–86

Almond P R, Biggs P J, Coursey B M, Hanson W F, Huq M S, Nath R and Rogers D W O 1999 AAPM’s 
TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Med. 
Phys. 26 1847–69

Andreo P and Brahme A 1986 Stopping power data for high-energy photon beam Phys. Med. Biol. 
31 839–58

Andreo P, Burns D T, Hohfield K, Huq M S, Kanai T, Laitano F, Smyth V and Vynckier S 2001 Absorbed 
dose determination in external beam radiotherapy: an international code of practice for dosimetry 
based on standards of absorbed dose to water Technical Report TRS-398 (Austria: International 
Atomic Energy Agency Vienna)

Andreo P 1994 Improved calculations of stopping-power ratios and their correlation with the quality of 
therapeutic photon beams Measurement Assurance in Dosimetry (Proc. Symp. Vienna) (Vienna: 
IAEA) pp 335–59

Arfken  G  B and Weber  H  J 2011 Mathematical Methods for Physicists: A Comprehensive Guide  
(New York: Academic)

Benmakhlouf H, Sempau J and Andreo P 2014 Output correction factors for nine small field detectors 
in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study Med. Phys. 41 041711

Bielajew A F 1990a An analytic theory of the point-source nonuniformity correction factor for thick-
walled ionisation chambers in photon beams Phys. Med. Biol. 35 517

Bielajew  A  F 1990b Correction factors for thick-walled ionisation chambers in point-source photon 
beams Phys. Med. Biol. 35 501

Bielajew A F 2001 Fundamentals of the monte carlo method for neutral and charged particle transport 
The University of Michigan

Bouchard H 2012 A theoretical re-examination of Spencer–Attix cavity theory Phys. Med. Biol. 57 3333
Bouchard H and Bielajew A 2014 A theoretical framework to improve Monte Carlo algorithms coupled to 

magnetic fields International Workshop on Monte Carlo Techniques in Medical Physics (Program 
and Abstracts) vol 1 (Québec: Université Laval) p 17

Bouchard  H and Bielajew  A 2015 Lorentz force correction to the Boltzmann radiation transport 
equation and its implications for Monte Carlo algorithms Phys. Med. Biol. 60 4963–72

Bouchard H, Seuntjens  J and Palmans H 2012 On charged particle equilibrium violation in external 
photon fields Med. Phys. 39 1473–80

Cranmer-Sargison G, Weston S, Evans J, Sidhu N and Thwaites D 2012 Monte Carlo modelling of diode 
detectors for small field MV photon dosimetry: detector model simplification and the sensitivity of 
correction factors to source parameterization Phys. Med. Biol. 57 5141

Czarnecki D and Zink K 2013 Monte Carlo calculated correction factors for diodes and ion chambers in 
small photon fields Phys. Med. Biol. 58 2431

Elles S, Ivanchenko V, Maire M and Urban L 2008 Geant4 and Fano cavity test: where are we? J. Phys.: 
Conf. Ser. 102 012009

Fano U 1954 Note on the Bragg–Gray cavity principle for measuring energy dissipation Radiation Res. 
1 237–40

