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Abstract. In  exposure  and  air  kerma  measurements,  axial  and  radial  non-uniformity 
perturbation  correction  factors  are used to  account  for  the  non-uniformity  of  the  incident 
photon field in the vicinity of  the  ionisation  chamber cavity. An  analytic  theory  for 
calculating  the  point  source  non-uniformity  correction  factor  for  thick-walled  ionisation 
chambers is developed. The  theory  developed  herein is compared  with  Monte  Carlo 
calculations  for  chambers  with  pancake,  cylindrical  and  spherical  geometries  similar in size 
to  the  instruments  employed by Standards  laboratories.  The  agreement  between  Monte 
Carlo  calculations  and  the  analytic  theory is excellent and  demonstrates  the  viability  of 
the  analytic  theory  at  large  and  small  source  to  chamber  distances.  The  perturbations, 
which differ from  those  calculated or measured by some  Standards  laboratories,  suggest 
that  corrections  of  the  order  of 0.3% should  be  applied  to  typical  pancake  geometries, 
smaller  corrections  of  the  order  of 0.05% or less for  typical  Farmer-type  chambers, and  no 
correction  for  spherical  chambers.  The  analytic  theory  predicts  chamber  geometries which 
can  either  minimise or maximise  the effect of  point  source  non-uniformity.  An  experiment 
is described  that  would  measure  the  correction  with  good  accuracy. 

1. Introduction 

When  a  detector is placed in the field of a  radiation source, the  point at which the 
radiation field  is being  measured is uncertain, owing to  the finite size of the  detector. In 
the  realm of exposure  or  air  kerma measurement  performed in Standards laboratories, 
one usually assumes that  the ‘point of measurement’ is at the  geometric  centre of 
the  chamber  and  the correction  for  the departure in ion chamber response from the 
inverse-square law is accounted for by the ‘axial’ and ‘radial’ non-uniformity  correction 
factors, k,, and k,,, respectively. The  axial  factor is a  correction  for  the  non-uniformity 
of the  photon field along  the line from  the  source  through  the cavity centre while 
the  radial  factor  accounts for non-uniformity in the  transverse  direction. The radial 
correction  also  accounts for the  transverse field non-uniformity  due  to finite-size source 
effects and  scatter  from  the collimator  and  room. 

There  are divergent views as  to how the  correction  for  point  source  non-uniformity 
is to  be  applied (Gray 1937, Failla and Marinelli 1937, Mayneord  and  Roberts 1937, 
Spiers 1941, Burlin 1959, Kondo  and  Randolph 1960, Boutillon and Niatel 1973, Loftus 
and Weaver 1974, W  H  Henry as reported in Shortt  and Ross 1986). For example, the 
BIPM  (Bureau  International des Poids et Mesures, France) @‘Co-exposure standard 
has  a  calculated  correction of 0.9968f0.0020 (Boutillon and Niatel 1973) for  the  axial 
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portion of the  non-uniformity  correction.  In  a similar fashion,  the  axial  corrections  for 
the  PTB (Physikalisch-Technische Bundesanstalt,  Germany)  60Co-exposure standards 
fall in the  range 0.9925kO.0015-0.9955+0.0015, depending  upon which of their  three 
standard  chambers is used (Niatel et a1 1975). However, at  NIST  (National  Institute 
for Science and Technology, USA, formerly NBS (National Bureau of Standards)), 
and  the  NRCC  (National Research  Council, Canada),  no correction is attributed  to 
point  source  non-uniformity  although  uncertainties of 0.1 YO and 0.2%, respectively, 
are assigned (Loftus  and Weaver 1974, Shortt  and Ross 1986). This  latter view has 
had  some  theoretical and experimental support(Gray 1937, Spiers 1941, Burlin 1959, 
Kondo  and  Randolph 1960). 

In view of the differing opinions, this question is addressed  anew  aided by Monte 
Carlo  methods  to serve as a  calculational tool along with the  employment of a  formal 
(calculable only by Monte  Carlo  methods)  theory of point  source  non-uniformity 
correction (Bielajew 1990) that is based on a  consistent  theoretical  framework  describing 
thick-walled ion chamber  response (Bielajew 1986). If one  sought  to  calculate  the 
correction  factor by Monte  Carlo  methods  to much better  than 0.1% at distances 
typical of standardisation  calibrations,  hundreds of hours of CPU time would be 
required on even the fastest computers  available (Bielajew 1990). To aid with the 
interpretation of the  Monte  Carlo results at large  distances, an  approximate  analytic 
theory is developed  that  extends  the work of Kondo  and  Randolph (1960). The theory 
developed herein demonstrates excellent agreement with Monte  Carlo calculations and 
one  may  conclude  that it may be used to  predict  the  point  source  non-uniformity 
corrections  to within 0.1%  for small chambers at all reasonable (a metre or so) source 
to  chamber  distances. 

2. The theory 

Kondo  and  Randolph express their  correction  for  point  source  non-uniformity, A,,, as 

- ro'/ !$! /dA2 cos v21 cos W12 
Apn - 4xvc,, h (1) 

where ro is the  distance  from  the  point  source  to  the  centre of the  chamber, Vcav is 
the volume of the cavity, dA1 and dA2 are  surface elements of the cavity, r is the 
distance  from  the  source  to  the  surface element dA1, h is the distance between dAl 
and dA2, cosv12 is the cosine the h-line makes with the  inward  normal from dA1, and 
cosy21 is the cosine the h-line makes with the  inward  normal  from dA2. The essential 
assumptions  made in deriving (1 )  were: 

(i) the  electrons  entering  the cavity are set in motion  at the  surface of the cavity, 
(ii) the  electrons travel through  the cavity in straight lines, 
(iii) the  electrons  deposit energy in proportion  to  their  track  length  through  the 

(iv) the  photons suffer no appreciable attenuation in passing through  the  chamber, 
(v) the  angular  distribution of the electrons entering  the cavity is isotropic, and 
(vi) the cavity shapes  are  assumed to be either  spheres or right cylinders excluding 

cavity, 

electrodes and  guard areas. 

