
Chapter 1

Background and Essentials

1.1 Introduction

Radiation physics is the science of ionizing radiation and its interaction with matter, with special interest
in the energy absorbed. Radiation dosimetry deals with the quantitative determination of that energy.
This introductory chapter lays the ground for the different types of ionizing radiation sources that will
be covered throughout the book and the overall classification of the mechanisms of energy transfer to
matter, emphasizing its stochastic nature. The concept of interaction cross section and mean free path,
of importance for the treatment of charged and uncharged particle interactions in following chapters, is
included in the chapter along with a description of the most common kinematic relativistic expressions.
As a result of the interaction of radiation with matter leading to the ionization and excitation of an atom,
vacancies are created in the atomic shells and the atom is left in an excited state; the excited ion then re-
laxes to its ground state through radiative and non-radiative transitions. The process of atomic relaxation
occurs during both charged and uncharged particle interactions with matter (even when only excitation
occurs) and is also included in this chapter. A final section deals with the evaluation of uncertainties,
applicable to many of the chapters that will follow describing dosimetry detectors, measurements and
calculations.

1.2 Types and sources of ionizing radiation

Ionizing radiation is generally characterized by its ability to excite and ionize atoms of matter with which
it interacts. Since the energy needed to cause a valence electron to escape an atom is of the order of 4 eV–
25 eV, radiation must carry kinetic or quantum energies in excess of this magnitude in order to be called
‘ionizing.’ As will be seen from Eq. (1.1), this criterion would seem to include electromagnetic radi-
ation with wavelengths up to about 320 nm, which includes most of the ultraviolet (UV) radiation band
(∼10 nm–400 nm). However, for practical purposes these marginally ionizing UV radiations are not
usually considered in the context of radiation physics and dosimetry, since they are even less capable
of penetrating through matter than is visible light, while other ionizing radiations are generally more
penetrating. The physics of the interaction of optical lasers and radiofrequency (RF) sources of electro-
magnetic radiation with matter is very different from that for ionizing radiation, and is not covered in
this book.

The types of ionizing radiation that will be considered are:

(a) Charged particles

i) Electrons: These are light charged particles, and when their charge is positive they are called
positrons. If they are emitted by a radionuclide they are usually referred to as β rays (positive
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2 CHAPTER 1. BACKGROUND AND ESSENTIALS

or negative). If they result from a charged-particle collision they are referred to as ‘knock-on’
electrons (KOe) or ‘delta rays’ (δ). Intense, continuous beams of electrons up to 25 MeV are
available from Van de Graaff generators, and pulsed electron beams of much higher energies
are available from linear accelerators (‘linacs’), betatrons, and microtrons. Descriptions of
such accelerators, mostly addressed to radiation medicine applications, have been given e.g.
by Karzmark et al. (1993) and Podgorsak (2010).

ii) Heavy charged particles: These are nuclei of atoms with some or all of the atomic electrons
removed; ions of nuclei with an atomic number equal to, or smaller than, that of neon nuclei
(Z = 10) are referred to as light ions. Heavy charged particles usually obtain their kinetic
energy from acceleration by a Coulomb force field in a Van de Graaff, cyclotron, synchrotron
or heavy-particle linear accelerator. Alpha particles are also emitted by some radionuclides.
The various types include:

- Proton – the hydrogen nucleus.
- Deuteron – the deuterium nucleus, consisting of a proton and neutron bound together by

the nuclear force.
- Triton – a proton and two neutrons similarly bound.
- Alpha particle – the helium nucleus, i.e., two protons and two neutrons. 3He particles

have one less neutron.
- Other heavy charged particles consisting of the nuclei of heavier atoms, either fully

stripped of electrons or having a different number of electrons than necessary to produce
a neutral atom.

A recommendation for using the term protons and heavier charged particles has been issued
jointly by the ICRU and the IAEA (Wambersie et al. 2004). Some relevant properties of
light and heavy charged particles are given in the Data Tables.

(b) Uncharged particles

i) γ rays: Electromagnetic radiation emitted from a nucleus or in annihilation reactions between
positrons and electrons. The energy of a photon is given by

k = hν =
hc

λ
=

1.2398 keV nm

λ nm
(1.1)

where h is Planck’s constant (4.136 × 10−18 keV s, with 1 keV = 1.6022 × 10−16 J) and c
is the velocity of light in vacuo (2.998 × 108 m/s). The momentum of a photon is given by
p = k/c.
Evidently, from Eq. (1.1) the energy of a photon of 0.1 nm wavelength is 12.4 keV. The range
of photon energies emitted by radioactive atoms extends from 2.6 keV (K-edge characteristic
x rays from electron capture in 37

18Ar) to the 6.1 MeV and 7.1 MeV γ rays from 16
7 N.

ii) x rays: Electromagnetic radiation emitted by charged particles (usually electrons) in changing
atomic energy levels (called characteristic or fluorescence x rays, see Section 1.6) or in
slowing down in a Coulomb force field (continuous or bremsstrahlung x rays, see Chapter 2).
Note that x-ray and γ-ray photons of a given energy are particles with identical properties,
differing only in their origin. The energy ranges of x rays referred to by the voltage used to
accelerate electrons that produce bremsstrahlung photons, are commonly known as

0.1–20 kV Low-energy, ‘soft’ x rays, or ‘Grenz rays’
20–120 kV Diagnostic-range x rays
120–300 kV Orthovoltage x rays
300 kV–1 MV Intermediate-energy x rays
1 MV upward Megavoltage x rays
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iii) Neutrons: Neutral particles obtained from nuclear reactions (e.g., (p, n) or fission), since they
cannot themselves be accelerated electrostatically.

The range of energies most frequently used in applications of ionizing radiations extends from 10 keV to
25 MeV for electrons and photons, neutrons up to 100 MeV, protons up to 300 MeV, and heavier charged
particles up to 400 MeV/mu, where mu is the atomic mass unit (also denoted by ‘u’, see the Data
Tables). Electrons and photons down to about 1 keV are also of interest in a number of applications, and
so are energies up to about 50 MeV.

Traditionally, a terminology for ionizing radiation emphasizing key differences between the interactions
of charged and uncharged particles with matter has been directly ionizing radiation and indirectly ioniz-
ing radiation. This classification was prone to misunderstanding because all particles of a given energy
excite or ionize matter directly, and it is the energy transferred to the target medium that can be direct or
indirect. Thus, the classification of particles used throughout this book is in terms of energy transfer

(a) Direct energy transfer. Charged particles, which deliver their energy to matter directly, through
multiple small Coulomb-force interactions along the particle’ tracks.

(b) Indirect energy transfer. Uncharged particles, i.e. x- or γ-ray photons or neutrons, which first
transfer their energy to charged particles in the matter through which they pass in relatively few
’major’ interactions. The resulting fast charged particles in turn deliver the energy to matter as in
(a). The transfer and deposition of energy in matter by photons and neutrons is therefore a two-step
process.

