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Abstract. In absolute exposure and  air kerma measurements, such as those performed 
at Standards’ laboratories, axial and radial non-uniformity correction factors are used to 
account for the non-uniformity of the incident photon field  in the vicinity of the ionisation- 
chamber cavity. In this paper  a theory for calculating the correction due to source 
non-uniformity is developed which applies to thick-walled ionisation chambers irradiated 
by point-source photon fields  with arbitrary incident energy distributions. The equations 
are derived within the framework of a fundamental theory of ionisation-chamber response 
and  are suitable for Monte Carlo calculation. Monte Carlo calculations for estimating the 
correction in pancake, cylindrical and spherical geometries are described and comparisons 
with the experimental results of Kondo and Randolph indicate agreement to better than 
0.5% demonstrating the viability of the theory under even the most extreme measurement 
conditions. 

1. Introduction 

When a  detector is placed in the field of a  radiation source, the  point at which the 
radiation field  is being measured is uncertain, owing to the finite size of the  detector. 
In  the realm of exposure or air  kerma  measurement,  one assumes that the ‘point of 
measurement’ is at the  geometric  centre of the  chamber  and  the  correction for the 
departure in ionisation-chamber response from  the inverse-square law is accounted for 
by the ‘axial’ non-uniformity  correction  factor, k,, and in part, by the ‘radial’ non- 
uniformity  correction  factor, krn.  The  axial  factor is a  correction for the  non-uniformity 
of the  photon field along the line from  the  source  through the cavity centre while the 
radial  factor  accounts for non-uniformity in the  perpendicular  direction arising not 
only from  the  point-source l/r2-dependence but  also from air,  collimator  and room 
scatter  as well as finite source-size effects. 

Since there  are  divergent views as  to how such a  correction is to be applied (Gray 
1937b, Failla and  Marinelli 1937, Mayneord  and  Roberts 1937, Spiers 1941, Burlin 
1959, Kondo  and  Randolph 1960, Boutillon and Niatel 1973, Loftus and Weaver 1974, 
Shortt  and Ross 1986), this  question is addressed anew aided by Monte  Carlo  methods 
to serve as  a  calculational tool along with the  employment  of  a  consistent  theoretical 
framework that describes thick-walled ionisation-chamber response (Bielajew  1986). In 
this paper  the  primary focus will be to  demonstrate the viability of the new theory by 
applying it to measured data obtained  under very stringent  experimental  conditions. 
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The  application of the  theory  to small chambers  at practical  measurement  distances is 
reserved for  the  companion  paper (Bielajew 1990). 

2. The theory 

In  a  previous  paper (Bielajew 1986) a  fundamental  theory of thick-walled ionisation- 
chamber  response  to photon beams was developed.  This  theory is fundamental in the 
sense that it is derived from first principles starting with a  statement of the  conservation 
of energy. Equations  for  perturbation factors were derived which quantified  the 
departure of experimental  conditions  from  those  assumed  in  the Bragg-Gray theory 
(Bragg 1912, Gray 1929,  1936, 1937a,b) and in the Spencer-Attix (1955) theory of 
ionisation-chamber response due to scatter  and  attenuation of the  primary photon 
beam.  This  theory of ionisation-chamber  response (Bielajew 1986) was limited to 
uniform,  monoenergetic  incident photon fields although it was suggested how the 
theory  could  be modified to  account  for  any  incident  energy  distribution.  The  theory 
is now developed  further to  account for an  arbitrary incident energy distribution  and, 
in particular, for a  point-source  distribution of the  incident  primary photon beam. 
Although  the discussion is restricted to a  point-source  distribution,  the  theory  may 
easily be  extended  to  other  distributions. 

2.1. Energy conservation for uniform  beams in a uniform medium 

The  starting  point is a  statement of the consenation of energy, Consider  a  primary 
photon energy fluence, Yo(E , ) ,  in space  (vacuum or air, no chamber  present) which is 
spatially  uniform.  For  the  present,  consider only monoenergetic  photons with energy 
E , .  Let the  incident photon field impinge on a  uniform  medium which is large  enough 
so that there exists some  smaller region within it such that any  electron which is set 
in motion directly by the  incident photon field cannot escape  through  a  boundary.  In 
this smaller region a  state of quasi charged  particle  equilibrium exists. The effect  of 
attenuation of the  primary photon fluence must be undone  to  produce  a true charged 
particle  equilibrium in the region. Energy conservation for the  equilibrium region can 
be expressed as 

