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Abstract
To establish a theoretical framework for generalizing Monte Carlo transport 
algorithms by adding external electromagnetic fields to the Boltzmann 
radiation transport equation in a rigorous and consistent fashion. Using first 
principles, the Boltzmann radiation transport equation is modified by adding 
a term describing the variation of the particle distribution due to the Lorentz 
force. The implications of this new equation are evaluated by investigating 
the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple 
scattering theory in infinite homogeneous media is redefined to account for 
the presence of external electromagnetic fields. The equation is modified and 
yields a description consistent with the deterministic laws of motion as well as 
probabilistic methods of solution. The time-independent Boltzmann radiation 
transport equation  is generalized to account for the electromagnetic forces 
in an additional operator similar to the interaction term. Fano’s and Lewis’ 
approaches are stated in this new equation. Fano’s theorem is found not to 
apply in the presence of electromagnetic fields. Lewis’ theory for electron 
multiple scattering and moments, accounting for the coupling between the 
Lorentz force and multiple elastic scattering, is found. However, further 
investigation is required to develop useful algorithms for Monte Carlo and 
deterministic transport methods. To test the accuracy of Monte Carlo transport 
algorithms in the presence of electromagnetic fields, the Fano cavity test, as 
currently defined, cannot be applied. Therefore, new tests must be designed 
for this specific application. A multiple scattering theory that accurately 
couples the Lorentz force with elastic scattering could improve Monte Carlo 
efficiency. The present study proposes a new theoretical framework to develop 
such algorithms.
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1. Introduction

The integration of magnetic resonance imaging (MRI) and radiotherapy (RT) promises great 
advantages for image guidance during treatment. This could yield major benefits in terms of 
dose delivery accuracy through high-contrast and real-time imaging without exposing patients 
to unnecessary radiation. However, it has been reported that MRI-strength magnetic fields 
(i.e. 0.2 T or more) can have significant effects on radiation dosimetry (Nath and Schulz 1978, 
Bielajew 1993, Nardi and Barnea 1999, Reiffel et al 2000, Li et al 2001, Raaymakers et al 2004, 
Raaijmakers et al 2005, Raaijmakers et al 2007, Kirkby et al 2008, Meijsing et al 2009, Reynolds 
et al 2013). These effects must be modeled using Monte Carlo (MC) codes that combine deter-
ministic Lorentz forces with stochastic interactions. At present, these interactions are treated typi-
cally as independent processes (Bielajew 1989, Bielajew 2001, Jette 2000, Agostinelli et al 2003, 
Salvat et al 2009, Yang and Bednarz 2013). In reality, the multiple scattering (MS) of charged par-
ticles and the Lorentz forces are coupled to the charged particles’ directions and the assumption 
of the independence of these processes can bias the results. This error can be reduced using small 
steps sizes, at the expense of reduced computational efficiency. Furthermore, apart from a direct 
comparison with time-consuming single-scattering mode simulations, such an implementation 
lacks rigorous self-consistency validation methods. This is because it has not been shown that the 
conditions required by the Fano cavity test (Bielajew 1990a, 1990b, Kawrakow 2000a, Sempau 
and Andreo 2006, Sterpin et al 2013) in varying density media, can be achieved in the presence of 
electromagnetic (EM) fields. Herein, we propose a new theoretical framework that couples EM 
fields to radiation transport and suggest two new algorithms for MC calculations.

In this work, the Boltzmann transport equation for electrons and positrons is modified to 
account for the deterministic effects of Lorentz forces and the applicability of Fano’s theorem 
(Fano 1954) using EM fields is investigated. Using the same approach as in Lewis’ theory 
(Lewis 1950), the transport equations can be cast into a spherical harmonics expansion frame-
work to investigate the feasibility of developing a new algorithm that takes into account, the 
coupling between MS and EM fields.