The reason that so much attention is paid to ionizing radiation, and for that a whole science dealing
with these radiations and their interactions with matter has evolved, stems from the unique effects that
such interactions have upon the irradiated material. Biological systems (e.g., humans) are particularly
susceptible to damage by ionizing radiation, so that the expenditure of a relatively trivial amount of
energy (∼ 4 J/kg) throughout the body is likely to cause death, even though that amount of energy can
only raise the gross temperature by about 0.001◦C. Clearly the ability of ionizing radiation to impart their
energy to individual atoms, molecules, and biological cells has a profound effect on the outcome. The
resulting high local concentrations of absorbed energy can ’kill’ a cell either directly or indirectly through
the formation of highly reactive chemical species such as free radicals1 in water, which constitutes the
bulk of the biological material. Ionizing radiation can also produce gross changes, either desirable or
undesirable, in organic compounds by breaking molecular bonds or, in crystalline materials, by causing
defects in the lattice structure. Even structural steel will be damaged by large enough numbers of fast
neutrons, becoming brittle and more likely to fracture under mechanical stress.

Discussing the details of such radiation effects lies beyond the scope of this book, however. Here we
will concentrate on the basic physics of the interactions, and methods for measuring and describing the
energy absorbed in terms that are useful in the various applications of ionizing radiation.

1.3 Consequences of the random nature of radiation

Suppose we consider a point P in a field of ionizing radiation, and ask: ‘How many particles will strike
P per unit time?’ The answer is of course zero, since a point has no cross-sectional area with which the
particles can collide. Therefore, the first step in describing the radiation field at P is to associate some
non-zero volume with the point. The simplest such volume would be a sphere centered at P, which has
the advantage of presenting the same cross-sectional target area to radiation incident from all directions.
The next question is how large this imaginary sphere should be. That depends on whether the physical
quantities we wish to define with respect to the radiation field are stochastic or non-stochastic.

1A free radical is an atom or compound in which there is an unpaired electron, such as H or CH3, see Chapter 13.
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A stochastic quantity has the following characteristics:

(a) Its values occur randomly and hence cannot be predicted. However, the probability of any parti-
cular value is determined by a probability distribution.

(b) It is defined for finite (i.e. non-infinitesimal) domains only. Its values vary discontinuously in
space and time, and it is meaningless to speak of its gradient or rate of change.

(c) In principle, its separate values can each be measured with an arbitrarily small error.

(d) The expectation value E[x] of a stochastic quantity x is the mean of its measured values, x̄, as the
number n of observations approaches∞. That is, x̄→ E[x] as n→∞.

A non-stochastic quantity, on the other hand, has the characteristics:

(a) For given conditions, its value can, in principle, be predicted by calculation.

(b) It is, in general, a ‘point function’ defined in an infinitesimal volume; hence it is a continuous and
differentiable function of space and time, and one may speak of its spatial gradient and time rate
of change. In accordance with common usage in physics, the argument of a legitimate differential
quotient may always be assumed to be a non-stochastic quantity.

(c) Its value is equal to, or based upon, the expectation value of a related stochastic quantity, if one
exists. Although non-stochastic quantities in general need not be related to stochastic quantities,
they are so related in the context of ionizing radiation.

It can be seen from these considerations that the volume of the imaginary sphere surrounding point P
may be small but must be finite if we are dealing with stochastic quantities. It may be infinitesimal
(dV) in reference to non-stochastic quantities. Likewise the cross-sectional area (da) and mass (dm) of
the sphere, as well as the irradiation time (dt), may be expressed as infinitesimals in dealing with non-
stochastic quantities. Since the most common and useful quantities describing ionizing radiation fields
and their interactions with matter are all non-stochastic, we will defer further discussion of stochastic
and non-stochastic dosimetric quantities until Chapter 4.

In general one can assume that a ‘constant’ radiation field is strictly random with respect to how many
particles arrive at a given point per unit area and time interval. It can be shown that the number of particles
observed in repetitions of measurements (assuming a fixed detection efficiency and time interval, and no
systematic change of the field vs. time) will follow a Poisson distribution. For large numbers of events
this may be approximated by the normal (Gaussian) distribution. If E[x] is the expectation value of the
number of particles detected per measurement, the standard deviation of a single random measurement
x relative to E[x] is equal to

s(x) =
√
E[x] ≈

√
x̄ (1.2)

and the corresponding percentage standard deviation is

s(x)% =
100 s(x)

E[x]
=

100√
E[x]

≈ 100√
x̄

(1.3)

That is, a single measurement would have a 68.3% chance of lying within ±s(x) of the expectation
value E[x], where s(x) is given by Eq. (1.2), if the fluctuations are due to the stochastic nature of the
field itself. Further, x would have a 95.5% chance of lying within ±2 s(x) of E[x], or a 99.7% chance
within ±3 s(x).

The approximation of E[x] by the mean value x̄ in Eqs. (1.2) and (1.3) is necessary because E[x] is
unknown but can be approached as closely as desired by the mean value x̄ of N measurements, i.e.,
x̄ → E[x] as N → ∞. It is useful to know how closely x̄ is likely to approximate E[x] for a given
number of measurements N . This information is conveyed by the standard deviation of the mean value
x̄ relative to E[x]

s(x̄) =
s(x)√
N

=

√
E[x]

N
≈
√
x̄

N
(1.4)
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and the corresponding percentage standard deviation is

s(x̄)% =
100 s(x̄)

E[x]
=

100√
N E[x]

≈ 100√
N x̄

=
100√
xtot

(1.5)

where xtot = N x̄ is the total number of particles detected in allN measurements combined. x̄ will have
a 68.3% chance of lying within ±s(x̄) of E[x]. Note that in Eq. (1.5) it makes no difference how many
measurements (N ) are made in acquiring a given total count xtot, and thus a given value of s(x̄)%.

It is important to emphasize that the foregoing statements of standard deviation in Eqs. (1.2) to (1.5)
are based exclusively upon the stochastic nature of radiation fields, not taking account of instrumental
or other experimental fluctuations. Thus, one should expect to observe experimentally greater standard
deviations than these, but never smaller values. This leads us to concepts of accuracy and uncertainty,
discussed in Section 1.7.

1.4 Interaction cross sections

Experimentally determined or calculated results of the interaction of particles with matter are usually
expressed in terms of characteristic quantities called cross sections. Following a definition given by
Joachain (1975), “the cross section of a certain type of event in a given interaction is the ratio of the
number of events of this type per unit time and per unit of target particle, to the relative number of the
incident particles with respect to the target”.

Let us first consider the general case of two particle types, S and T, both having well-defined quantum
states. A very narrow parallel monoenergetic beam consisting of Ṅin particles of type S impinges per
unit time and per unit area (perpendicular to the direction of the incident beam) 2 on a target made of
particles of type T. The direction of incidence is the z-axis (see Fig. 1.1) and the target is assumed to be
very thin and to contain nT particles in the narrow area covered by the incident beam. It is also assumed
that the incident particles S do not interact with each other.

y

x

d ,dW





z

E W

E
incident beam transmitted beam

target

outN

inN

Tn

detector

Figure 1.1: Illustration of the quantities used in the definition of interaction cross sections.