which equates  the energy transferred (less radiative losses) to  electrons (left hand side) 
to  the energy deposited by the  electrons in collision processes (right  hand side). In 
this equation, is the  mass  energy-absorption coefficient for  the  medium ‘m’ 
evaluated at  the primary photon energy. The primary  electron fluence, aie, differential 
in the  electron energy, Ee,  depends explicitly on r’, the  position of the  initiating photon 
interaction (owing to  the  attenuation of the  primary photon  beam),  on Ir - r’l, the 
distance between the point of energy deposition  and  the initiating  interaction  point,  on 
Orr,r-rf, the angle of  r - r’ with respect to  the  initiating photon’s direction, and  on E, 
and E,. The  integration, l dr’/V,  takes place over a volume large  enough  to  contain 
all possible initial  interaction  points which can  produce  an electron fluence at r. The 
factor  exp(Z,(E,)(r’ - r,l) counterbalances  the effect of primary photon  attenuation 
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and  renders  the  right  hand side of (1) independent of r in the  equilibrium regiont. 
This  factor was discussed previously (Bielajew 1986) although it is now expressed in a 
different form. The  quantity Em is the  macroscopic  primary  photon  interaction cross 
section and Ir’ - rsI is the  distance  the  primary photon travelled beneath  the  surface 
of the  medium  having  started at a  point on  the surface, rs and having  interacted at r’. 
The unrestricted  mass collision stopping power for the  medium, (Scol/p)m, evaluated 
at the  electron energy, provides the  means  for  the  electrons  to  transfer energy to  the 
medium. It is not  germane  to  the  derivation  that  no  6-rays were included  and an 
unrestricted  stopping power was used. Restricted  stopping powers could have been 
used and  6-rays included at the expense of an even more  cluttered  notation. In fact, 
any  electron energy deposition scheme may be  used as  long  as  the energy balance 
expressed by (1) is preserved. However, the  evaluation of expressions will depend  on 
what energy deposition scheme is employed. 

2.2. Extension  to a point source 

The  assumption  that the  incident photon fluence is spatially  uniform may also  be 
relaxed. Assume that it has  a  point-source  dependence, Yo(E , , r )  = ( r i / r2 )Yo(Ey , r0 ) ,  
referring  the  primary  photon energy fluence to some  arbitrary  point, ro. The vector ro 
defines the  point of measurement as this is the  location  at which the  photon fluence is 
to  be  measured. 

An arbitrary  incident  photon energy spectrum is now included as well. Then, 
suppressing  most of the  functional  dependence,  equation (1) for  the energy deposition 
at r may  be  rewritten 

where both  the  photon energy fluence and electron fluence are now differential in  the 
incident photon energy and  the definition 6’ = @‘exp(Z,(E,)(r’ - r,l) is effected for 
brevity. The ‘unweighting’ function, u(r’,r), completely  undoes  the effect of the  spatial 
variation of the  incident  primary photon beam on the  electron fluence measured at r 
arising  from  a photon  interaction  at r’ (see figure 1). The form of this unweighting 
function is 

u(r’ ,r)  = ( r )  2 [I - ( ~ r  - r’l /r)  2 2  sin Br,r-p]”2 (3) 
and is derived in appendix 2. Note  that the  integrand  on  the  left-hand side of (2) has 
been multiplied by the  analagous  primary  photon unweighting factor, r i .  

Having  undone  the  attenuation of the  primary  beam  as well as the  spatial  non- 
uniformity of the  source,  the left hand  and right  hand sides of (2) are  independent of 
the  position r as  long  as r is in the  equilibrium region, that is, far  enough  from  the 
boundaries of the  medium so that local energy conservation still applies. 

2.3. Correction  factors fo r  cavity  measurements 
The dose  deposited in the gas cavity of a thick-walled ionisation  chamber  exposed to 
photon  beams can  be  written implicitly as 

t This  ‘unweighting’  technique is equivalent  to  the  regeneration of the  primary  photons  at  the  point of 
interaction which would  produce  an  interacting  but  unattenuated  primary  photon  beam. A proof of this 
equivalence is presented  in  appendix 1 .  
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Figure 1. Definitions  of  the  variables  in (2). The full build-up walls delimit  a region of electron  equilibrium. 
Four  vectors  are  defined: rs ,  from  the  point  source  to  surface  of  the  chamber wall where  the  photon  enters 
the  chamber, ro. from  the  point  source  to  point of measurement  (centre  of  the  cavity  for  cavity  chambers), 
r ,  from  the  point  source to the  point  at which energy is being  deposited by an electron, r ' ,  from  the  point 
source  to  the  point of interaction  where  an  incident  photon  interacts  to  produce  an  electron  that  deposits 
energy at r .  The  angle, is the  angle  between r' and r - r ' .  

where the shorthand  notation, 

is used. The integral, S, dr/V., sums  the  electron energy deposition over all points 
in the  gas cavity and the  integral, Sch dr'/Vch, sums all contributions  to  the electron 
fluence at r  arising  from  all possible points where the  electrons were set in  motion  in 
either  the  chamber walls or gas. The  stopping power appropriate  for  the cavity gas, 
(&,,/p), ,  is used. In (4) the  electron fluence, Qg, contains all electrons that may  be 
present  in  the region of the cavity (6-rays  excluded) that may  arise  due  to  primary or 
scattered  photons.  The  subscript  or  superscript 'g' on the  electron fluence signifies that 
the  electron fluence in the region of the cavity is to  be  calculated with gas as  the cavity 
material. 