2. Theory

2.1. Definitions

Let us define the following:

 • →r  : a vector corresponding to the particle’s position in space
 • →p : a vector corresponding to the particle’s momentum
 • →u : a unit vector in the same direction as →p
 • β: the particle’s velocity relative to c
 • t: time
 • s: the path traversed by the particle between time 0 and t
 • → →n r p t( , , ): the spatial particle distribution at time t corresponding to the number of parti-

cles with momentum →p per unit volume dV, unit momentum dp and per unit solid angle 
of particle direction sin θ dθ dϕ
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 • → →f r p t( , , ): the particle flux corresponding at time t to the number of particles with 
momentum →p per unit area dA perpendicular to the particle direction, unit momentum dp 
and per unit solid angle of particle direction sin θ dθ dϕ.

2.2. Radiation transport equation

For each particle type, a transport equation can be written in generality, as follows. One 
starts from the continuity equation and adds the source and collision terms on the right-hand 
side:

 ρ= +n

t
S I

d

d
[ ] , (1)

where = → →n n r p t( , , ) and ρ ρ= →r( ), the mass density. Here, = → →S S r p t( , , ) is the source term 
and represents the differential number of particles being generated with given momentum per 
unit mass and unit time, by an external source at a given position in space. The term I, is the 
interaction term representing the differential number of particles being generated with given 
momentum per unit mass and unit time through collisions at a given position in space. The 
interaction term is represented by an integral-differential operator on the flux f and is a func-
tion of the physical properties of the media, i.e. = →I I f r{ ; }.

3. Methods

3.1. Decomposition into multi-variable dependencies

For a given momentum →p, one can write
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Since the particle distribution and flux are linked by the following equation

 β=f n c, (3)

one writes

 
⎡
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where the property ds = β cdt is used. Since p = γβ mc, one can write 

β =
+

( )
( )1

p

mc

p

mc
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and using the spherical coordinates of →p one obtains
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Combining equations (1), (4) and (5), the following relation is obtained:
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3.2. The Lorentz force

The Lorentz force describes the deterministic momentum variation of a charged particle in 
the presence of electric, 

→
E and magnetic, 

→
B, fields. The deterministic equation of motion is 

written as

 
⎡
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q E cu B
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(7)

It is worth defining the Lorentz force term as the following position-dependent operators
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Note here the implicit spatial dependencies =
→ → →E E r( ) and =

→ → →B B r( ) being expressed in the 
operator FLorentz. In the presence of the external fields 

→
E and 

→
B, the time-dependent transport 

equation becomes

 ρ∂
∂

+ · ∇ = + +→ → → → → → →f

s
u f S r p t I f r F f E B[ ( , , ) { ; } ] { ; , } ,r Lorentz (9)

with s the particle path whose differential is defined as ds = β cdt.

3.3. Time-independent transport equation

It is worth looking at the situation where the external fields 
→
E and 

→
B are constant over time 

and where either the source is constant over time (equilibrium state), or the flux is integrated 
over time (fluence). With a few simplifications, the time-independent equation can be written

 ρ· ∇ = + +→ → → → → → →
u f S r p I f r F f E B[ ( , ) { ; } ] { ; , } .r Lorentz (10)
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4. Applications and results

4.1. Non applicability of Fano’s theorem in the presence of electromagnetic fields

The result of Fano’s theorem (Fano 1954) has been exploited to benchmark charged parti-
cle transport of Monte Carlo codes (Kawrakow 2000a, Sempau and Andreo 2006, Sterpin 
et al 2013, Poon and Verhaegen 2005). The rationale of this approach, also known as the 
Fano cavity test, is based on artificially creating charged particle equilibrium (CPE), in a 
medium of uniform properties allowing one to obtain an analytic expression to calculate 
the absorbed dose. One consequence of the theorem for photon beams is that the absorbed 
dose equals collision kerma independently of the mass density distribution within the 
geometry. This analytic solution is then compared to the simulation results in order to 
evaluate the self-consistency of the charged particle transport algorithm within its own 
cross-sections.