H Bouchard et alPhys. Med. Biol. 60 (2015) 6639

http://dx.doi.org/10.1118/1.3005481
http://dx.doi.org/10.1118/1.3005481
http://dx.doi.org/10.1118/1.3005481
http://dx.doi.org/10.1118/1.598691
http://dx.doi.org/10.1118/1.598691
http://dx.doi.org/10.1118/1.598691
http://dx.doi.org/10.1088/0031-9155/31/8/002
http://dx.doi.org/10.1088/0031-9155/31/8/002
http://dx.doi.org/10.1088/0031-9155/31/8/002
http://dx.doi.org/10.1118/1.4868695
http://dx.doi.org/10.1118/1.4868695
http://dx.doi.org/10.1088/0031-9155/35/4/004
http://dx.doi.org/10.1088/0031-9155/35/4/004
http://dx.doi.org/10.1088/0031-9155/35/4/003
http://dx.doi.org/10.1088/0031-9155/35/4/003
http://dx.doi.org/10.1088/0031-9155/57/11/3333
http://dx.doi.org/10.1088/0031-9155/57/11/3333
http://dx.doi.org/10.1088/0031-9155/60/13/4963
http://dx.doi.org/10.1088/0031-9155/60/13/4963
http://dx.doi.org/10.1088/0031-9155/60/13/4963
http://dx.doi.org/10.1118/1.3684952
http://dx.doi.org/10.1118/1.3684952
http://dx.doi.org/10.1118/1.3684952
http://dx.doi.org/10.1088/0031-9155/57/16/5141
http://dx.doi.org/10.1088/0031-9155/57/16/5141
http://dx.doi.org/10.1088/0031-9155/58/8/2431
http://dx.doi.org/10.1088/0031-9155/58/8/2431
http://dx.doi.org/10.1088/1742-6596/102/1/012009
http://dx.doi.org/10.1088/1742-6596/102/1/012009
http://dx.doi.org/10.2307/3570368
http://dx.doi.org/10.2307/3570368
http://dx.doi.org/10.2307/3570368


6653

Foote B and Smyth V 1995 The modelling of electron multiple scattering in EGS4/PRESTA and its 
effect on ionisation chamber response Nucl. Instrum. Methods Phys. Res. 100 22–30

Francescon P, Beddar S, Satariano N and Das I J 2014a Variation of kQ Q
f f

,
,

clin msr
clin msr  for the small-field dosimetric 

parameters percentage depth dose, tissue-maximum ratio, and off-axis ratio Med. Phys. 41 101708
Francescon P, Cora S and Cavedon C 2008 Total scatter factors of small beams: a multidetector and 

Monte Carlo study Med.Phys. 35 504–13
Francescon P, Cora S and Satariano N 2011 Calculation of kQ Q

f f
,
,

clin msr
clin msr  for several small detectors and for 

two linear accelerators using Monte Carlo simulations Med. Phys. 38 6513–27
Francescon P, Kilby W, Satariano N and Cora S 2012 Monte Carlo simulated correction factors for 

machine specific reference field dose calibration and output factor measurement using fixed and 
iris collimators on the cyberknife system Phys. Med. Biol. 57 3741

Francescon P, Kilby W and Satariano N 2014b Monte Carlo simulated correction factors for output 
factor measurement with the CyberKnife system-results for new detectors and correction factor 
dependence on measurement distance and detector orientation Phys. Med. Biol. 59 N11

Gago-Arias  A, Rodriguez-Romero  R, Sánchez-Rubio  P, González-Casta  D  M, Gómez  F,  
Núñez L, Palmans H, Sharpe P and Pardo-Montero J 2012 Correction factors for A1Sl ionization 
chamber dosimetry in tomotherapy: machine-specific, plan-class, and clinical fields Med. Phys.  
39 1964–70

Jette D 2000 Magnetic fields with photon beams: Monte Carlo calculations for a model magnetic field 
Med. Phys. 27 2726–38

Kamio Y and Bouchard H 2014 Correction-less dosimetry of nonstandard photon fields: a new criterion 
to determine the usability of radiation detectors Phys. Med. Biol. 59 4973

Kawrakow I 2000a Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, 
the new EGS4 version Med. Phys. 27 485–98

Kawrakow  I 2000b Accurate condensed history Monte Carlo simulation of electron transport. II. 
Application to ion chamber response simulations Med. Phys. 27 499–513

Kosunen  A and Rogers  D 1993 Beam quality specification for photon beam dosimetry Med. Phys. 
20 1181–8

Lewis H 1950 Multiple scattering in an infinite medium Phys. Rev. 78 526
McEwen M, DeWerd L, Ibbott G, Followill D, Rogers D W, Seltzer S and Seuntjens J 2014 Addendum 

to the AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon beams Med. 
Phys. 41 041501