Assumption (i) should  produce  accurate results if the  electron  range within the walls 
is much smaller than ro and the size of the cavity. This is easily satisfied for almost 
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all practical  situations.  The effect being calculated  depends  on  the  variation of r2 over 
the  points  at which the  electron is set in motion  and the effect of electron  drift on the 
effective r2 can usually be neglected. Assumption (ii) is valid if the cavity is 'small' for 
most of the  electrons  that  enter  the cavity. This  assumption  breaks  down  for  the low 
energy electrons whose range  approaches  the  characteristic size of  the cavity. Assump- 
tion (iii) neglects the  increased  stopping power of lower energy electrons  entering  the 
cavity but it should  not  matter if assumptions (ii) and (v) strictly hold.  Assumption (iv) 
can be relaxed by including  known wall attenuation  and scatter  corrections which can 
change  as  a  function of ro (Bielajew 1990). Assumption (v) cannot really be justified 
except at extremely low energies where photoelectric  interactions and  strong multiple 
scattering  cause  the  electron  distributions to be  nearly  isotropic.  Assumption (vi) is 
not a  fundamental  restriction  but it makes  the  mathematical  decomposition of (1) 
realisable. As long as  the volume of the  guard  areas  or  electrodes  are small compared 
to  the volume of the cavity this assumption  should  be valid. Kondo  and  Randolph 
recognised the  shortcoming of assumptions (iv) and (v) but  remarkably,  their  theory 
performed to within several percent in even very extreme  conditions.  Moreover, it can 
be shown that most of the  disagreement of their  theory with their  experiment  had  to 
do with assumption (iv). For precise work, to 0.1% or better,  assumption (v) needs to 
be relaxed as well. 

The isotropic  theory of Kondo  and  Randolph can  be  extended  to 

where 0 is the angle between the vector from  the  point  source  to  dAl,  the  incident 
photon direction, and  the vector from dA1 to dA2, the  direction of the  electron 
through  the cavity. The  parameter o is a  measure of the degree of anisotropy of the 
electron  distribution.  Rather  than  employ  the  initial  distribution  from  the  Compton  or 
photoelectric  interactions,  electron  multiple  scattering  must play a role in the electron 
distributions.  Therefore, it is assumed that o may be determined by the  primary 
equilibrium  electron  angular  distribution in the wall material weighted by the energy 
deposition.  (The  spectrum was calculated  to  be  proportional to the  stopping power 
times the  track  length for an electron being tracked at a given angle.) In principle, o 
may  be  dependent  on 10. However, the  assumption  made  should  become increasingly 
more valid for  increasing 10, by Fano's  theorem (Fano 1954). In addition  to relaxing 
assumption  (v),  assumption (iii) is also relaxed somewhat  because an energy-deposition 
weighted determination will  be made for o so that differential stopping power effects 
are also  included. The  appropriate choice for o is discussed in the next section. 

Equation ( 2 )  may  be  written 

where A : ,  is given by Kondo  and Randolph's  theory expressed in (1) and Ab,, is given 
by 

Kondo  and  Randolph reduced the  four-dimensional  integrations in (1) to  an analytic 
expression  for  a  spherical  geometry and for cylindrical and  pancake geometries to 
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a summation of two l-dimensional  integrals which were then  integrated  numerically. 
The  anisotropic  contribution, Ab,,, is exactly  zero  for  spheres and may  be  reduced  to  a 
set of  2-dimensional  integrations  for  pancake and cylindrical  chambers  involving  the 
complete  elliptic  functions, Eo, F0 and no. The following equations  may be derived by 
methods similar to  those employed by Kondo  and  Randolph.  Summarising the  results 
for A;": 

For  spherical  geometries : 

Ab,, = 0. ( 5 )  

For  Farmer-type  geometries  (cylinders  irradiated on the  curved  side wall ( S ) ) :  

A ; , = A g + A F + A F + A F  (6) 

separating  the  contributions  for electrons  originating  on  the  curved  side wall and 
terminating  on the  side wall (ss), side wall to flat end wall (se), end wall to side wall 
(es), and  end wall to  end wall (ee).  These  individual contributions  are 

1 1 SI -1 dx  (Gla(X,a,6) S_, dy  fla(x,Y,o) + Glb(X,a,B) S_, dY flb(X,Y,6)) 

where 

Fo(k)  = 2 de ( 1  - k2 sin2 e)"/2 
n / 2  

l l o ( k 2 ,   k )  = 2 A de (1 - k2 sin2 0)-3/2 = Fo( 

n / 2  
Eo(k )  = L dB (1 - k2 sin2 

72 

71 

q2 = 4~r[(l + + c ~ ~ x ~ / o ~ ] - '  r2 = 4ax[(l + ax)2 + a2/62]-1 (10) 
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(1 + x)2 + 02(1 - y) 

x ( { 2 a ' [ ( 1 + x ) ~ + o i ( l - y ) ] + [ ( l + x ) " a " ( l - y ) l [ ( 1 + x ) ~ + o ~ ( l + y ) l } 3 ~ ~  ) 

202X2[d(l - x2) - (1 + y)2]2 - 
{ [02(1 - x2)]2 + 2aq1 + x2)(1 + y)2 + (1 + y)4}3/2 ) 

f4a(~,y, a) = 2a X [G (X - y )  + 41 { 16a2x2 + [4 + a2(y - X )] } 3 2  2 2 2  2 -312 

The above  equations  are  written using the  dimensionless  quantities 

a = a / L  a = a/ro (12) 

where a is the cavity radius, L is the  half-length  of  the cavity, and ro is the  distance 
from  the  point  source  to  the  centre of the cavity. A detailed  derivation of A? is given 
in the  appendix. 
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For  pancake  geometries (cylinders irradiated  on  the  flat end wall (E)), similar 
expressions result with the  form 

A ; , = A ; + A S , e + A F + A ;  (1 3) 

where 
1  1 

A; = S_: dx (G3a(X,  j - 9  a) S _ ,  dY fla(x,J', 0) + G3b(X,  j.9 0) 1 dy f l b ( & Y ,  0)) 
- 1  

I I 

A? = S_: dx ( G 3 a ( ~ ,  E-, 0) L dy f2a(X, Y ,  0) + G3b(X,  k 0) L dY f2b(% Y ,  0)) 

A g = l l d x  ( G 4 a ( x 1 I : , 4 ) S _ ~ d i f 3 a ( X l i , " ) + G 4 b b l * ' i . ~ ) S _ ~ d y f 3 b ( x , i ~ ~ ) )  1 1 

l l  

1 

A? = l ' d x  ( G 4 a ( & j * , 0 )  dy f 4 a ( x , Y , c )   + G 4 b ( % i , o )  l dy f 4 b ( x , y . O ) )  (14) 

and 

Cla (x, i., o) = - - 
1 " i X  1 + ).x 

1 - ].x 1 + i x  

T ( [(l - ;.x12 + j>x2]3 /2  + [(l + j , x ) 2  + j>x2]3 /2  1 
G (  2x [(l - i x ) 2  + j12x2]3/2 [(l + i . x ) 2  + j .2x2]3/2 ) 

G;X ( [(l - j.)2 + j > o 2 x 2 ] 3 / 2  + [(l + i ) 2  + j > a 2 x 2 ] 3 / 2  ) 
G3b(X,  i, G) = -- - 

G 4 a ( ~ ,  A, G) = -- 
l -;. 1 + i. 