Following the  technique discussed in the  earlier  report (Bielajew 1986), the  con- 
tribution of secondary  scatter,  the  electrons which are set in  motion by other  than 
the  primary  photons,  may  be 'split off and  the effect  of photon  attenuation may be 
separated  as well. Remaining  factors  may  be identified as  either  a fluence perturbation 
owing to material difference between the wall and cavity or a  geometric  perturbation 
due  to  the  non-uniformity of the  incident photon field. The result is that  the dose  to 
the cavity gas may be expressed as 

and the  ratio of mass  energy-absorption coefficients is defined to be 
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The  mass  stopping-power  ratio is defined to be 

505 

The primary  photon  scatter correction  factor, A,,, can be written as 

(9) 

where  the  primary  electron fluence, Q:, is defined as  the fluence of only those  electrons 
that arise  directly  from  the  primary  interaction  of  the  incident  photons.  The primary 
photon attenuation correction  factor, Aat, can  be  written as t  

where 6; = 0: exp(Z,h(E,)lr’ - v , / )  is defined. The  macroscopic  cross  section, &h, 
is written  with  a  subscript ‘ch’ to  denote  that it should  be  computed  for  the  entire 
chamber, walls and  gas cavity  included.  One  should  note  that  both Aat and A,, depend 
on  the  source-to-chamber  distance since the  primary  photon  pathlengths  through the 
chamber  change with distance.  In  most cases this  dependence is weak. 

Thefluence  perturbation correction  factor, Afl, is defined as 

and a new quantity,  the point-source  non-uniformity  correction factor is defined to be 

The  subscript ‘W’ on the  electron fluence in (8), (11) and (12) signifies that  the electron 
fluence in  the  location  of  the  cavity is to  be calculated with wall material  substituting 
the  gas. 

The unweighting  factor  undoes  the effect of the  spreading of the  beam  implying 
that (S)$ expressed by (8) is independent  of  the  chamber-cavity  geometry  and  source- 
to-chamber  distance.  Using  the  limit 

and  the  realisation  that  the  electron fluence per  unit  incident photon fluence in the 
large  distance  point-source  limit is the  same  as  that in a  parallel photon beam,  the 
stopping-power  ratio expressed by (8) is identical to  that calculated in a  uniform, 
parallel  beam. That is 

t In a  previous  paper (Bielajew 1986) Aat was written BA:,, to  emphasise  that  electron  drift  downstream 
from  the  point of interaction  was  included in the  primary  attenuation  correction  factor. 
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recovering the parallel beam  definition discussed previously (Bielajew 1986). Thus, 
(3 ) i  may be calculated (or  measured) in a parallel beam.  This equivalence shall be 
demonstrated  later by explicit calculation. 

In the  parallel beam limit (infinite source  distance)  the fluence perturbation  factor, 
A R ,  measures  the  perturbation of the  primary  electron fluence in the  chamber cavity due 
to  the presence of a different medium in the cavity, corrected  for photon  attenuation. 
An expression  equivalent  to (1 1) is, 

owing to  the asymptotic  behaviour of the  unweighting  factor and  the electron fluences. 
Although this definition may seem arbitrary, it recovers the  definition of the fluence 
perturbation  as expressed previously for uniform  beams (Bielajew 1986). A basic 
assumption of Bragg-Gray cavity theory is that  this fluence perturbation is unity and 
this shall  be  assumed  to  be  true  for  the  present discussion. Again, this factor  may 
equally well  be calculated (or measured) in a  parallel  beam. 

Finally, the  remaining  perturbation is collected in the  factor A,, and this correction 
is interpreted  as  the  variation of the  response owing to  the  spatial  variation of the 
incident photon fluence. This  correction  factor  depends explicitly on the  point of 
measurement and  can  contain significant dependence on  the  source-chamber  distance. 
The  scatter  and  attenuation corrections  can  also  contain  some  distance  dependence, 
but  the dominant behaviour is contained  in A p n .  Using (1  1) and (13), A p n  may also  be 
written 

and the  interpretation is evident as  the  ratio of the  response  per unit incident photon 
fluence (scatter  and  attenuation corrected) for a finite distance  from  the  point  source 
over the infinite distance limit, or equivalently,  the  parallel beam limit. This is more 
or less the  expression  one would write down intuitively for  the field non-uniformity 
correction. 