The Fano theorem’s derivation, starting with the transport equation, is relatively straight 
forward. In the absence of external EM fields, the left-hand side of equation (10) describing 
charged particles, vanishes when the flux (or fluence) is constant · ∇ =→ →

u f( 0)r . This condition 
of uniform flux (or fluence), is also known as CPE. Since the right-hand side of the equation is 
proportional to the mass density, it may be cancelled out and the solution of the transport 
equation is, therefore, independent of mass density. A Monte Carlo simulation using a uniform 
charged particle source per unit mass and a geometry having uniform interaction cross sec-
tions, has the consequence of generating the same fluence, for a given source per unit mass, 
independently of the mass density distribution.

When external EM fields are present, the same approach does not yield the same result. 
Using equation (10) and stating the condition of CPE, one writes

 
⎡

⎣
⎢

⎤
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One can clearly observe that for Fano’s theorem to be valid, the norms of the vector fields 
→
E and 

→
B must be proportional to mass density. Although the medium permittivity and perme-

ability can affect the strength of the fields with respect to the same strengths in vacuum, in 
general EM fields do not scale with mass density. Therefore, Fano’s theorem cannot be valid 
in the presence of such external fields.

4.2. Modification of Lewis’ approach to multiple scattering theory

Multiple scattering (MS) theory is at the core of condensed history (CH) algorithms (Berger 
1963) used to simulate the transport of charged particle in matter. The rationale behind the 
approach is to combine single elastic scattering events, occurring between the particle in 
motion and atomic nuclei, into single virtual interactions along the particle track in order to 
save significant computation time.

While several approaches to MS are found in the literature (Goudsmit and Saunderson 
1940, Rossi and Greisen 1941, Eyges 1948, Lewis 1950, Bethe 1953, Larsen 1992, Kawrakow 
and Bielajew 1998a, Kawrakow 2000b), Lewis’ (1950) theory is the most general and exact. 
The rationale behind the idea is to solve the statistical moments of the particle distribu-
tion after a step of given length in an infinite homogeneous medium, independently of the 
scattering model used. In contrast to other approaches which provide a probability density 
function, e.g. the small-angle approximation of Moliere (Bethe 1953), Lewis’ moments can 
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be used to benchmark MS algorithms in order to evaluate their accuracy (Kawrakow and 
Bielajew 1998b).

To validate the coupling of EM fields to CH algorithms, Lewis’ approach can be modi-
fied by integrating the deterministic effect of the Lorentz force into the transport equation. 
The problem is approached under two conditions. One is the case where =

→ →
E 0 and can be 

solved considering energy loss implicitly using the continuous slowing down approximation 
(CSDA). In such approximation, the momentum p can be entirely determined by s since 

→
B 

does not change the energy of charged particles. This allows the modified transport equa-
tion to be written as
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with N being the number of scattering centres per unit volume.
The second case that must be considered is where ≠

→ →
E 0. Using the CSDA, the determinis-

tic force related to energy loss through collisions can be written as
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where LΔ(T) is the restricted stopping power as a function of kinetic energy T. The threshold 
parameter, Δ, is the lower limit for producing secondary particle flux, while T/2 is the upper 
limit (ignoring binding energies). Note here that the restricted stopping power is used in CH 
algorithms (instead of unrestricted) since charged particle interactions involving energy trans-
fers above Δ are treated analogously (Berger 1963). It is worth defining the CSDA force term 
as the following position-dependent operators:
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Since forces are additive, the force terms are also additive and one writes



H Bouchard and A Bielajew 

4969

Phys. Med. Biol. 60 (2015) 4963

 