2This quantity will be defined in Chapter 4 as the fluence rate, following ICRU Report 85a (ICRU 2011) on Fundamental
Quantities and Units for Ionizing Radiation. In the literature it is often called current and flux.
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Let Ṅout denote the total number of particles S that have interacted per unit time with the nT target
particles and are scattered in a given direction, where they are measured with a detector. Under the
experimental conditions schematized in Fig. 1.1, it is obvious that the total number of particles Ṅout

is directly proportional to the relative number of incident particles Ṅin and to the number nT of target
particles, that is

Ṅout ∝ Ṅin nT = σtot Ṅin nT (1.6)

from where

σtot =
Ṅout

Ṅin nT

(1.7)

where the proportionality factor σtot has the dimension of area (as the quantity Ṅin is per unit area).
The quantity σtot is called the total cross section (TCS) for the interaction of particles S with the target
particles T and can be considered as the effective area that the incident beam ‘sees’ of the target. Con-
sidering only one target particle (nT = 1) we can define σtot = Ṅout/Ṅin (consistent with the definition
above) as the total probability for an incident particle to interact with one target particle and therefore be
removed from the incident beam.

We can now introduce the concept of differential cross section (DCS), where, rather than counting all
scattered particles, we take their energy and direction into consideration. Hence, we assume that the
incident particles of energyE lose a certain energyW and are deflected in an specific direction. This type
of interaction mechanism occurs for example in the inelastic collisions of charged particles (Chapter 2)
or in the Compton scattering of photons (Chapter 3). The detector will record particles that have lost an
energy betweenW andW + dW and are deflected within a small solid angle dΩ in the direction (θ, ϕ),
where θ and ϕ are the polar and azimuthal angles, respectively.

If we denote by ṄdΩ,dW the number of detected particles, we can write, as in Eq. (1.6) and considering
nT = 1

ṄdΩ,dW ∝ Ṅin dΩ dW =
d2σ

dΩ dW Ṅin dΩ dW (1.8)

where the proportionality factor
d2σ

dΩ dW =
ṄdΩ,dW

Ṅin dΩ dW
(1.9)

is termed the double-differential cross section (DDCS) per unit of solid angle and per unit of energy loss.
The DDCS has dimensions of [area solid-angle−1 energy−1] and the product (d2σ/(dΩ dW))×dΩ dW
represents the area perpendicular to the direction of the incident beam reached by scattered particles
within a solid angle dΩ(θ, ϕ) and with energies between E −W − dW and E −W .

Integrating the double-differential cross section over solid angle we get the DCS differential in en-
ergy loss

dσ

dW =

∫
d2σ

dΩ dW dΩ (1.10)

and a similar integration of the DDCS over the energy lossW yields the DCS differential in solid angle

dσ

dΩ
=

E∫
0

d2σ

dΩdW dW (1.11)

Integrating any of these DCS, e.g. Eq. (1.10) over energy losses, we obtain the TCS as

σtot =

E∫
0

dσ

dW dW =

E∫
0

∫
Ω

d2σ

dΩ dW dΩ

dW (1.12)
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The quantum mechanical description of a process, say interaction without energy loss (i.e., elastic scatter-
ing), assumes an incident plane wave, characterized by the wave function ψin = eikz and corresponding
to a particle of mass m with momentum p = ~k and energy E = p2/2m = (~k)2/2m and, after
interacting with the target, the radially-scattered wave is characterized by ψout = f(θ, ϕ) eikr/r, where
f(θ, ϕ) is the so-called scattering amplitude (note that quantities in bold characters correspond to vec-
tors). Assuming azimuthal symmetry, f(θ, ϕ) can be replaced by f(θ). Taking into account the definition
of particle current density (which approximately corresponds to the Ṅin above) in terms of the incident
wave ψin and its conjugate ψ∗in, it can be demonstrated (see e.g. Liboff 1992) that

dσ

dΩ
= |f(θ)|2 (1.13)

i.e. the differential cross section is given by the square of the scattering amplitude.

The total cross section of a particle at a given energy is obtained by adding up the cross sections of the
various possible interactions in a medium. This is usually expressed in cm2 or in barns (10−24 cm2) per
atom or per electron, and is referred to as the microscopic total cross section, e.g.

σtot(E) =
n∑
i=1

σi(E) (1.14)

where the various σi(E) are the cross sections for interactions of the type elastic, ionization, excitation,
bremsstrahlung, nuclear, etc which will be discussed in the following chapters.

When the number of atoms per mass of an element, Na = NA/A, is taken into account, the total cross
section is expressed as

Σtot(E) = σtot(E)
NA

A
(1.15)

and is termed the macroscopic total cross section, typically in cm2 g−1 or m2 kg−1, where NA is the
Avogadro constant and A is the atomic mass number of the element.

Similarly, the number of electrons per unit mass is given by Ne = Z Na = Z NA/A, where Z is the
atomic number. The atomic density and electron density, i.e. their number per unit volume V , are given
by na = Na/V = ρNA/A and ne = Zna = ρZNA/A, respectively, where ρ is the mass density
(g cm−3). Recall that Z/A ∈ [0.4, 0.5] for all elements except hydrogen, for which Z/A ≈ 1.3

The so-called mass attenuation coefficient, µ(E)/ρ, typically in cm2 g−1 (or in m2 kg−1), is the mac-
roscopic equivalent of the total cross section, i.e. µ(E)/ρ ≡ Σtot(E). When multiplied by the mass
density it yields the linear attenuation coefficient, µ(E), in cm (or in m). In either case, the probability
that an interaction will occur in a small distance ∆s is given by µ∆s.

The mean free path (MFP), which is defined as the inverse of the total macroscopic cross section, or of
the relevant attenuation coefficient, yields the mean path length between two consecutive interactions

MFP(E) =
A

ρNAσtot(E)
=

1

µ(E)
(1.16)

It is emphasized that the concept of MFP(E) applies to all kinds of particles, charged and uncharged,
even if traditionally it is applied more commonly to uncharged particles, like photons or neutrons. We
will return to this concept in the next chapters.

1.5 Kinematic relativistic expressions

Some useful relativistic kinematic relationships, used mainly in the chapters dealing with the interaction
of charged and uncharged particles with matter (Chapters 2 and 3, respectively), will be presented in this
3In neutron physics it is common to define the macroscopic cross section in terms of the atomic density, na, i.e. Σtot(E) =
σtot(E)na, which yields units of cm−1 (or m−1).
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section where, with a few exceptions, relativistic expressions can be related to the more familiar clas-
sical ones. The equations below avoid differences between large quantities that can arise in relativistic
calculations, and their relativistic and non-relativistic limits are straightforward.