Meijsing I, Raaymakers B, Raaijmakers A, Kok J, Hogeweg L, Liu B and Lagendijk J 2009 Dosimetry 
for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 
ionization chamber Phys. Med. Biol. 54 2993

Muir B, McEwen M and Rogers D 2011 Measured and Monte Carlo calculated kq factors: accuracy and 
comparison Med. Phys. 38 4600–9

Muir B and Rogers D 2010 Monte Carlo calculations of kq, the beam quality conversion factor Med. 
Phys. 37 5939–50

Papaconstadopoulos P, Tessier F and Seuntjens J 2014 On the correction, perturbation and modification 
of small field detectors in relative dosimetry Phys. Med. Biol. 59 5937

Poon E and Verhaegen F 2005 Accuracy of the photon and electron physics in geant4 for radiotherapy 
applications Med. Phys. 32 1696–711

Reynolds  M, Fallone  B and Rathee  S 2013 Dose response of selected ion chambers in applied 
homogeneous transverse and longitudinal magnetic fields Med. Phys. 40 042102

Rogers D and Yang C 1999 Corrected relationship between %dd(10)x and stopping-power ratios Med. 
Phys. 26 538–40

Scott A J, Kumar S, Nahum A E and Fenwick J D 2012 Characterizing the influence of detector density 
on dosimeter response in non-equilibrium small photon fields Phys. Med. Biol. 57 4461

Scott A J, Nahum A E and Fenwick J D 2008 Using a Monte Carlo model to predict dosimetric properties 
of small radiotherapy photon fields Med. Phys. 35 4671–84

Sempau  J and Andreo  P 2006 Configuration of the electron transport algorithm of PENELOPE to 
simulate ion chambers Phys. Med. Biol. 51 3533

Seuntjens J, Kawrakow I, Borg J, Hobeila F and Rogers D 2002 Calculated and measured air-kerma 
response of ionization chambers in low and medium energy photon beams Proc. of an Int. Monte 
Carlo Workshop pp 69–84

H Bouchard et alPhys. Med. Biol. 60 (2015) 6639

http://dx.doi.org/10.1016/0168-583X(95)00320-7
http://dx.doi.org/10.1016/0168-583X(95)00320-7
http://dx.doi.org/10.1016/0168-583X(95)00320-7
http://dx.doi.org/10.1118/1.4895978
http://dx.doi.org/10.1118/1.4895978
http://dx.doi.org/10.1118/1.2828195
http://dx.doi.org/10.1118/1.2828195
http://dx.doi.org/10.1118/1.2828195
http://dx.doi.org/10.1118/1.3660770
http://dx.doi.org/10.1118/1.3660770
http://dx.doi.org/10.1118/1.3660770
http://dx.doi.org/10.1088/0031-9155/57/12/3741
http://dx.doi.org/10.1088/0031-9155/57/12/3741
http://dx.doi.org/10.1088/0031-9155/59/6/N11
http://dx.doi.org/10.1088/0031-9155/59/6/N11
http://dx.doi.org/10.1118/1.3692181
http://dx.doi.org/10.1118/1.3692181
http://dx.doi.org/10.1118/1.3692181
http://dx.doi.org/10.1118/1.1326447
http://dx.doi.org/10.1118/1.1326447
http://dx.doi.org/10.1118/1.1326447
http://dx.doi.org/10.1088/0031-9155/59/17/4973
http://dx.doi.org/10.1088/0031-9155/59/17/4973
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.1118/1.598917
http://dx.doi.org/10.1118/1.598918
http://dx.doi.org/10.1118/1.598918
http://dx.doi.org/10.1118/1.598918
http://dx.doi.org/10.1118/1.597150
http://dx.doi.org/10.1118/1.597150
http://dx.doi.org/10.1118/1.597150
http://dx.doi.org/10.1103/PhysRev.78.526
http://dx.doi.org/10.1103/PhysRev.78.526
http://dx.doi.org/10.1118/1.4866223
http://dx.doi.org/10.1118/1.4866223
http://dx.doi.org/10.1088/0031-9155/54/10/002
http://dx.doi.org/10.1088/0031-9155/54/10/002
http://dx.doi.org/10.1118/1.3600697
http://dx.doi.org/10.1118/1.3600697
http://dx.doi.org/10.1118/1.3600697
http://dx.doi.org/10.1118/1.3495537
http://dx.doi.org/10.1118/1.3495537
http://dx.doi.org/10.1118/1.3495537
http://dx.doi.org/10.1088/0031-9155/59/19/5937
http://dx.doi.org/10.1088/0031-9155/59/19/5937
http://dx.doi.org/10.1118/1.1895796
http://dx.doi.org/10.1118/1.1895796
http://dx.doi.org/10.1118/1.1895796
http://dx.doi.org/10.1118/1.4794496
http://dx.doi.org/10.1118/1.4794496
http://dx.doi.org/10.1118/1.598554
http://dx.doi.org/10.1118/1.598554
http://dx.doi.org/10.1118/1.598554
http://dx.doi.org/10.1088/0031-9155/57/14/4461
http://dx.doi.org/10.1088/0031-9155/57/14/4461
http://dx.doi.org/10.1118/1.2975223
http://dx.doi.org/10.1118/1.2975223
http://dx.doi.org/10.1118/1.2975223
http://dx.doi.org/10.1088/0031-9155/51/14/017
http://dx.doi.org/10.1088/0031-9155/51/14/017