∫ σ

β γ β

β γ β

∂
∂

+ ∇ = ′ − ′ ′

− + × ∇ +

+ ∂
∂

−

π

Δ Δ

→ →
→ → → → → → → → → → →

→
→ → → → → → → → →

→ →
→ →

⎡

⎣
⎢

⎤

⎦
⎥

f r p s

s
u f r p s N f r p s f r p s p u u u

q
E

c
u B f r p s

q

mc
E u f r p s

L T

c

f r p s

p

L T

mc
f r p s

( , , )
· ( , , ) [ ( , , ) ( , , ) ] ( , · ) d

· ( , , ) [ · ] ( , , )

( ) ( , , ) ( )
( , , ) .

r

p

4

3 2

3 2 (15)

To generalize Lewis’ approach in the presence of EM fields, statistical moments of the flux 
distribution f should be evaluated from either equations  (12) or (15), depending whether 
or not =

→ →
E 0. The approach involves expending f into spherical harmonics and solving the 

moments < x >, < x cos θ >, etc.

5. Discussion

5.1. Fano cavity test in the presence of EM fields

One important result of the present work is the formal proof that Fano’s theorem does not 
hold in the presence of static and constant external EM fields. This has the unfortunate con-
sequence of invalidating the Fano cavity test as it is currently performed to benchmark CH 
algorithms. Although validating the convergence of such algorithms against single-scatter-
ing mode simulations can be assumed to be a sufficient substitution, adapting the Fano cav-
ity test for the presence of EM fields yields additional benefits, such as efficient testing and 
rigorous comparison with an analytic result. Indeed, performing self-consistency testing of 
Monte Carlo algorithms against an analytic prediction is incontestably ideal and therefore 
preserving the value of such a test would be a remarkable benefit. While obtaining an ana-
lytic expression of either the electron fluence or the absorbed dose under such conditions 
could be challenging, further investigation is necessary to design an appropriate test in the 
presence of EM fields.

5.2. Multiple scattering theory coupled to EM fields

To accurately couple MS and EM fields, stochastic changes in particle velocity due to scat-
tering must be accounted for in the calculation of deterministic trajectories subject to Lorentz 
force. As a result of the present study, we suggest that Lewis’ approach to MS theory can 
be adapted to the presence of EM fields. It has the major advantage of not requiring the azi-
muthal symmetry of conventional MS theories, being violated by the deterministic effects of 
EM fields. The introduction of the Lorentz force in Boltzmann transport equation, as shown 
in equation (9), yields two conditions: (1) the absence of an electric field, as described by 
equation (12), that does not necessitate explicit treatment of the energy loss and (2) the pres-
ence of an electric field being described by equation (15) that requires explicit treatment of 
energy loss. Calculating the Lewis moments adapted for EM fields, could potentially lead to 
the development of a new MS theory that would allow MC transport algorithms to take larger 
steps without compromising accuracy. Indeed, despite that the efficiency of such algorithms 
rely on their mathematical strategies, a comparison with Lewis’ theory remains unavoidable 
due to the valuable generality of his approach.
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6. Conclusion

By introducing the Lorentz force into the Boltzmann transport equation, the present paper 
proposes a theoretical framework for developing algorithms relevant to MC transport coupled 
to EM fields. Firstly, we demonstrate that Fano’s theorem does not apply in the presence of 
EM fields. The main consequence is that the standard Fano cavity test cannot be used with 
varying mass density media in the presence of EM fields. As a result, a new test must be 
designed to validate the accuracy of charged particle transport simulation under such condi-
tions. Secondly, we demonstrate that the new Boltzmann equation can be used to develop an 
exact MS theory, one that allows larger step-sizes, thereby improving simulation efficiency. 
However, this development breaks the azimuthal symmetry of conventional MS theories, 
necessitating the development of new techniques. The theoretical framework proposed herein 
will enable the development of a new accuracy test for MC simulations to assess the influence 
of EM fields. Additionally, the proposed approach will allow the development of a new MS 
theory, adapted in a theoretically rigorous fashion, for EM fields, allowing the possibility of a 
new, highly efficient MC algorithm.
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