With the  help of the  unweighting  factor expressed by (3), (8), (11) and (12) 
may be used interchangeably with (14)-(16). In  fact,  the form of the  unweighting 
function is not needed to  derive  the final expressions in (14)-(16), merely proof of its 
existence. However, questions of existence are  put  aside by explicit characterisation 
of the  unweighting  function.  Moreover, it may  be  more efficient computationally  to 
calculate  the  stopping power and non-uniformity  correction using (8) and (12) since 
the  parallel beam calculation is not needed. 

3. Applications 

In this section  Monte  Carlo  calculations of ionisation-chamber  response  and  correction 
factors  are  described . The EGS4 code system (Nelson et a1 1985) was employed with the 
PRESTA electron transport algorithm (Bielajew and Rogers 1987) that  has been shown 
to  calculate  absolute  ionisation-chamber  response reliably for  carbon-walled  chambers. 
The PRESTA algorithm used in its  default  configuration is known  to  underestimate 
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electron  backscatter, an effect that becomes more  pronounced  for  high-Z  materials. 
Therefore,  in  one  case  where  a  copper  chamber was studied, an additional  restriction on 
electron step-size was used whereby the  maximum amount of energy loss to  ‘continuous’ 
processes for  each  electron step-size was restricted to 1.0%. (ESTEPE was set to 0.01 
(Rogers 1984).) The EGS4 user codes  employed in this report, CAVRZ (cylindrical- 
planar geometry) and CAVSPH (spherical-conical  geometry), are derivatives of CAVITY, 
which has been used previously to calculate  scatter and  attenuation correction  factors 
(Bielajew et al 1985, Rogers et a1 1985). The reliability of the  Monte  Carlo calculations 
is within the  stated  uncertainties, which were estimated by dividing  the  calculation  into 
10 batches and calculating  the  estimated  variance of the  mean. A minimum of about 
7.5 x lo5 incident photon  interactions were used for  each  simulation  although  as  many 
as 3 x lo6 histories were used for  some cases. Each photon was ‘forced‘ to  interact  at 
least once in  the  chamber  (a  standard ‘variance  reduction’  technique, see, for  example 
Rogers and Bielajew (1984)). The simulations were performed on  an  IBM 3090 and 
typical simulation times were 1-8 CPU h  per  chamber  for  each  distance. 

The unweighting  factor was not used in its  exact  form,  rather  the  approximation 
u(r’,r) x ( r ) 2  was used. As seen from  the  exact  expression in (3), this approximation 
is valid to  order ( re / r0 )* ,  where re is the  electron  range in the wall material.  This 
approximation  holds in the  present  context where the  electron  range is at most  a few 
millimetres and  the smallest source  to  chamber  mid-point  distance is of the  order of a 
few centimetres. 

To improve  the efficiency of the  Monte  Carlo  calculations,  a  correlated  sampling 
technique was used to calculate A p n .  Referring  to (12) which was used to  calculate Apn, 
some  degree of correlation between the  numerator  and  denominator (inside the  square 
brackets)  may  be  exploited.  In  the  calculation of the  numerator, if a  primary photon 
passed through  the cavity or a  primary  electron or  one  of its 8-rays deposited energy 
in the cavity, then this history was restarted with the  same  initial  random  number 
for the  denominator where the cavity is  filled with wall material.  The  numerator is 
essentially the  primary  dose to the cavity filled with gas. Thus,  the  primary  dose  and 
A,, are correlated. Hence, A,, can  be  calculated with more  statistical  accuracy than 
the  primary  dose, and the  response  corrected by A,, can  be  more  accurate  then  either 
the raw calculated  response  or Apn. 

3.1. Comparison  with  Kondo and Randolph 

Kondo  and  Randolph (1960) measured  ionisation-chamber  response versus source-to- 
detector  distance  for  large  spherical and cylindrical chambers in low scatter  conditions 
with a small 6oCo source, closely approximating  a  point  source.  For  the  latter  chamber 
they oriented  the  chamber with the  beam  directed  both on  the side and on  the  end 
of the  chamber. To account for departure from l / r 2  behaviour, they also  proposed  a 
‘surface’ theory which agreed with experiment to within about +2% for  their  sphere 
and f3% for  their cylinder. This paper is not  intended  to discuss their  theory  but 
makes use of their  experimental  results only. A minor  difficulty in this comparison 
arises  from  their  employment of chambers  that  did  not have full build-up  thickness 
walls. A direct  comparison of the  Monte  Carlo results with experiment was performed 
although it caused Apn(OO) = limro-aApn(rO) to  be significantly different from unity, 
as low as 0.9. The  reason for  this is evident  from (12), where the  denominator (inside 
the  square brackets) is calculated with wall material in the cavity. When  incomplete 
build-up walls are used, the  substitution of the gas by wall material  can  cause  most 
of the cavity region to  have full build-up. Hence, the  asymptotic value of &,(m) is 
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expected  to  be less than unity in this case. The  Monte  Carlo  calculations  also  ignored 
any possible electron  contamination  that  could  penetrate  the  thin walls. Electrons are 
set in motion  both in the  source  capsule and in the  air.  The  source  capsule  electrons 
scattered by the  air  away  from  the  detector  are,  to first approximation,  compensated for 
by a  build-up of the  air-generated  electrons  (Rogers et a1 1988). Since these electrons 
should  be  emitted  isotropically in a  fashion similar to  the  primary  photons,  the effect 
of electron  contamination  should be minimal in a relative comparison. 