The relativistic mass of a particle m with velocity v is related to its rest mass m0 at v = 0 through

m =
m0√

1−
(
v
c

)2 =
m0√
1− β2

(1.17)

where β = v/c, and c is the speed of light in vacuum. These two fundamental relations yield the
following expressions for the particle kinetic energy E and its momentum p

E =
mv2

2
=

m0c
2β2

2
√

1− β2

p = mv =
√

2mE =
m0c β√
1− β2

(1.18)

Note that the momentum of a particle is commonly expressed in units of p c, which has dimensions of
energy (e.g. MeV); thus,

p c =
m0c

2 β√
1− β2

(1.19)

Other useful expressions can be derived by squaring Eq. (1.17), which rearranging terms yields

m2

(
1− v2

c2

)
= m2

0

(mc)2 −m2
0c

2 = (mv)2 ≡ p2

(1.20)

and multiplying both sides by c2 results in

(pc)2 = (mc2)2 − (m0c
2)2 (1.21)

where mc2 can be identified with the total energy of the particle, Etot, i.e. the well-known Einstein
equation Etot = mc2, and m0c

2 is the particle’s rest energy. Eq. (1.21) is commonly illustrated as the
triangular mnemonic rule shown in Fig. 1.2, which includes the well-known relation

Etot = E +m0c
2 (1.22)

between the total and kinetic energy of a particle through its rest energy.

The combination of Eqs. (1.21) and (1.22) provides useful relations between kinetic energy and mo-
mentum in the form

pc =
√
E(E + 2m0c2) = E

√
1 +

2m0c2

E
(1.23)

E =
√

(pc)2 + (m0c2)2 −m0c
2 (1.24)

These expressions show that for particles with zero rest mass (photons, neutrinos), m0 = 0, and the
momentum is given by p = E/c. Similarly, from Eq. (1.22) their relativistic mass is m = E/c2. Their
relativistic velocity is

β =
v

c
=

p

mc
= 1 (1.25)

i.e. v = c for m0 = 0.

Note that the right-hand side of Eq. (1.23) includes the inverse of the ratio between the kinetic energy
and the rest energy of a charged particle, a ratio frequently denoted by τ = E/m0c

2, which describes the
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m0c2

pc

2 2 2 2
tot 0( ) ( )E m c pc 

Figure 1.2: Triangular mnemonic rule relating the total energy, Etot, rest energy, m0c
2, and momentum (in units of

p c) of a particle.

kinetic energy of a charged particle in units of its rest energy. This is often used to express the relativistic
velocity β as

β2 =
τ(τ + 2)

(τ + 1)2
(1.26)

whereas a useful expression as a function of the kinetic energy is

β2 =
E(E + 2m0c

2)

(E +m0c2)2
(1.27)

Some expressions in Chapters 2 and 3, dealing with the interactions of charged and uncharged particles
with matter, respectively, are often written in terms of the Lorentz relativistic factor, γ, defined as

γ =
1√

1− β2
= τ + 1 (1.28)

which yields the simplified expressions for a particle total and kinetic energy

Etot = γ m0c
2

E = (γ − 1)m0c
2

(1.29)

However, to avoid confusion with the γ symbol used in other areas of radiation physics and dosimetry,
its use will be minimized in this book.

1.6 Atomic relaxations

As a result of the interactions by charged and uncharged particles in the field of an atomic electron,
and of certain radionuclide disintegrations, leading to the ionization of an atom, vacancies are created
in the atomic shells and the atom is left in an excited state. Processes that create vacancies are inelastic
collisions of charged particles and electron impact ionization (see Chapter 2), photon-atom (photoelectric
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and Compton) and positron annihilation following a pair-production (Chapter 3), and electron capture
and internal conversion (Chapter 18). Depending on the nature and energy of the interaction, as well
as on the atomic number of the target atom, the vacancy may occur in the outer shell or in one of the
inner shells of the atom. The excited ion then ’relaxes’ to its ground state. Typically, the excitation
energy is released through a transition of an electron from a higher atomic shell to fill the shell vacancy.
The difference in binding energies between the initial and final shell or subshell is emitted through a
sequence of radiative and non-radiative transitions. In radiative transitions, photons (fluorescent x rays)
are emitted, and in non-radiative transitions Auger, Coster-Kronig or Super Coster-Kronig electrons are
emitted.

The energy of the emitted particles resulting from the relaxation process is determined by the energy
levels of the shells or subshells involved in the transition. These transitions are governed by quantum
mechanical selection rules that apply to the quantum numbers of the shells and subshells. The quantum
numbers involved are

(a) the principal quantum number n with values n = 0, 1, 2, 3...

(b) the orbital angular momentum quantum number ` with values ` = 0, 1, 2, ...n − 1, which corres-
ponds to the electron orbital angular momentum L = ~

√
`(`+ 1)

(c) the magnetic quantum number m` determining the z-component of the angular momentum,
Lz = m`~, with m` = −`,−`+ 1, ...`− 1, `

(d) the intrinsic angular momentum or spin quantum number swith value s = 1/2, which corresponds
to the spin S = ~

√
s(s+ 1) = ~

√
3/2, and the quantum number ms, which determines the z-

component of the intrinsic angular momentum, Sz = ms~, with ms = −1/2,+1/2.

If there is no interaction between the orbital and the spin angular momenta, the state of atomic electrons
is determined by the four quantum numbers, n, `,m` and ms. In reality, there is a coupling between the
orbital and the spin angular momenta, leading to the quantum state for the coupled vector J = L + S
determined by the quantum numbers j and mj . The vector J can take the values J = ~

√
j(j + 1)

with j = |`− s| , |`− s+ 1,| ..., |`+ s| (with s = 1/2) and mj = −j,−j + 1, ...,+j determining the
z-component of the coupled state Jz = ~mj . With spin-orbit coupling, the state of the electrons is thus
determined by the four quantum numbers, n, `, j,mj .

Transition selection rules for the so-called normal x-ray lines, based on the electric dipole selection rules,
dictate the main allowed transitions according to

∆` = +1,−1 and ∆j = 0,+1,−1

Magnetic dipole and electric quadrupole selection rules give rise to other transitions, but the intensity
of these transitions is significantly weaker than those resulting from the electric dipole selection rules.
The correspondence between the quantum numbers (n, `, j), with j = ` ± 1/2, and the various atomic
electron subshells, as well as the so-called shell occupation number (maximum number of electrons in a
subshell, given by 2j + 1) is given in Table 1.1.

In the fields of photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and electron-probe
micro-analysis (EPMA), the current trend for the notation of transitions is that of the International Union
of Pure and Applied Chemistry (IUPAC, c.f. Jenkins et al. 1991), where the codes of the shells with
the initial and final vacancies are written explicitly, separated by a hyphen, e.g. K-L2 and K-L1-L2 for
radiative and non-radiative transitions, respectively. This has superseded Siegbahn’s notation (developed
only for radiative transitions), where the designation of x-ray lines is by the letter code of the shell that
had the initial vacancy followed by a Greek letter and, in some cases, a numeral subscript and superscript,
e.g. KβII

4 (for K-N4). The correspondence between the two notations is given in Table 1.2.