G 4 b  (X, E., G)  = - - " (  
1 - 2 1 + ;, 

2 [(l - ;J2 + j .202x2]3/2 [(l + i ) 2  + 1.202x2]3/2 
- 1 (15) 

where another dimensionless  quantity is used, 

i = L/ro. (16) 

Note  that, similar to  the  analysis by Kondo  and  Randolph, the  source  dependence 
of Abn is contained  entirely by the G factors, while the f factors only depend  on  the 
chamber  shape  and  are  identical  for  both  orientations of the cylindrical chamber. 

More  relevant  for this study is the  behaviour of the Abns for  practical  measurement 
distances.  For  the cylindrical chamber in either  orientation, in the limit that L, R 4 ro 

L,R<ro lim A p n  + 1 + WKk;)(R/rO) + K E ( R / r o ) 2  + . . . (17) 

where unity and  the  second-order terms, K~~ come entirely from Kondo  and  Ran- 
dolph's  theory and  the first-order  terms, K ' ~  , come  entirely  from  the  anisotropic  portion 
of the  electron  distribution.  For  the  Farmer-type  geometry  the  expression  for K' is 

( 3  ' 

(E) 

K k = z  1 [ S _ ~ d x ( ~ ~ d y ~ l a ( x ~ ~ , ~ ) + f l b ( x , 1 , ~ ) 1 + ~ ' d l U 2 a ( x . y , O ) + f 2 b ( x , Y , ~ ) ]  0 ) 
+L d x ( S _ : d v l f , a ( x , y , o ) + f 3 b ( x . v , o ) l + S ' d y ~ 4 a ( x , y , o ) + f 4 b ( x , y , ~ ) ]  0 >l 1 

(18) 
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while for  the  pancake  geometry 

For  the  spherical  chamber 

L,R% 
lim A,, -- 1 + f (R/ro)* 

where the f factor  comes  from  Kondo  and  Randolph's  theory.  The first and second 
order  factors, ~ k ,  ti& K:~, and K E ~  are plotted in figure 1 for reasonable values of 
0 = L/R .  For  practical  measurements,  the  range covered should  apply  to  any  chamber 
and, if the  chamber is not  too close to the  source,  the  asymptotic expressions given in 
(17)-(19) hold, and  one may quickly determine  the A,, correction. Note  that the K' 
terms  vanish when 0 = 1.12 which is close to unity where the cylinder approaches  the 
shape of a  sphere. In the  same vicinity, the second order  factors  are close to t ,  the 
spherical value. 

Figure 1. First  and  second  order K-factors for  the  large  distance limit of APn. 

2.1. Determination of w 

The  w-parameter is a  measure of the  anisotropy of the  electron  distribution.  Consider 
figure 2, which depicts  a  Monte Carlo calculation of the  energy-deposition weighted 
primary  electron  distribution  above 10 keV in  graphite  (6-rays  are  included, A = 
10 keV). The electrons were set in  motion by monoenergetic 1.25 MeV photons  and 
the effects of photon  attenuation were removed, because attenuation is accounted  for 
by the Aat correction  factor (Bielajew 1986,  1990). (Other  details of the  Monte  Carlo 
calculations are given in 6 3.) The probability  distribution,  P(cos e), is differential in 
cos 0 and normalised so that 
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The  Kondo  and  Randolph isotropy  assumption is represented by the  constant line at 
unity. The  anisotropy  approximation, 1 +W cos 8, is a first order  expansion in Legendre 
polynomials.  Therefore, W was obtained from the  Monte  Carlo  data by the  integral 

It is clear, at least for this example, that  the  Kondo  and  Randolph isotropy  assumption 
is an over-simplification. The simple anisotropy  assumption, 1 + W cos 0, fits the  Monte 
Carlo  better but  a closer fit would require  more  terms in a  Legendre series. Fortunately, 
the  inclusion of just  one  term seems to work well for the  calculation of A,, for  the 
cases studied.  For 1.25 MeV photons, W = 1.055 f 0.006(10). Although values of W 

such that ( W /  > 1 are unphysical  (the  electron  distributions  can be negative!),  one  can 
accept this as  part of the over-simplification of the  first-order modelling of the  electron 
distribution. 

3 L 
t Monte Carlo p-3 

- 1  L- 
-1.0 - 0.5 0 0.5 1 .o 

cos e 

Figure 2. The  energy-deposition  weighted  angular  distribution of primary  electrons  (S-rays  included) above 
10 keV for 1.25 MeV  incident  photons. 

The dependence of W with incident photon energy is given in figure 3 for  the  energy- 
deposition weighted primary  electron  distribution  above  a 10 keV cutoff in  graphite. 
The maximum energy shown is for 1.25 MeV incident  photons. As the  incident energy 
is reduced, one sees a slow decrease in W as increased multiple  scattering  causes  the 
electron  distribution  to  become  more  isotropic. However, a local minimum of about 
0.95 occurs in the vicinity of 500 keV.  Below this there is a sharp peak at  around 
85 keV. The  explanation  for this behaviour is that by employing energy weighting 
and restricting  the  contribution  to electrons above  the cutoff energy, the  average 
Compton electron recoil angle  for  contributing  electrons decreases as the  incident 
photon energy is decreased. At a limit of about 55 keV incident photon energy, 
the only Compton electrons  contributing  are  just  above  threshold  and directed in 
the  forward  direction. Below this threshold, no  Compton electrons  contribute  and 
the  distribution is determined by the  photoelectron  distribution.  The values for W 

that would be  obtained by using purely Compton  or photoelectrons  without  multiple 
scattering are also shown in figure 3. (The  unbound  Compton  distribution was taken 



The  point-source  non-uniformity  correction  factor 525 

from  Nelms (1953) while the  photoelectron  distribution is from  the  theory of Sauter 
(1931).  Sauter's  theory was also employed to  model  the  photoelectron angle in the 
Monte  Carlo calculations (Bielajew and Rogers 1986).) Thus,  the  location of the  peak 
is determined by the cutoff energy. At low incident energies approaching  the cutoff 
energy, the use  of the  present  theory is inappropriate since it neglects the  electrons 
generated in the cavity gas. At higher energies, well above  the cutoff, the values of W 

are  more realistic and only weakly dependent  on  the cutoff energy. 

I I l 1 1 1 1 1 l I I I I l  I l l 1  1 1 1 1  

0 250 500 750 1000 1250 

Incident  photon  energy ( k e V 1  

Figure 3. Values of w  against  incident  photon  energy for the  energy-deposition  weighted  electron  distributions 
(6-rays  included)  above 10 keV. w-values for theoretical  distributions  Compton  and  photoelectron  angular 
distributions  are  shown  as well. 