One set of measurements employed a  spherical  copper  chamber with 0.215 g cm-* 
thick walls and a 4.82  cm internal  radius.  The  source  distances  ranged  from  about 5.5 
cm to 65 cm from  the  centre of the  detector.  The raw measured and calculated responses 
are shown  in figure 2 as well as  the  Monte Carlo calculated responses corrected for 
scattering by A,, (from (9)), for attenuation  and electron  drift by A,* (from (lo)),  and 
most  importantly by A,, from  (12). Owing to  the use of an incomplete  build-up wall 
thickness Apn(m),  as  obtained by taking  the limit of (12), was 0.897 0.005. The 
stopping-power  ratio,  calculated from (g), did not vary by more  than 0.0002 over all 
the  distances. 
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Figure 2. Raw  and  corrected  responses of the  spherical  chamber  relative to the  parallel  beam  Monte  Carlo 
calculation.  Once  corrected  for  point-source  non-uniformity  and wall perturbations,  the  chamber  response 
shows  no  deviation  with  distance  from  the  source to within  the  average 0.9% precision  of  the  Monte  Carlo 
calculation.  Crosses,  Monte  Carlo;  open circles, measurements. Cu sphere, 9.64 cm diameter. 

The raw Monte  Carlo responses are in excellent agreement with the  experimental 
data. In this, and the  subsequent  comparisons with experimental data, the  corrected 
and raw Monte  Carlo  data  are normalised  to  the  calculated  corrected parallel beam 
results. The experimental data were normalised  to  the raw Monte  Carlo responses by 
an ‘eyeball’ fit. The  estimated precision of the raw Monte  Carlo responses is about 
0.5%. Once  corrected,  the  Monte  Carlo responses (or the  experimental results if one 
had  chosen to correct  them  instead) show no  further distance  dependence  to within 
the  estimated  average  0.9% precision of the  corrected  Monte  Carlo responses. 

The correction  factors, which provide more  than 50% correction close to the  source, 
are  plotted in figure 3. The  estimated  average  statistical  uncertainty of the  calculated 
correction  factors is about 1.2% for A p n / A p n ( z )  and  about 0.1% for Awall A,, X Asc. 
For this chamber  there is only a small dependence of A,.,,II on  distance  ranging  from 
about 0.981 at small  distances  to about 0.987 at large  distances. 
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Figure 3. Apn/Apn(m)(x) and A,)) = Aat x &(A) correction  factors  for  the  spherical  chamber. 

Another set of measurements employed a Victoreen 0.25R chamber (it was assumed 
to  be  model number 130), a  cylindrical  chamber with a 4.78 cm internal  diameter, 10.53 
cm inner  depth,  and a 0.212 g cm-2 wall composed of a 'phenolic' plastic. Despite 
repeated effort, the  exact  composition  and density of this wall material were not 
obtainable  from  the  manufacturer.  In  the  simulations,  the wall was assumed  to have an 
equivalent  thickness  of  Delrin (1.425 g  cmp3), which should have the  same  elemental 
composition  as  a  phenolic plastic. In  this set of measurements,  the  irradiation was from 
the side and  the distances  ranged  from about 2.75 cm to  about 31  cm from  the  centre 
of the  detector.  The raw measured and calculated responses are shown in figure 4  as 
well as  the  Monte  Carlo calculated  responses  corrected by A,,, A,, and Apn. 
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Figure 4. Raw  and  corrected  responses of the  cylindrical  chamber  with  irradiation  from  the side relative 
to the  parallel  beam  Monte  Carlo  calculation.  Once  corrected  for  point-source  non-uniformity  and wall 
perturbations,  the  chamber  response  shows  no  significant  deviation with distance  from  the  source to within  the 
average 0.2% precision  of  the  Monte  Carlo  calculation.  Crosses,  Monte  Carlo;  open circles, measurements. 
Plastic cylinder-beam on side, length 10.53 cm,  diameter 5.78 cm. 
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Again,  the raw Monte  Carlo responses are in excellent agreement with the  exper- 
imental data.  The estimated precision of the raw calculated response is about 0.5%. 
After  correction,  the  Monte  Carlo  results show no  further distance  dependence  to 
within the  estimated  average 0.2% precision of the  corrected  Monte Carlo responses. 
In this case, because of the  thin walls, Apn(m) attained  a value of 0.916 k 0.005. The 
stopping-power  ratios  did not vary by more  than O.OOO1 over the set of calculations. 