The energy released through the emission of photons or electrons depends on the energy of the shell
or subshell involved, and thus on the atomic number Z. Vacancies created by charged-particle inelastic
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Table 1.1: Correspondence between the quantum numbers (n ` j), where j = ` ± 1/2, and the atomic electron
subshells, denoted by their spectroscopic or x-ray level notation. The parameter fi is the shell occupation number
(maximum number of electrons in a subshell), given by 2j + 1.

n ` j fi shell notation
spectroscopic x-ray level

1 0 1/2 2 1s1/2 K
2 0 1/2 2 2s1/2 L1
2 1 1/2 2 2p1/2 L2
2 1 3/2 4 2p3/2 L3
3 0 1/2 2 3s1/2 M1
3 1 1/2 2 3p1/2 M2
3 1 3/2 4 3p3/2 M3
3 2 3/2 4 3d3/2 M4
3 2 5/2 6 3d5/2 M5
4 0 1/2 2 4s1/2 N1
4 1 1/2 2 4p1/2 N2
4 1 3/2 4 4p3/2 N3
4 2 3/2 4 4d3/2 N4
4 2 5/2 6 4d5/2 N5
4 3 5/2 6 4f5/2 N6
4 3 7/2 8 4f7/2 N7

Table 1.2: Radiative transitions for the relevant groups in the K, L and M series. Transitions for the indicated lines
are represented using the IUPAC notation (S0-S1) and the corresponding Siegbahn notation is indicated in parentheses.
From Llovet et al. (2014).

Group Lines Group Lines

Kα K-L2 (Kα2) L2-N6 (Lv)
K-L3 (Kα1) L2-N7 (Lv)

Kβ K-M2 (Kβ3) L2-O1 (Lγ8)
K-M3 (Kβ1) L2-O4 (L γ6)
K-M4 (KβII

5 ) L3 ` L3-M1 (L`)
K-M5 (KβI

5) L3 t L3-M2 (Lt)
K-N2 (KβII

2 ) L3 s L3-M3 (Ls)
K-N3 (KβI

2) L3 α L3-M4 (Lα2)
K-N4 (KβII

4 ) L3-M5 (Lα1)
K-N5 (KβI

4) L3 β L3-N1 (Lβ6)
L1β L1-M2 (Lβ4) L3-N4 (Lβ15)

L1-M3 (Lβ3) L3-N5 (Lβ2)
L1-M4 (Lβ10) L3 u L3-N6 (Lu)
L1-M5 (Lβ9) L3-N7 (Lu)

L1γ L1-N2 (Lγ2) Mγ M2-N5 (Mγ)
L1-N3 (Lγ3) Mβ M4-N6 (Mβ)
L1-N4 (Lγ1) Mξ M5-N2 (Mξ2)

L2η L2-M1 (Lη) M5-N3 (Mξ1)
L2β L2-M3 (Lβ17) Mα M5-N6 (Mα2)

L2-M4 (Lβ1) M5-N7 (Mα1)
L2γ L2-N1 (Lγ5)

L2-N4 (Lγ1)

collisions and Compton scattering of photons occur mostly in outer shells, since the cross section for
the creation of inner-shell vacancies through these processes is lower(see Section 3.6.3 regarding the
effect of binding on Compton electrons). In contrast, the probability for inner-shell vacancies through
photoelectric interactions of photons increases with increasing shell ionization energy, and hence with
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atomic number. Figure 1.3 shows the shell binding energiesUB for the K, L, M and N shells and subshells
as a function of atomic number Z; numerical values are given in the Data Tables.
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Figure 1.3: Shell binding energies for the K, L, M and N shells as a function of atomic number. Data from Carlsson
(1975), see the Data Tables.

1.6.1 Radiative and non-radiative transitions

As mentioned above, the ionization of an atom produces a vacancy in the atomic subshell Si(ni `i ji),
with i = 0, 1, 2 etc, from which the electron was ejected. This vacancy is filled by an electron from
a higher subshell ‘jumping down’, initiating a cascade of radiative and non-radiative transitions as the
vacancy migrates to outer subshells and the atom relaxes back to the stable configuration:

(a) In a radiative S0-S1 transition (n0 ≤ n1), a vacancy in subshell S0 is filled by an electron from
an outer subshell S1 (the vacancy moves from S0 to S1) and a photon is emitted with an energy k
equal to the energy difference of the two shells, i.e.

k = US0 − US1 (1.30)

where USi denotes the binding energy of the Si subshell. These photons are called characteristic
x rays, as their energy is characteristic of the energy levels of the atomic subshells. The emission
process is called fluorescence.

(b) In a non-radiative S0-S1-S2 transition, the vacancy in subshell S0 is filled by an electron from a
higher subshell S1 and an electron is ejected from a subshell S2 with an energy

E = US0 − (US1 + US2) (1.31)

The subshell from where the electron is ejected can be the same as the one where the vacancy was
created (but a different shell). The process thus results in an additional vacancy in the ion, i.e.
two electron vacancies are produced in these transitions. Depending on the subshells involved in
non-radiative emissions, these are classified into Auger, Coster-Kronig, and Super Coster-Kronig
transitions as follows (see Fig. 1.4)
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- If the subshells S1 and S2 are in shells different from S0 (where the initial vacancy was
created), the process is called an Auger transition; this is therefore an inter-shell transition.

- If S0 and S1 are in the same shell, the process is called a Coster-Kronig transition; this is an
intra-shell transition.

- If the three subshells involved S0, S1 and S2 are in the same shell, the process is called a
Super Coster-Kronig transition; this is also an intra-shell transition.

Non-radiative transitions are mostly responsible for the relaxation of vacancies in the L subshells and
above, but Auger transitions are the only alternative to fluorescence produced by K-shell vacancies.
When energetically allowed, Coster-Kronig and Super Coster-Kronig transitions dominate over the Auger
effect, and multiply further the number of vacancies. Fig. 1.4 illustrates the three types of transitions (us-
ing the IUPAC notation), which are often referred to with the global name of Auger transitions.

K 

L1 

L2 

L3 

M1 

M4 

M2 

M3 

M5 

eA 

eCK 

eSCK 

K-L1-L2 L1-L3-M1 M1-M2-M4 

(a) (b) (c) 

Figure 1.4: Schematic illustration of the non-radiative transitions Auger (a), Coster-Kronig (b), and Super Coster-
Kronig (c). In an Auger transition, an electron eA is ejected from a higher shell; the transition shown is K-L1-L2. In
a Coster-Kronig transition, a vacancy in a subshell is filled by an electron in a higher subshell in the same shell, with
the ejection of an electron eCK from a higher shell (L1-L3-M1 shown). In a Super Coster-Kronig transition the electron
eSCK is ejected from the same shell (M1-M2-M4 shown).