6654

Smit  K, Van Asselen  B, Kok  J, Aalbers  A, Lagendijk  J and Raaymakers  B 2013 Towards reference 
dosimetry for the mr-linac: magnetic field correction of the ionization chamber reading Phys. Med. 
Biol. 58 5945

Smyth V G 1986 Interface effects in the Monte Carlo simulation of electron tracks Med. Phys. 13 196–200
Sterpin  E, Mackie  T  R and Vynckier  S 2012 Monte Carlo computed machine-specific correction 

factors for reference dosimetry of tomotherapy static beam for several ion chambers Med. Phys. 
39 4066–72

Sterpin E, Sorriaux J, Souris K, Vynckier S and Bouchard H 2014 A Fano cavity test for Monte Carlo 
proton transport algorithms Med. Phys. 41 011706

Tervo J 2007 On coupled boltzmann transport equation related to radiation therapy J. Math. Anal. Appl. 
335 819–40

Underwood T, Winter H, Hill M and Fenwick J 2013 Detector density and small field dosimetry: integral 
versus point dose measurement schemes Med. Phys. 40 082102

Yi C Y, Hah S H and Yeom M S 2006 Monte Carlo calculation of the ionization chamber response to 
Co-60 beam using PENELOPE Med. Phys. 33 1213–21

H Bouchard et alPhys. Med. Biol. 60 (2015) 6639

http://dx.doi.org/10.1088/0031-9155/58/17/5945
http://dx.doi.org/10.1088/0031-9155/58/17/5945
http://dx.doi.org/10.1118/1.595896
http://dx.doi.org/10.1118/1.595896
http://dx.doi.org/10.1118/1.595896
http://dx.doi.org/10.1118/1.4722752
http://dx.doi.org/10.1118/1.4722752
http://dx.doi.org/10.1118/1.4722752
http://dx.doi.org/10.1118/1.4835475
http://dx.doi.org/10.1118/1.4835475
http://dx.doi.org/10.1016/j.jmaa.2007.01.092
http://dx.doi.org/10.1016/j.jmaa.2007.01.092
http://dx.doi.org/10.1016/j.jmaa.2007.01.092
http://dx.doi.org/10.1118/1.4812687
http://dx.doi.org/10.1118/1.4812687
http://dx.doi.org/10.1118/1.2188822
http://dx.doi.org/10.1118/1.2188822
http://dx.doi.org/10.1118/1.2188822