Therefore,  the appropriate value of U also  depends indirectly on  the size of the 
cavity through  the  parameter A of Spencer-Attix cavity theory (Spencer and Attix 
1955). Electrons below this energy in a cavity should be considered  to have been 
generated  there  through  knock-on  electron  interactions. Recall that a basic assumption 
of the  analytic  theories was that electrons that deposit  dose in the cavity are  generated 
in the walls  of the cavity. Therefore, only the  electrons  above A should be considered. 
Large cavities, where an appreciable part of the  dose  to  the cavity comes from  primary 
photon  interactions within the cavity gas, are beyond the  scope of the  present theory. A 
plot of U versus A in graphite is given in figure 4 for a  monoenergetic  incident energy 
of 1.25 MeV for  a  range of A covering almost  any small chamber.  The  variation in W 

is monotonic  from  about 0.88 to 1.15 for A ranging  from 1 to 25 keV. Smaller values 
of W are  obtained  for  smaller values of A since more energy is deposited  from  more 
isotropically  distributed  6-rays.  For  a typical 6oCo incident  photon  spectrum  (Rogers 
et a1 1988), U was calculated to be 1.058~0.0011,  and for a typical 13'Cs spectrum 
(Costrell 1962) the value 0.975_+0.006 was obtained.  Having  determined  the size of 
one's chamber  in  terms of A, one  should use the  U-value  from figure 4 in  conjunction 
with the appropriate expressions  from  the  previous section or the K-factors depicted in 
figure 1. 

3. Monte Carlo comparisons 

In this section  Monte Carlo calculations of ion  chamber  response  and  correction  factors 
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Figure 4. Values of W for 1.25 MeV incident  photons  against A,  

are  described and the  calculations to obtain  the energy-deposition weighted primary 
electron  distributions in 0 2.1 are outlined.  The EGS4 code system (Nelson et al 1985) 
is employed along with the PRESTA electron transport algorithm (Bielajew and Rogers 
1987) that has been shown  to  calculate  absolute  ion  chamber response reliably for 
carbon-walled  chambers.  For  the o anisotropy  parameter, it was found necessary to 
employ an additional  restriction on electron step-size whereby the  maximum amount 
of energy  lost  to  ‘continuous’ processes for  each  electron  step was restricted to 2.0%. 
(ESTEPE was set to 0.02 (Rogers 1984).) Because PRESTA can  take  large  electron steps, 
the  additional  restriction was found necessary to  sample  the  angular  distributions 
smoothly. 

The EGS4 user codes employed in this  report, DISTRZ (electron angular  distribu- 
tions,  cylindrical-planar  geometry) CAVRZ (cylindrical-planar  geometry) and CAVSPH 
(spherical-conical  geometry), are offspring of CAVITY, which has been used previously 
to  calculate  scatter and  attenuation correction  factors (Bielajew et a1 1985, Rogers et 
a1 1985). The reliability of the  Monte  Carlo calculations is considered to  be within the 
stated  uncertainties, which were estimated by dividing each calculation  into 10 batches 
and calculating  the  estimated  variance of the  mean.  For  the  angular  distribution 
simulations, 104-105 primary  photon  interactions were  used for each simulation which 
was performed  on  a pVAX 3600. Typical simulation times were 1-30 CPU minutes 
per  incident photon energy. For  the cavity chamber  simulations,  a  minimum of about 
8 x lo5 primary  photon  interactions were employed for each simulation  although as 
many  as  9 x lo6 were used for some cases. The cavity chamber  simulations were 
performed on  an  IBM 3090 and typical simulation times were 1-7 h CPU per  chamber 
for  each  distance.  For  both types of calculations,  the  primary  photon was ‘forced’ to 
interact at least once in the  chamber  (a  standard ‘variance reduction’  technique, see, 
for example,  Rogers and Bielajew (1984)). 

The  angular  distribution  calculations were performed in a  cylindrical-planar  geome- 
try. The  medium was uniform 1.70 g  cmp3  graphite,  and  the  energy-deposition weighted 
angular  distributions  from  electrons set in motion  from  the  primary  interactions  as well 
as  8-rays set in motion by these electrons were scored.  The  electron  transport  threshold, 
below which no electron is transported, was set to A, the 8-ray  creation  threshold.  (In 
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the  terminology of the EGS4 code  (Nelson et al 1985), ECUT-RM=AE-RM=A(MeV), 
RM is the rest mass energy of the  electron.)  The  photon  creation  threshold was set 
to 1 keV (AP=0.001). This is small  enough so that  the radiative  part of the electron 
stopping power and  any effects of subthreshold  photon  generation can  be  ignored.  The 
size of the cylindrical scoring region was 1 cm in depth by 1 cm in diameter which was 
surrounded by 0.3 cm walls to  enable the  development of full build-up.  The  broad, 
parallel  beam of photons  impinged  normally  upon  one of the flat sides. The primary 
electron fluence was ‘unweighted’ by the  average photon  attenuation (Bielajew 1986, 
1990), compensating  for  primary  photon  attenuation thereby  producing  a  true  charged 
particle  equilibrium in the  scoring region. 

The cavity calculations were performed in pancake  (planar  geometry),  Farmer-type 
(cylindrical), and spherical  chambers with graphite walls and air-density (1.205 x lop3 
g  graphite gas in the cavity. The employment of graphite gas eliminates  any 
possible mass  stopping power effects and fluence correction effects, as evident from 
equations (15) and (16) of Bielajew (1990) along with the  application of Fano’s (1954) 
theorem.  (The density effect was not  included so that the  mass  stopping powers were 
identical  for both the wall material  and  the cavity gas.) 

The  response, R, is defined as  the  dose  to  the cavity corrected  for  scatter and  atten- 
uation (Bielajew 1986, 1990) and normalised  per  unit  incident photon fluence at ro. The 
incident  photons were monoenergetic at 1.25  MeV. Then,  the  ratio (R(rO)/A,,(rO))/R(oo) 
is plotted  against r i ’ ,  where R(a) is defined as  the  chamber response at infinite source 
to  chamber  distance  and A,,(ro) is the  Monte  Carlo result as  calculated by (17) of 
Bielajew (1990).  (A  broad  parallel  beam was used to  simulate this case,)  The  quantity 
ro(A,, - 1) is also  plotted  against r i ’  and  the  Monte  Carlo calculations  are  compared 
with the  predictions of the Kondo  and  Randolph (1960) theory  and  the  anisotropic 
theory  developed in this  work. 

If the  point  source  non-uniformity  correction is being applied  properly,  then  the 
ratio ( R / A p n ) / R ( a )  should  be  a  constant and  not  depend  on ro. This was demonstrated 
for  large  chambers in extreme  conditions in a  previous  paper (Bielajew 1990). The 
Kondo  and  Randolph theory  predicts 

which goes to zero in the limit as r i l  --* 0. The  theory  proposed in this work predicts 

L,R<ro 
lim ro(A,, - l )  -+ OK’R 

which has  a  non-zero  limit.  The  Monte  Carlo  calculations were used to decide between 
the two analytic  theories. 