From a dosimetry point of view, both radiative and non-radiative emissions have particular importance.
If emission of fluorescence x rays occurs, energy is transported away from the interaction site that would
otherwise be deposited locally (other phenomena, like their contribution to x-ray spectra are also of im-
portance, see Chapter 7). Auger transitions, on the other hand, deposit energy practically ‘on the spot’
as the electrons produced have very low energy and therefore the distance they can travel is negligible;
furthermore, as their average energy deposition per distance travelled (the stopping power, see Chapter 2)
is quite high, the radiobiological effect that they produce is also relatively high. These aspects have fa-
voured the use of radionuclides disintegrating via electron capture and/or internal conversion for nuclear
medicine therapy applications, termed targeted Auger-electron therapy (c.f. AAPM 1993, 1995).
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1.6.2 Transition probabilities and fluorescence and Auger yields

The probability for an x-ray emission from a given shell, versus that for the emission of an Auger elec-
tron, both being competing mechanisms, is described by the respective emission yields of the shell. In
general, radiative transitions are more probable for elements of high Z (> 30), whereas non-radiative
transitions are more probable for low-Z elements (< 30). Following the descriptions by e.g. Perkins et
al. (1991) and Llovet et al. (2014), these probabilities are derived in terms of the width of the transitions,
often using data derived by Scofield (1969, 1973, 1974).

Let τS0 be the mean lifetime of the excited state of an atom having a vacancy in the subshell S0; the
inverse of τS0 is the probability per unit time of a transition to a lower-energy state. The width of the
energy level of the initial excited state is, by virtue of the uncertainty principle, ΓS0 = ~/τS0, and is
given by the addition of the partial widths of all the radiative and non-radiative transitions, ΓS0−S1 and
ΓS0−S1−S2, respectively, that fill a vacancy in the subshell S0. The quantity

PS0−S1 =
ΓS0−S1

ΓS0
(1.32)

describes the probability that the vacancy in subshell S0 is filled through the radiative transition S0-S1.
Likewise, the probability that the vacancy is filled through the non-radiative transition S0-S1-S2 is

PS0−S1−S2 =
ΓS0−S1−S2

ΓS0
(1.33)

and both satisfy the condition ∑
S1

PS0−S1 +
∑
S1,S2

PS0−S1−S2 ≡ 1 (1.34)

where the summations are over all subshells S1 and S2 with binding energies less than US0.

The LLNL Evaluated Atomic Data Library (EADL, Perkins et al. 1991) is the most comprehensive
and widespread database of transition probabilities available. It contains data for isolated neutral atoms
of the elements Z = 1 − 100 with a single vacancy in all the subshells of the K, L, M, N shells and
some O subshells. Both radiative and non-radiative emissions include transition probabilities as well
as the level widths, calculated with an electron-independent model using a Dirac-Hartree-Fock-Slater
potential, adjusted to reproduce the Z-dependence of the fluorescence yields (see below). For a heavy
element, the number of transitions involved in the cascade back to neutrality can be very large. For
example, in the case of uranium with an initial vacancy in the K-shell, over 1000 non-radiative and
close to 100 radiative transitions are possible. A very large population of such atoms would exhibit a
spectrum with many lines; however, the average number of transitions a single such atom would actually
experience is much fewer, just over 10 non-radiative and about 8 radiative transitions. A computer code
named RELAX was written by Cullen (1992, 2014) to calculate such relaxation transitions and average
quantities, which has been used to illustrate the radiative and non-radiative spectra for aluminium and
tungsten shown in Fig. 1.5. Note that the spectra in the upper panel shows all the possible transitions, but
their importance from an energy point of view (probability × emission energy) can be better seen in the
lower panel, which shows the fraction of the element’s binding energy (for a given shell) that corresponds
to each single transition. It illustrates that non-radiative emissions (Auger electrons) are more important
for low-Z elements, whereas for high-Z the opposite occurs and radiative transitions (fluorescent x rays)
are predominant.

The fluorescence yield ωS0 of a subshell is equal to the average number of x rays emitted in the filling of a
vacancy in subshell S0 or, more generally, the fluorescence yield of a state with a vacancy in the subshell
S0 is defined as the probability that the vacancy is filled through a radiative transition (c.f. Llovet et al.
2014)

ωS0 =
∑
S1

PS0−S1 (1.35)
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The probability that a K x ray will be emitted is close to unity in high-Z elements and nearly zero in
low-Z elements. For a non-radiative transition, the Auger yield, aS0, of a state with a vacancy in the S0
subshell is defined as

aS0 =
∑
S1,S2

PS0−S1−S2 (1.36)

and gives the average number of Auger electrons emitted through transitions that fill the original vacancy
in S0. Evidently, from Eq. (1.34)

ωS0 + aS0 = 1 (1.37)

In the same way, the Coster-Kronig yield, fS0,1, is the probability that a vacancy in the subshell S0 of a
singly-ionized atom shifts to a higher subshell S1 of the same shell (n1 = n0) through a non-radiative
transition. That is,

fS0,1 =
∑
S2

PS0−S1−S2 (1.38)

where the sum is over subshells S2 above the active shell, with n2 > n0. A related quantity is the intra-
shell radiative yield, f ′S0,1 = PS0−S1, which is equal to the probability that the vacancy moves from S0
to S1 (n1 = n0) through a radiative transition. The sum

ηS0,S1 = fS0,1 + f ′S0,1 = PS0−S1 +
∑
S2

PS0−S1−S2 (1.39)

is the total probability of intra-shell transitions that shift the vacancy from S0 to S1. For a vacancy in a
subshell S0, the total probability of inter-shell transitions that transfer the vacancy to subshell S1 of an
outer shell (n1 > n0) is

ηS0,S1 = PS0−S1 +
∑
S2

PS0−S1−S2 (1.40)

and similar expansions can be written for the Super Coster-Kronig yield.