The correction  factors, which combine to provide up  to  a 27% correction close 
to  the source,  are  plotted in figure 5. The estimated  average  statistical  uncertainty 
of  the  calculated  correction  factors is about 0.5% for Apn/Apn(m), and 0.1% for 
Awall = Aat X Asc.  For this chamber with the  irradiation from the side, there is a 
more  pronounced  dependence of on distance  ranging  from about 0.983 at small 
distances  to about 0.996 at the  large  distances. 
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Figure 5. Apn/Apn(m)(x), and Awall = Aat x &(A) correction  factors for the  cylindrical  chamber  irradiated 
from the  side. 

Finally,  the  same cylindrical chamber was employed with the  irradiation  from  the 
front with the  distances  ranging  from about 6.8 cm to  about 66  cm from  the  centre of 
the  detector. As seen in figure 6, the raw Monte  Carlo responses are again in excellent 
agreement with the  experimental data.  The estimated precision of the raw Monte  Carlo 
responses is about 0.4%. After  correction,  the  Monte  Carlo results show a  distance 
dependence of about 0.5%. The  estimated  average precision of the  corrected Monte 
Carlo responses is about 0.4%. In this case, because of the  thin walls, Apn(m) attained 
a value of 0.955 kO.006. Any distance  dependence in this case can  probably be ascribed 
to  the  employment of thin walls for the  chamber.  The  stopping-power  ratios  did  not 
vary by more  than 0.0001 over the set of calculations. 

The correction  factors, which combine to provide  more than 100%  correction close 
to the  source, are plotted in figure 7. The  estimated  average  statistical  uncertainty 
of the  calculated  correction  factors is about 0.5% for Apn/Apn(m), and  0.06% for 
Awall = Aat x Asc. For this chamber with the  irradiation  from the front,  there is 
significant dependence of on distance  ranging  from about 1.003 at small distances 
to  about 0.958 at  the largest  distance  measured. 
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Figure 6. Raw and corrected responses of the cylindrical chamber with irradiation from the front relative 
to the parallel beam Monte Carlo calculation. Once corrected for point-source non-uniformity and wall 
perturbations, the chamber response shows a small (S  0.5%) deviation with distance. The precision of 
the Monte  Carlo calculation is about 0.4%. Crosses, Monte Carlo; open circles, measurements. Plastic 
cylinder-beam on front, length 10.53 cm, diameter 5.78 cm. 
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4. Conclusions 

The  formal theory expressed in (5)-(12), and (14)-(16) corrects  for  departures  from l /r2 
behaviour  for even the  most  extreme  source-to-chamber  distances providing corrections 
as  large  as a  factor of 2 in some of the cases studied.  In  the worst case  studied,  the 
corrections  account  for  deviations  to within 0.5% although even this disagreement  can 
probably be ascribed to the use of thin walls in the  experiment. The theory relies 
upon  the existence of a  point-source  unweighting  factor  that  undoes  the effect of beam 
spreading in a  uniform  medium.  This  factor is derived rigorously in appendix 2. A 
simple  approximation to the  correction  factor in the form of r2  was employed that 
breaks  down only when the  source-to-chamber  distance is comparable  to  the  electron 
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range in the  chamber walls. 
A new correction  factor, Apn, is proposed to correct  both for axial  non-uniformity 

and  the  portion of radial  non-uniformity  associated with the  non-uniformity of the 
field in the  radial  direction  due  to l / r2  fall-off. Other  radial  non-uniformities  associated 
with collimator,  air and room  scatter  and finite source-size effects are  not  considered. 
A possible way to  account  theoretically for these effects may  be effected by considering 
an extended source, each element of which is a  point  scurce, and  integrating over these 
point-source  elements in (2) and subsequent  expressions. Alternatively, one  may  obtain 
the  suitable  unweighting  factor  in  a  similar  fashion  to  that employed in appendix 2. 

Theoretical  forms for the  other  familiar  correction  factors were described  as well. 
The  attenuation correction, Aat, and  scatter correction, A,,, both  depend  on  the  source- 
to-chamber  distance,  albeit weakly. The stopping-power  ratio and fluence correction, 
Afl, are  both given as parallel  beam (ro ”+ a) quantites.  The unweighting factor  also 
allows the  parallel  beam value to be attained  at  any source-to-chamber  distance. The 
stability of the  stopping-power  ratio given in the  examples  corroborates  the  equivalent 
forms given in (8) and (14) and lends  indirect  credence  to  the unweighting factor. 