Finally, in 9 3.4, the  point  source  non-uniformity  correction  factors are calculated 
for  various  chambers used by Standards  laboratories for  absolute  air  kerma  or  exposure 
standards. 

3.1. Spherical  chambers 

A  spherical  chamber was employed in this  study  having  a cavity region 2 cm in diameter 
with 0.273 cm thick 1.83 g  graphite walls. No electrode was modelled. The  Monte 
Carlo response  corrected by Monte  Carlo calculated Awall and A,, perturbations 
(Bielajew 1990) is plotted in figure 5. The Awall correction  factors  did  not vary by more 



528 A F Bielajew 

than (0.4*0.2)% over all distances. To within the  estimated  statistics which varied from 
0.2% to 0.5%, the  corrected responses show no residual source  distance  dependence 
despite  corrections by A,, as  large  as about 30%. The  plot of Monte  Carlo calculated 
ro(A,, - 1) against r;' is given in figure 6 and  compared with the  theory of Kondo 
and  Randolph (1960). The  anisotropic  theory  developed herein provides the  identical 
correction for spherical  chambers.  The  agreement between Monte  Carlo  and theory 
is excellent in this case. For  practical  measurements, with distances of the  order of a 
metre  or so, there is no correction  for this chamber. 
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Figure 5. The  Monte  Carlo  response  to  monoenergetic 1.25 MeV  photons of the  spherical  chamber  corrected 
by and  the  point  source  non-uniformity  correction, A,". The  vertical line at 1.273 cm is the  outer 
radius  of  the  spherical  chamber.  Graphite  sphere, 2.0 cm diameter. 
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Figure 6. A comparison of the  Monte  Carlo  calculated A,, for  monoenergetic 1.25 MeV photons ( x )  with 
the  theory  of  Kondo  and  Randolph  for  the  spherical  chamber.  The  anisotropic  theory  presented in this 
report  predicts  the  identical  curve  to  Kondo  and  Randolph's  isotropic  theory  for  spherical  geometries.  The 
error  bars  are la estimates of the  Monte  Carlo  calculations.  Graphite  sphere, 2.0 cm  diameter. 
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3.2. Pancake chambers 

The  chamber employed in this  study  had  a cavity region 2 cm in diameter,  2 mm in 
depth, with 0.273 cm thick 1.83 g  cmp3  graphite walls. Neither an electrode nor a  guard 
region was modelled with this  chamber.  The  Monte  Carlo  response  corrected by Monte 
Carlo calculated and A,, perturbations is plotted in figure 7. The Awall correction 
factors varied by (1.7&0.3)0/, over the  distances  calculated.  For  distances  greater  than 
1 cm, the  corrected responses show no residual  source  distance  dependence within 
the  estimated  statistics which varied from  0.2% to 0.5% despite  corrections by A,, as 
large as about  70%.  For source  distances less than 1 cm from  the cavity centre  there 
appears  to be  a  systematic departure  to a level of about 0.5%. This is certainly  due  to 
simplifying approximations in the  Monte  Carlo calculation of A,, which can  cause  the 
correction  to  be  too  large  to  order (re/r0)*. (The  approximation  to  the  Monte  Carlo 
calculations is described by Bielajew (1990).) Since this  report is concerned  primarily 
with the  large  distance  behaviour and the  deviation is in the  right  direction with the 
right  order of magnitude,  this difference was not  investigated  further.  This departure 
was only observed for the  pancake  chamber where the closest approach  to the  point 
source was possible. 
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Figure 7. The  Monte  Carlo  response  to  monoenergetic 1.25 MeV  photons  of  the  pancake  chamber  corrected 
by A,II and  the  point  source  non-uniformity  correction, Apn. The vertical line at 0.373 cm is the  outer  edge 
of  the flat face  of  the  pancake  chamber.  Graphite  pancake, 2 cm diameter, 2 mm  depth. 

The plot of Monte  Carlo calculated ro(A,, - 1) against ri' is given in figure 8 
and  compared with the  predictions of the  analytic  theories.  In this comparison,  the 
anisotropic  theory  agrees  much  better  than  the  theory by Kondo  and  Randolph  at all 
distances.  For  this  chamber,  a value of 1.04 was chosen for o corresponding  to  a A 
of 6 keV from figure 4. For  practical  measurements, with distances of the  order of a 
metre  or so, the  correction  for this chamber is of the  order of 0.13%.  This  may  also 
have been determined  from (17) and figure 1 (0 = 10 for this  chamber) which suggests 
that  the  leading  asymptotic  behaviour  for A,, is 1 + 0.13/ro, with ro measured in cm 
for ro greater  than 3 cm or so. 

3.3. Farmer-type chambers 
In this study  a  cylindrical  chamber was modelled having  a cavity region 1 cm in 
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Figure 8. A comparison of the  Monte  Carlo  calculated A,, for monoenergetic 1.25 MeV  photons (x )  with 
the  theory of Kondo  and  Randolph (full1 curve) and  the  anisotropic  theory  presented  in  this  report  (broken 
curve).  The error bars  are la estimates of the  Monte  Carlo  calculations.  Graphite  pancake, 2 cm  diameter, 
2 mm  depth. 

diameter, 2 cm in depth,  an electrode  4 mm in diameter, with 0.273 cm thick 1.83 
g  cmp3  graphite walls. The  Monte  Carlo response  corrected by Monte  Carlo calculated 
Awa1l and A,, perturbations is plotted  in figure 9. The  correction  factors varied 
by (0.7f0.2)% over the  distances  calculated. The corrected responses show no residual 
source  distance  dependence within the  estimated  statistics which varied from  0.2% to 
0.6%  despite  corrections by A,, as large as  about  20%.  The plot of Monte  Carlo 
calculated ro(A, , - l )  against ro' is given in figure 10 and  compared with the  predictions 
of the  analytic theories. In this  comparison,  the  anisotropic  theory agrees much  better 
than  the theory by Kondo  and  Randolph  at all distances. The slight departure  at large 
distances is probably  due, in this case, to  not considering  the effects of the  electrode in 
the  analytic  theory. If this is true,  then  the effect appears  to be no more  than 0.03% at 
1 m. For  this  chamber,  a value of 1.12 was chosen for o corresponding  to  a A of 15 
keV from figure 4. For  practical  measurements, with distances of the  order of a  metre 
or so, the  correction  for  this  chamber is of the  order of 0.05%. This  may  also have 
been determined  from (17) and figure 1 (0 = 0.5 for  this  chamber) which suggests that 
the  leading  asymptotic  behaviour  for A,, is 1 + 0.05/ro, with ro measured in cm for ro 
greater than 3 cm or so. 