Detailed reviews and data on radiative and non-radiative yields, as well as on fluorescent, Auger, and
Coster-Kronig transition probabilities, have been published by Bambynek et al. (1972) and Krause
(1979). Hubbell et al. (1994) have given semi-empirical expressions fitting experimental data for x-ray
fluorescence yields from the K, L and M shells for any element, which are widely used. The basic Z
dependence is in the form of a power series,

ωi =
∑
n

cn Z
n (1.41)

where the subscript i = K, L, M; numerical values of the coefficients are given in Table 1.34. It should
be noted that ai = 1 − ωi. The expressions of Hubbell et al. were extended by Perkins et al. (1991)
to predict the fluorescence yields for individual subshells of the K, L, M, N, and O shells. Values of
the fluorescence yields, ωi, and average fraction of fluorescent events, Pi, and fluorescence x-ray mean
energies, k̄i, for different shells, are given in the Data Tables; they are illustrated in Fig. 1.6.
4Note that this expression supersedes a formula introduced by Burhop (1955) for the K-shell yield having the form(

ωK

1− ωK

)1/4

=

3∑
i=0

CiZ
i

where the coefficients have been re-fitted in reviews by different authors incorporating new sets of experimental data available
(e.g. Bambynek et al. 1972 and 1984). Hubbell rewrote this expression as

ωK =

[
3∑
i=0

CiZ
i

]4

1 +

[
3∑
i=0

CiZi
]4

which has become widely used in the literature (e.g. by Higgings et al. 1992 and Seltzer 1993) and sometimes cited as
developed by Hubbell himself (c.f. Carron 2007, McParland 2010).
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Figure 1.6: (a) Fluorescence yield, ωi, and average fraction of fluorescent events (strictly, fractional participation in
the photoelectric effect), Pi, by K, L and M shells; note that ai = 1− ωi. (b) Mean fluorescence x-ray energies, k̄i (solid
lines), in the K, L1 and M1 shells; for comparison, the binding energies, UB(i) are also shown (dashed lines).

Table 1.3: K, L and M-shell fluorescence yields fitted the polynomials of the form ωi =
∑
n=0

cn Z
n, as a function of

atomic number Z. From Hubbell et al. (1994, erratum in 2004).

Fluorescence Range Fitting coefficient
yield of Z c0 c1 c2 c3 c4

ωK 11-19 1.4340× 10−1 −2.5606× 10−2 1.3163× 10−3 – –
20-99 −7.6388× 10−1 5.4070× 10−2 −4.0544× 10−4 −1.4348× 10−6 1.8252× 10−8

ωL 26-51 −9.2521× 10−1 8.8531× 10−3 −2.8087× 10−4 3.4823× 10−6 –
52-92 4.2193 −2.3520× 10−1 4.7911× 10−3 −4.1549× 10−5 1.3564× 10−7

ωM 71-92 −4.587× 10−2 1.208× 10−4 1.051× 10−5

1.6.3 Emission cross sections

In practical calculations and in Monte Carlo simulations of radiation transport (see Chapter 8), cross
sections for the emissions of characteristic x rays, σS0−S1, or Auger electrons, σS0−S1−S2, need to be
considered for the different elements. They are obtained, by measurement or by calculation, from the
number of x rays or Auger electrons emitted from a given transition.

The probability that an incident photon or electron gives rise to a characteristic x-ray emission or an
Auger electron is σS0−S1 na t or σS0−S1−S2 na t, where na is the number of atoms per unit volume and
t is the thickness of a thin foil of the element. To calculate the emission cross sections σS0−S1 and
σS0−S1−S2, the cross section for the ionization of the subshell S0 is required for the energy of the incident
particle, σS0(E). Hence, for example, for x rays and Auger electrons generated from ionizations of the
K-shell (S0 = K),

σK−S1 = σK(E)PK−S1 and σK−S1−S2 = σK(E)PK−S1−S2 (1.42)

where PK−S1 and PK−S1−S2 are the probabilities for the corresponding radiative and non-radiative trans-
itions. The calculation is, however, quite complex for subshells other than the K shell because account
has to be made for vacancies in a subshell produced not only by the direct ionization by an incident
particle, but also during the de-excitation cascade of vacancies generated in other subshells; recall that
during the de-excitation process of the atom the initial vacancy migrates to outer subshells and in the
case of non-radiative transitions, additional vacancies are generated. Unfortunately, information on the
relaxation of multi-vacancy states is not generally available.
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1.7 Evaluation of uncertainties

Following a recommendation of the Comité International des Poids et Mesures (CIPM 1981), the Inter-
national Organization for Standardization (ISO) developed the Guide to the Expression of Uncertainty in
Measurement (ISO 1993), known as the GUM, for the evaluation of uncertainties, based on a new unified
approach. The current evaluation of measurement uncertainties worldwide is based on these procedures.
In the U.S.A., the NIST published in 1994 Technical Note 1297 summarizing the GUM recommenda-
tions (Taylor and Kuyatt 1994). Minor corrections and a supplement have subsequently been published
by the BIPM, developed by the Joint Committee for Guides in Metrology (JCGM 2008a, 2008b). This
section describes the practical implementation of the GUM recommendations, partly based on summar-
ies published in IAEA TRS-398 (Andreo et al. 2000) and in IAEA TRS-457 (Alm-Carlsson et al. 2007)
that are applicable to the measurements and calculations that will be described in subsequent chapters.

1.7.1 Accuracy and precision – error and uncertainty

The GUM defines accuracy as the closeness of the agreement between a result and a true value. This
definition is adopted from the International Vocabulary of Basic and General Terms in Metrology (VIM)
published by the ISO (1993). The GUM clarifies that in fortuitous circumstances a result can be very
accurate (i.e. be close to the ’true’ value, or have a negligible error) while at the same time having a large
uncertainty. Accuracy (characterized by a single value) and uncertainty (characterized by a distribution)
are two different concepts, but often they are used interchangeably, creating confusion. The same occurs
with the term precision, which the GUM emphasizes should not be used for accuracy, as it describes the
extent to which a given result can be repeated or reproduced; the terms repeatability and reproducibility
are recommended.

The terms error and uncertainty have also traditionally been used interchangeably; however, the current
approach makes a clear distinction between these two concepts

(a) An error has traditionally been viewed as having two components: a random component and a
systematic component. According to the current approach, an error is the difference between a
measured value and the true value of the measurand. If errors were known exactly, the true value
could be determined; in reality, errors are estimated in the best possible way and corrections are
made for them. Therefore, after application of all known corrections, errors do not need any further
consideration (their expectation value being zero) and the quantities of interest are uncertainties.
An error has both a numerical value and a sign.

(b) The uncertainty associated with a measurement is a parameter that characterizes the dispersion of
the values ‘that could reasonably be attributed to the measurand’. This parameter is normally an
estimated standard deviation. Such an uncertainty has no known sign and is usually assumed to
be symmetrical5. It is a measure of our lack of exact knowledge, after all recognized systematic
effects have been eliminated by applying appropriate corrections.

The uncertainty of a measurement is expressed as a standard uncertainty relative to the mean value,
and the evaluation of standard uncertainties is classified into Type A and Type B. The method of
evaluation of Type A standard uncertainties is by statistical analysis of a series of observations.
The method of evaluation of Type B standard uncertainties is based on means other than statist-
ical analysis of a series of observations. This is in contrast to the traditional categorization of
uncertainties into random and systematic contributions

In the past uncertainties have often been evaluated in the form of confidence limits, usually at the 95%
5There are cases in which the dispersion is known to be asymmetric and for which a characterization other than a standard
deviation is appropriate. It is also possible to have a measurement scenario in which the dispersion is one-sided, in which case
the uncertainty does have a sign.
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confidence level. This approach is no longer used because there is no statistical basis for combining
confidence limits. The law of propagation of uncertainty requires a combination in terms of variances,
as will be discussed in Section 1.7.5.