It remains  to employ this theory for more  practical measurements-hambers a 
few centimetres  across at most,  not closer than 1 m  from  the  source.  Unfortunately, 
to be of practical use A,, should  be  calculated  to  better than 0.1%  statistical  accuracy 
requiring  hundreds of hours of CPU time on even the fastest computers  available. 
To preview the  companion  paper (Bielajew 1990), an analytic  theory is developed  to 
help in the  extrapolation  to  large  distances where the  corrections may be small  but, 
nonetheless, of great  importance, especially for absolute  measurements  performed in 
Standards’  laboratories. 
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Appendix 1. Equivalence of photon attenuation unweighting and regeneration 

Consider  the following equation  as  a  mathematical  model of primary  dose  deposition 

A 
Do(;.) = 1 di.1 exp(-j.l)fO(i. - >.l), (Al . l )  

where the  distance  beneath  the  surface of the  chamber is measured in mean free paths, 
i., and  the  total thickness of the  chamber in the  direction of the  incident photon  at 
the  point  the photon enters  the  chamber is A. The  exponential attenuation is made 
explicit, and the  dose  deposition about  the point of interaction, 2 1 ,  is expressed by fo. 
All other  direction  dependencies do not  depend  on i. and may  be  integrated out. 

Consider  the  unweighting  method with the attenuation unweighting  factor exp(i.1) 
in the  integrand 

A 

D:(;.) = di.l  exp(-i.l) exp(il)fO(i. - = dAlfo(i  - i l ) .  (A1.2) 
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This is the  method by which the  attenuation correction is calculated by the  Monte  Carlo 
simulations since it allows efficient computation because  the weighted and unweighted 
integrals  are highly correlated. 

Now consider  the  regenerative  method whereby a photon, if it  interacts, is regen- 
erated.  This  results in an infinite series of integrals because, in principle, the photon 
can  interact in  the  chamber  any number of times. In  our  notation,  the series takes  the 
form 

D, 0 (E.) = L* dE.1 exp(-il){fO(i - i1 j + d&  exp(ll - i 2 ) { f o ( i  - 14) 

+ A: dA3  exp(E-2 - l . 3 ) { fo ( i .  - j.3) + . . . . (A1.3) 

The  nth-order term  may  be written 

The  orders of integration  may  be successively exchanged  in  the  above  integral c f o  is 
assumed to be convergent  enough  to allow this) and the  innermost  integrals  performed 
producing 

D&(Aj = dE.l(i.:/n!) exp(-Evl)fO(l. - 21). S,” 
Summing  the series gives 

(A1.5) 

(A 1.6) 

since C:=o(xfl/n!j = ex for  x < 1 and A is usually much less than unity for most 
practical  chambers. 

Thus,  the  unweighting  method is equivalent  to  the  regeneration  method. The  latter 
is far less efficient for  practical  chambers, however, as  additional  photons would have 
to be  tracked  through  the  chamber and  one would lose much of the  correlation in the 
ratio of weighted and unweighted integrals.  The proof can  probably be extended to 
arbitrary A owing to  the localised behaviour o f fo .  However, a  more  general  proof will 
not  be  attempted since the  above  should suffice for  most  chambers.  Note, however, 
that  for extremely large  chambers  the  unweighting  factors may become very large, 
adversely affecting the  calculation efficiency. In this case it may  be  preferable  to switch 
to  the regenerative  technique. 

Appendix 2. Derivation of the point-source unweighting factor 

Consider  the following expression for the  equilibrium  dose  to  a  uniform  medium in a 
non-attenuating,  non-scattering  parallel  photon beam aligned with the z-axis 

(Ir - r’l,cos Oh,r-r,j - 0  
(A2.1 j 
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where the  integral  occurs over a volume large  enough  to  contain  any  electron  that 
may  drift  to  r  having been set in motion  at r’, and f o  is the  equilibrium  electron  dose- 
deposition  function  that  depends  both  on / r  - r’/  and cos Oh,r-r,, the  angle between 
Ir - r’I and  the incident photon direction  (unit vector A) which is  fixed. The vectors r 
and r’ are measured relative to  any origin. Changing variables so that  the  integration 
occurs in the vicinity of the  dose  deposition, r” = r - r’, gives the  expression 

D = S dr”f’(lr’’1, cos - 0  (A2.2) 

Finally,  the  integration  variable, r” may  be  rotated so that the  angular  integration 
variable is collinear with h giving, 

do = 1 dr  f (r  ,COS e”) ’I -0 ’I (A2.3) 

where r” = Ir”I and  dr” = (r”)2 sin B”dr”de”d@’. One sees explicitly that do is a 
constant,  independent of position. 