4. Application to standard chambers 

The  point  source  non-uniformity  correction  factors are calculated  for  the standard 
chambers of the  BIPM,  NIST(NBS),  NRCC, PTB, ENEA  (Comitato  Nazionale per la 
Ricerca e  per  lo  Sviluppo dell'Energia Nucleare  e delle Energie Alternative,  Italy) and 
IRD (Instituto  de RadioproteGao e  Dosimetria, Brazil). Details about the  geometry 
of these chambers is available in the  literature  (Niatel et a1 1975, Loftus and Weaver 
1974, Shortt  and Ross 1986, Laitano  and Toni 1983, de  Almeida and Niatel 1986). The 
comparison is complicated owing to  the  fact that the  radial  correction  factor k,, used 
by Standards  laboratories  accounts  not only for  the  point-source l / r2  fall-off in the 
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Figure 9. The  Monte  Carlo response to monoenergetic 1.25 MeV photons of the Farmer-type chamber 
corrected by Awl] and  the point source non-uniformity correction, Ap,. The vertical line at 0.773 cm  is the 
outer radius of the flat face of the Farmer-type chamber. Graphic  chamber, 1 cm diameter, 2 cm length. 

-0.0 5 .~ 

-0.1 0 l 
-0.1 5 l t 

\ 1 

- 

This work, W I 1.12 

l- ' I  
-0.2 0 2 

0 0.2 0.4 0.6 0.8 1.0 1.2 

l / r ,  (cm") 

Figure 10. A comparison of the Monte Carlo calculated A,, for monoenergetic 1.25 MeV photons ( x )  with 
the theory of Kondo and  Randolph (full curve) and the anisotropic theory presented in this report (broken 
curve). The error bars are la estimates of the Monte Carlo calculations. 

lateral  direction,  but  also for finite-size source effects, room, air  and collimator  scatter. 
Although  a  measurement of the size of this perturbation  (Boutillon  and  Niatel 1973) is 
consistent with it arising  entirely  from l /r2 fall-off, the precision of the  measurement 
does  not rule out  contributions  from finite-source effects, air,  room  and  collimator 
scatter.  Therefore,  the  comparison of k,, = A;; is probably  more  properly  done with 
the  product  of k,,k,,, although  both  the k,, and h,, factors, as currently employed by 
the  Standards  laboratories,  are presented  separately below. Certainly k p  contains all 
of k,, and a  portion of k,,. If k,, is to be adopted,  then  experimental  derivations of k,, 
may have to be re-interpreted  to  take out the  point-source  lateral fall-off. The results 
are  summarised in table 1. The source-to-detector  distance of 112.01 cm was used in 
some of the  calculations since this was the  distance used in the  intercomparison by 
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Niatel et ul (1975) and by de Almeida  and  Niatel (1986). The  distance of 97  cm for 
the NRCC chamber is their standard  calibration distance  (Shortt and Ross 1986) and 
the  distance of  111  cm  is the  standard  calibration distance  for  the ENEA (Laitano 
and Toni 1983). The 0.1%  estimate of the  error in 4, is based on the  uncertainty in 
the choice of W ,  over-simplification of the  theoretical  model  either  due  to  the neglect 
of electrodes,  guard  areas, or the way the  anisotropy was modelled. A  uniform value 
of W = 1.1 was chosen for all the  chambers. As seen in 9 2.1, the  dependence of W on 
chamber size  is quite weak and this choice should  suit all the  chambers  to within the 
stated  uncertainty in k,, which  is directly proportional  to the value of W .  

Table 1. A  comparison of the  point  source  non-uniformity  correction  factor, k,,, calculated  from  the 
anisotropic  theory,  with k,, and k,, for chambers  from  various  Standards  laboratories.  Except for k,,, all 
other  data  are  taken  from  Niatel et al (1975), Laitano  and  Toni 1983, de  Alrneida  and  Niatel 1986 and 
Shortt  and Ross (1986). 

Laboratory  Chamber  Distance  Cavity k m  km kpn 

type  to  centre  diameter/ in use in use this work 
(cm)  height  (cm) 

BIPM 
NIST(NBS)-lcc 
NRCC 
PTB(a) 
PTB(b) 
PTB(c) 
ENEA 
I R D  

Pancake 
Sphere 
Cylinder 
Cylinder 
Cylinder 
Pancake 
Cylinder 
Cylinder 

112.01 
112.01 
97.0 
112.01 
112.01 
112.01 
1 1 1 .  
112.01 

4.50j0.51 
1.27 
1.58j1.61 
0.6/2.0 
1.0/2.0 
4.4:0.45 
1.1:1.1 
1.1/1.1 

0.9968(20)t 
l.oooO(10) 
1.oooo(20) 
0.9955(15) 
0.9925(15) 
0.9933(15) 
0.9970(10) 
l.oooO(07) 

1.0013(05) 
1.0005(03) 
1.oooo(02) 
1.0006(03) 
1.0006(03) 
1.0014(05) 
l.oooO(10) 
1 .oooO(02) 

1.0031(10) 
1.o001(10) 
1.o001(10) 
1.0005(10) 
1.0005(10) 
1.0030(10) 
1.0001(10) 
1.o001(10) 

~~ 

tFigures  in  parentheses  are  uncertainties in the  last figures. 

5. Discussion and conclusions 

The results of this report  are summarised by (17) and (20) and figures 1 and 4. Given  a 
thick-walled  ionisation  chamber,  either  spherical  or cylindrical in shape,  the  correction 
for  the  non-uniformity of an incident  point-source  photon field across  the  chamber 
can be accounted  for.  For  practical  measurements  employing  chambers at most  a few 
centimetres  across  a  metre or  more from  the  source,  a simple formula and a  look  up 
chart may be used. For  more  extreme cases, the  more  complicated  formulae of 0 2  or 
Monte  Carlo calculations  may be used. 

For  practical  measurements,  the  correction for spherical  chambers is negligible. For 
practical  measurements  employing typical Farmer-type  chambers, where the  depth  and 
diameter  are of the  same  order,  the  correction is  very small, less than 0.1 YO in the cases 
studied.  For  pancake  chambers, typically a few centimetres  across  but only millimetres 
thick,  the  corrections for practical  measurements  can be significant, of the  order  of 
0.3% in some of the cases studied. 

This  report  attempts  to resolve two conflicting views. The first opinion, which 
results in no correction for practical  measurements, was most  eloquently expressed by 
Burlin (1959) who stated, ‘...the electrons will have the  geometric attenuation of the 
photons  superimposed on them...’. This  statement  can be interpreted as follows: Owing 
to  the  geometric attenuation  (l/r2  fall-om, the increased ionisation in the  upstream 
portion of a  chamber is offset by the decreased ionisation in the  downstream  portion 
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resulting in a  point of measurement which is essentially the  centre of the cavity. 
The second  opinion is that  adopted by Boutillon and  Niatel (1973) who  calculate 
the  axial  correction  factor based on  the  interaction  point of the  incident photon in 
the  chamber (somewhat  upstream of the  geometric  centre of the  chamber)  and  the 
electron  deposition  function  that would arise if the  photon beam were not skewed due 
to  the  point  source  distribution  (Boutillon 1988). This  method  leads  to  a significant 
correction of k,, = 0.9968 k 0.0020, which can  be  interpreted  as  a shift of the  point of 
measurement in the  upstream of the  centre of the cavity by 1.8 mm. 

The  explanation  as  to why neither view  is strictly correct is best accomplished by 
considering  a less approximate  form  for A,, that is obtained by generalising (2) 

where f (cos 0) is the  generalised energy-weighted angular  distribution of primary 
electrons.  This  distribution  may have any  form except that is it properly  normalised so 
that A,, is unity when ro “--) CO. One  may  perform an expansion  in l/ro to  obtain  the 
following first-order expression : 

r o A 3 c  
lim A,, -, 

1 
471  VcavrO 

1 - ~ S dA1 S dA2 cos v21 cos y12[2 cos  @of(cos 00) - sin2  @of’(cos OO)]. (26) 

The  distribution angle, 0 0 ,  is the  angle  the  electron  makes with respect to  the fixed 
direction  from  the  source  to  the  symmetry  point of the cavity. (The  derivation of (26) 
assumes that there exists a  symmetry  point in the cavity whereby any vector from this 
point  to  the cavity surface  remains on the  surface if its sign is changed.  This is the case 
for  spheres and cylinders as well as some  other  symmetric  geometries.  For  asymmetric 
geometries,  one  may use (26) to  determine  the effective centre of the  chamber.)  The first 
part of the  integrand, 2 cos 00f(cos GO), arises from the  change in the photon source 
strength  for different parts of the cavity surface where the  electrons  are set in motion. 
For  a  forward  directed  beam, this factor  leads  to  a  point of measurement  upstream of 
the cavity centre.  The second part of the  integrand, sin’ 0of’(cos@o),  accounts for  the 
effect of the  rotation of the  electron  distribution in the  direction of the  photon  beam 
at  the point at which the  electron is set in motion.  This  term  accounts  for  the loss of 
ionisation in the cavity because  the  electron  paths  can be rotated  into  the  chambers 
walls. The  resultant  path  length  shortening  and  loss of ionisation  can  be  interpreted 
as the  point of measurement being moved further  downstream.  For  isotropic  electron 
distributions  (Kondo  and Randolph’s  theory),  both  parts  vanish.  In fact, both  terms 
vanish for all distributions even in cos@,  that is, those  electron  distributions that 
exhibit  front-to-back  symmetry.  (In this case, both  upstream  and  downstream  surface 
elements  contribute  equally  and  electron  paths  that  are  lost  through  rotation  into  the 
cavity walls are replaced by equal  strength  ones  rotated  out of the cavity walls.) The 
first-order  correction  also vanishes for spherical  chambers  employing  the 1 + o cos 0 
distributions.  In  one  other  important case, where the  electrons are set off in the  same 
direction  as  the  incident photon  that set them in motion,  the  first-order  correction 
also vanishes. This is seen from  the  integrand of (26) for which both terms  may  be 
collected into  a single term, d[l  - cos2 Oof(cos @o)]/d[cos 0 0 1 .  For  a  straight-ahead 
electron  distribution, f (cos 00) = 4nh26 ( 1  “cos 00) and  the first-order  integral vanishes. 
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Thus, Burlin's compelling  intuitive  argument is valid in this case owing to  an exact 
cancellation of the  upstream and  downstream effects. It is really the  lateral  parts of 
the  electron  distribution that cause  the  appearance of the  first-order  term in cylindrical 
and  pancake geometries. 

For cylindrical and  pancake geometries,  the  terms in the  integrand of (26) will not 
cancel implying  that significant corrections  may  be needed for  practical  measurement 
distances. Recall the  first-order  factor ti; from figure 1. For small radius  pancake 
chambers ( R / L  < 1.12), the  correction places the  point of measurement  upstream. 
This  comes  from  the first part of (26). For  larger  radius  chambers,  the effect of the 
skewness of the beam becomes important  and the  point of measurement effectively 
moves downstream.  The  error in the  BIPM  calculation resulted from  the fact that  the 
electron  distributions employed were one-dimensional and therefore  could  not model 
the  second part of the  integrand of (26).  This  ultimately resulted in a  correction that 
departed in the  wrong way from unity. 

The implications  for  some of the Standards  laboratories  are quite  large.  For 
example,  the results indicate  that  the  BIPM  exposure standard  should  change by about 
f0.509'0 while the  changes  for  the  PTB  chambers  range from +0.44% to  +0.83%. 
It would be inappropriate to suggest changes of these magnitudes  without  further 
experimental evidence, irrespective of how impressive the  agreement is between Monte 
Carlo  and theory.  The  theory  does provide clues as to how such an experiment  could 
be  done.  One  could  make use  of (19),  that is, ti; = - 2 4  and (17). In  other words, the 
two different orientations of a cylindrical chamber have different magnitudes and signs 
of correction. If one  had  a cylindrical chamber  and  made two measurements,  one  from 
the curved side M S  and  one from  the flat side, M E ,  then  to first order 

The  measurements  must be corrected  for differential wall correction  factors.  These 
are easily calculated by Monte  Carlo  methods (Bielajew 1986, 1990). From figure 1 
a choice of (T = R / L  = 5 gives ti; = 0.07. Then, with W = 1.1 and for  a typical 
measurement R = 2 cm and ro = 100 cm, E = 0.0023. A precision considerably smaller 
than 0.23% can be achieved experimentally. Similarly, a  measurement with another 
chamber with (T 1 would give a null result. The essential difficulty in the  experiment 
is the  alignment of the  chamber so that it is known  to  rotate about its cavity centre. 
Alignment in one  plane  could be accomplished by equalising  the  chamber  response to 
a 180" rotation. Precise alignment in another plane  could be accomplished by using a 
second source, preferably at 90" with respect to the first one. 
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Appendix.  Derivation of A? 