For  a  point  source,  the  point-source unweighted dose  deposition  equation becomes 

(A2.4) 

where u(r’,r) is the  point-source  unweighting  function  and  cos Ort,r-rt = [r‘ . (r - 
r’)]/[lr’llr - r’l] is the  angle of the vector from  the  point of interaction  to  the  point of 
energy deposition with respect to  the  incident photon direction which is now no longer 
fixed. The origin is situated  at  the location of the  point  source (see figure 1). Again, 
changing  variables r” = r - r’ to  integrate over the region local to  the  dose  deposition 
yields, 

D,,(r) = dr”[u(r - r”,r)/lr - r”I2]f (r”,cos Orl(,r-rf(). - 0  S -0 (A2.5) 

The second argument of the  dose  deposition  function  has  the form 

cos ey~~,y-r,~ = [cos er,rlt - (r”/r)] [ I  - 2(r”/r) cos er,rf, + ( r” / r )21  -l’* (A2.6) 

where cos Ory is the angle between r and r’’. Although this expression may seem 
complicated,  cos By,~,r-r~~ may be used directly as  the  angular  integration  variable.  In 
effect, one may rotate  coordinates locally and measure angles relative to  the  incident 
photon  direction. The resulting transformation yields 

Dps(r) = dr”u(r - r”, r)r-’ [ 1 - (r”/r)’  sin’ Or,(,r-p] f ( r” ,  cos e”), - 0  -l/’ -0 (A2.7) 

where again, dr” = ( r”)2  sin e”dr”de”d@’.  The  mathematics involved in getting  from 
(A2.5)  to (A2.7) is straightforward  but lengthy with substitution of variables and much 
cancellation.  One  may  transform back putting  the  origin at the  location of the  point 
source and identify the  unweighting  factor 

u(r’,r) = (r)’[1 - (Ir -r‘l/r)‘ sin2 er , r - r f~’’~.  (A2.8) 
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Thus identified, (A2.7) becomes 

(A2.9) 

identical  to  the  expression given in (A2.3). Thus, d:,(r) = do, and is independent of 
location  where  the energy deposition is measured. 

Facteurs  de  correction  pour  des  chambres  d’ionisation  a  paroi  epaisse utilisees dans des  faisceaux de  photons 
issus d’une  source  ponctuelle. 

Lors  de la determination  absolue  de I’exposition et du  kerma  dans I’air, telle qu’elle est pratiquee  dans les 
laboratoires  d’etalonnage,  on utilise des  facteurs  de  correction  axiale  et  radiale  pour  tenir  compte du defaut 
d’uniformite  du  champ  de  photons  incidents  au  voisinage  de la cavite de la chambre  d‘ionisation.  Dans 
ce travail, les auteurs  developpent  une  theorie  permettant  de  calculer la correction  de  non  uniformite  due 
a la source,  s’appliquant  aux  chambres  d‘ionisation  a  paroi  epaisse  irradiees  par  des  faisceaux  de  photons 
issus de  sources  ponctuelles,  avec  des  distributions d’energies de  photons  incidents  arbitraires. Les equations 
sont  etablies  dans le cadre d‘une theorie  fondamentale  de la reponse d’une chambre  d’ionisation,  et  sont 
utilisables  pour  des  calculs  par la methode  de  Monte  Carlo. Les auteurs  presentent les calculs effectues a 
I’aide de la methode  de  Monte  Carlo  pour  estimer la correction  relative  a  des  geometries  planes,  cylindriques 
et  spheriques. Les comparaisons  aux  resultats  experimentaux  de  Kondo  et  Randolph  mettent  en  evidence 
un  accord  meilleur qu’a 0.5% pres,  demontrant la validite  de la theorie, mCme dans les conditions  de  mesure 
les plus  extremes. 

Zusammenfassung 

Korrektionsfaktoren fur dickwandige  Ionisationskammern in F’unktquellenphotonenstrahlen. 

Bei Absolutmessungen  der  Ionendosis  und  der  Kerma in Luft, so wie sie in Standardlaboratorien  durchgefuhrt 
werden,  werden  axiale  und  radiale Inhomogenitatskorrecktionsfaktoren verwendet,  um  die  Non-Uniformitat 
des  einfallenden  Photonenfeldes in der  Nahe von Ionisationskammerhohlraumen zu beriicksichtigen.  In  der 
vorliegenden  Arbeit wird eine  Theorie  entwickelt zur Berechnung  der  Korrektion  aufgrund  der  Quellen- 
inhomogenitat,  anwendbar fur dickwandige  Ionisationskammern,  die  mit  einem Punktquellenphotonenfeld 
mit  willkiirlicher  Energieverteilung  bestrahlt  werden.  Die  Gleichungen  wurden  entwickelt im Rahmen  einer 
grundlegenden  Theorie  des Ionisationskammerverhaltens und  sind fur Monte  Carlo-Rechnungen  geeignet. 
Monte  Carlo-Rechnungen zur Bestimmung  der  Korrektion bei Flachkammern  und  Kammern  mit  Zylinder- 
und  Kugelgeometrie  werden  beschrieben. Vergleiche mit den  experimentellen  Ergebnissen von Kondo  und 
Randolph  zeigen  eine  Ubereinstimmung  besser  als 0.5%, was  die  Bedeutung  der  Theorie  auch  unter  extremen 
MeDbedingungen  zeigt. 
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