In this section the  derivation of AS,S is given in detail.  The  other  correction  factors  may 
be derived in a  similar  fashion. 
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Let the  source  be at  coordinates (0, ro,O) and the  centre of the  chamber  be at 
the  origin so that  the vector from  the  point  source  to  the  centre of the  chamber 
is, ro = -roE, where 9 is the  unit vector in the  y-direction. Let hl,2 be  the vector 
from dAl = adOldzl, where the  electron  enters  the cavity, to dA2 = ade2dz2, where it 
terminates.  For AY, hl+2 = a(P2 - P I )  + (z2 - z l ) i ,  where, PI  = cos e l f  + sin 01.9, and, 
P2 = cos 022 + sin 629. The  inward  surface  normal  unit vectors from dAl  and dA2 are 
-El  and 4 2 ,  respectively. The vector from  the  point  source to dAl is r = aPl + zlf -ro. 
Using  (4), AS,S may  be  written 

A; = -- ~ dA2 4 dA ( 6  . L 2 ) ( F 2  . h1+2)(r . h 1 4  
h4 (A. 1 )  

where h = lhl+21 = lh2,ll. The  volume of the cavity is VC,, = 2na2L.  Substitution by 
the  expressions in the text preceding (A.l )  gives 

1 

4~ Vcav 

2n 
ASS - 4 L 2n L 

S - JII adel S_, dzl ( r i  - 2aro sin e, + a2 + z:)3/2 JII S_, ''2 
ad& 

X 
a2[1 - 81)]2{roa(sin82 - sin e , )  + a2[1   COS(^^ - e , ) ]  - z1(z2 - zl)} 

{2a2[1 - cos(B2 - e,)] + (z2 - z1)*}2 
. (A.2) 

Make the  rotation 02 + 02 + 81, effectively aligning  the axes of the two integrations. 
Substitution of integration  variables is always valid. A term  proportional  to sin& 
vanishes, by symmetry.  Then, defining the dimensionless variables, x = zl/L, y = z2/L, 
0 = a/L,  and x = a/ro,  the following may be obtained: 

where 

Starting with G l b  in (A.9 ,  one  may employ the periodicity of the  trigonometric 
functions  and the  trigonometric  identity, cos 28 = 2 cos2 6 - 1 to  obtain 

or 

q3  2 n / 2  3 
Glb(X,C1,6)  = -- 

8x4 x J [ I  dB ( 1  - q2 sin2 = L l l o ( q 2 , q )  (A.9) 
8af 
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where &(q2,q)  is given in (9) and q is given in (10). Similar  manipulations  lead  to  the 
form  for GI, given in (8)-(10). 

To obtain explicit forms  for f l a  and fib, consider  the  auxiliary  function 

which is easily integrated  to give 

(A.lO) 

( A . l l )  

From (A.6),  (A.7) and (A.lO) one sees that f l a  and f l b  can  be  obtained  from  derivatives 
of  the  auxiliary  function Z(u, U ) .  That is, 

(A.12) 

(A. 13) 

The  derivatives  may be evaluated  straightforwardly with the  result, 

(A. 15) 

RCsurnC 

Theorie  analytique  du  facteur  de  correction  de  non  uniformite  avec une source  ponctuelle,  pour  des  chambres 
d'ionisation a paroi  epaisse dans des  faisceaux de  photons. 

Pour les mesures  d'exposition  et  de  kerma  dans l'air, on utilise des  facteurs  de  correction  de  perturbation 
axiale  et  radiale  correspondant a la non  uniformite du  champ  de  photons  incidents au voisinage  de la cavite 
de la chambre  d'ionisation. Les auteurs  presentent  une  theorie  analytique  permettant  de  calculer le facteur 
de  correction  pour la non  uniformite  avec  une  source  ponctuelle,  s'appliquant  aux  chambres  d'ionisation a 
paroi  epaisse.  La  theorie  presentee  dans ce travail est comparee  aux  calculs effectues selon la methode  de 
Monte  Carlo  pour des chambres  de  geometres  planes,  cylindriques  et  spheriques,  de taille comparable a celle 
des  detecteurs utilises par les laboratoires  d'etalonnage. L'accord observe  entre les calculs  par la methode 
de  Monte  Carlo  et la theorie  analytique est excellent et  demontre la validite de la theorie  analytique  pour 
les grandes  et  petites  distances  sourcexhambre. Les auteurs  suggerent  que les corrections a appliquer  pour 
ces perturbations,  qui  diffirent  de celles calculees  ou  mesurees  par  quelques  laboratoires  d'etallonage,  sont 
de I'ordre de 0.3% pour les chambres  de  geometrie  plane  typiques,  sont  petites  et  de  I'ordre  de 0.05% ou 
moins  pour les chambres  type  Farmer usuelles, et  sont nulles pour les chambres  spheriques. La theorie 
analytique  permet  de  prevoir  des  geometries  de  chambre  permettant  soit  de  reduire  soit  d'augmenter I'effet 
de  non  uniformite  avec les sources  ponctuelles. Enfin, les auteurs  decrivent  une  experience  destinee a fournir 
la mesure  de  cette  correction  avec  une  bonne  precision. 
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Zusammenfassung 

Eine  analytische  Theorie  des Punktquellen-Inhomogenitatskorrektionsfaktors fur dickwandige  Ionisations- 
kammern in Photonenstrahlen. 

Bei Messungen  der  Ionendosis  und  der  Kerma in Luft  werden  axiale  und  radiale  Inhomo- 
genitatskorrektionsfaktoren zur  Beriicksichtigung  der  Non-Uniformitat  des  einfallenden  Photonenfeldes in 
der  Nahe  des  Ionisationskammerhohlraumes  verwendet.  Eine  analytische  Theorie  zur  Berechnung  des 
Punktquellen-Inhomogenitatskorrektionsfaktors fur  dickwandige  Ionisationskammern  wurde  entwickelt.  Die 
zugrundeliegende  Theorie wird verglichen mit Monte  Carlo-Rechnungen fur Flachkammern  und  Kammern 
mit  Zylinder-  und  Kugelgeometrie  ahnlich groD  wie die von den  Standardlaboratorien  verwendeten  Cerate. 
Die  Ubereinstimmung zwischen Monto  Carlo-Berechnungen  und  analytischer  Theorie ist hervorragend  und 
zeigt die  Bedeutung  der  analytischen  Theorie bei groDen und kleinen Quelle-Kammer-Abstanden. Die 
Storungen,  die sich von den  berechneten  oder  gemessenen  Werten  einiger  Standardlaboratorien  unterschei- 
den, legen nahe,  Korrekturen in Hohe von 0.3% bei Flachkammern  zu  verwenden,  kleinere  Korrekturen in 
Hohe von 0.05%  oder  weniger bei Farmerkammern  und keinerlei Korrekturen bei Kugelkammern.  Die  ana- 
lytische  Geometrie  sagt  Kammergeometrien  voraus,  die  den Effekt der Punktquelleninhomogenitat entweder 
verkleinern  oder vergrokrn. Ein Experiment wird beschrieben,  mit  dessen Hilfe die  Korrekturen  mit g r o k r  
Genauigkeit  gemessen  werden  konnen. 
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