1.7.2 Type A standard uncertainty

Given a series of N measurements with values xi, each with equal weight, the best estimate of the
quantity x is given by the arithmetic mean value of the measured values

x̄ =
1

N

N∑
i=1

xi (1.43)

The distribution of the N measured values xi, around their mean value x̄ can be characterized by the
standard deviation of the sample, given by

s(xi) =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (1.44)

and the quantity s2(xi) is the sample variance. We are often interested in the standard deviation of the
mean value, written as s(x̄), for which the general expression is

s(x̄) =
1√
N
s(xi) (1.45)

which can, in principle, be reduced by increasing the number N of measurements.

A more general situation is the estimate of s(x̄) for several groups of measurements, where statistical
weights have to be used. Given N groups, each with a mean value x̄i and standard deviation of the mean
si, the weighted mean value and the standard deviation of the weighted mean are respectively given by

x̄w =

N∑
i=1

wi xi

N∑
i=1

wi

(1.46)

and

s(x̄w) =
1√
N∑
i=1

wi

(1.47)

where wi = 1/s2
i .

Cases can be found where experimental or calculated values (e.g. determined by different groups or by
different methods) show a larger or smaller dispersion than what could reasonably be predicted from the
stated uncertainties. In these cases the Birge test (Birge 1932) can be used to assess the consistency of the
data set. The test compares the so-called internal and external variances, where the former corresponds
to the prediction based on Eq. (1.47) and the usual laws of propagation of uncertainty (see Section 1.7.5),
while the latter describes the outcome in terms of fluctuations around the weighted mean value. The
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Birge ratio, RBirge, is obtained from6

R2
Birge =

s2
ext

s2
int

=


N∑
i=1

wi(xi − x̄w)2

(N − 1)
N∑
i=1

wi


1

N∑
i=1

wi

=

N∑
i=1

wi(xi − x̄w)2

N − 1
(1.48)

IfRBirge is significantly larger than unity, i.e. the outcome is more scattered than the prediction, then it is
likely that at least some of the variances si are underestimated, and the converse can also be inferred. The
Birge test is used for example for some of the CODATA recommended values of fundamental physical
constants (Mohr et al. 2012). In some statistical treatments, modified weights are assigned to force
the Birge ratio to be unity (see e.g. Mandel and Paule, 1970; Andreo et al., 2013). The need for such
consistency tests illustrates the fact that uncertainties evaluated using the methods described are by their
nature only estimates of the most probable deviation of each measured value from the true value.

The standard uncertainty of Type A, denoted by uA, corresponds to the standard deviation of the mean
value, i.e.

uA = s(x̄) (1.49)

1.7.3 Type B standard uncertainty

There are many uncertainty sources that cannot be estimated by repeated measurements; they are called
Type B uncertainties. These include not only the known effects of quantities like pressure, temperature,
application of correction factors or physical data taken from the literature etc, but also the effects of
unknown, although suspected, influences on the measurement process.

Type B uncertainties must be estimated so that they correspond to standard deviations, i.e. they are
Type B standard uncertainties, denoted by uB. It is helpful to assume that these uncertainties have a
probability distribution that corresponds to some shape for which the statistical treatment is known.

In this respect it is sometimes assumed that Type B uncertainties can be described by a rectangular
probability density, i.e. that the true value has an equal probability of lying anywhere within the given
maximum limits−L and +L. With this assumption, it can be shown that the Type B standard uncertainty
is given by

uB =
L√
3

(1.50)

Alternatively, if it is assumed that the distribution is triangular (with the same limits), the Type B standard
uncertainty is given by

uB =
L√
6

(1.51)

Another treatment is to start with the assumption that Type B uncertainties have a distribution that is
approximately Gaussian. The Type B standard uncertainty can in this case be derived by first estimating
some limits ±L and then dividing that limit by a suitable number. If, for example, the experimenter is
fairly sure of the limit L, it can be considered to correspond approximately to a 95% confidence limit,
whereas if the experimenter is almost certain, it may be taken to correspond approximately to a 99%
confidence limit. Hence, the Type B standard uncertainty can be obtained from

uB =
L

k
(1.52)

6Interested readers might observe the similarity of the Birge ratio and the Chi-squared per degree of freedom.
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where k = 2 if the experimenter is fairly sure and k = 3 if the experimenter is almost certain of the
estimated limits ±L. This relation corresponds to the properties of a Gaussian distribution and it is
usually not worthwhile to apply divisors other than 2 or 3 because of the approximate nature of the
estimation.

There are thus no rigid rules for estimating Type B standard uncertainties. The experimenter should use
the best knowledge and experience and, whichever method is applied, provide estimates that can be used
as if they were standard deviations. Because of the approximations involved, Type B uncertainties should
not normally be stated with a resolution better than 10% or 20%.

1.7.4 Combined and expanded uncertainty

As emphasized above, estimated Type A and Type B uncertainties correspond to standard deviations,
and therefore they can be combined using the law of propagation of uncertainty, combining variances
(the squares of standard deviations). If uA and uB are, respectively, the Type A and Type B standard
uncertainties of the value of a quantity, the combined standard uncertainty of that value is

uc =
√
u2

A + u2
B (1.53)

which also has the character of a standard deviation. If, in addition, it is believed to have a Gaussian
probability density, then the standard deviation corresponds to a confidence limit of about 67%.

It is sometimes desirable to multiply the combined standard uncertainty by a suitable factor, called the
coverage factor, k, to yield an expanded uncertainty. Values of the coverage factor of k = 2 or 3,
correspond typically to confidence limits of about 95% or 99%. In either case, the numerical value of the
coverage factor should be clearly indicated. The result of a measurement will thus be expressed by

x̄± k uc (1.54)

The approximate nature of uncertainty estimates, in particular for Type B, makes it doubtful that more
than one significant figure is ever justified in choosing the coverage factor.

1.7.5 Law of propagation of uncertainty

A given measurand Y is usually not measured directly, but is determined from N other quantities Xi

through a relation
Y = F (X1, X2, ..., XN ) (1.55)

where Xi are different quantities, experimental methods, corrections, different time or experimenters,
etc. F should not be considered a function in the proper sense, but rather a description of the complete
measurement process.

An estimate y of the measurand Y is obtained from estimates xi (described by appropriate probability
distributions) of the different quantities Xi, that is

y = f(x1, x2, ..., xN ) (1.56)

The estimated combined standard uncertainty of the measurement, uc(y), including all estimates xi and
their uncertainties u(xi), can be obtained from (see e.g. the GUM)

u2
c(y) =

N∑
i=1

(
∂f

∂xi

)2

u2(xi) + 2
N∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
u(xi, xj) (1.57)
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where u(xi, xj) is the estimated covariance associated with xi and xj ; note that u(xi, xj) = u(xj , xi).
The degree of correlation between xi and xj is given by the correlation coefficient

r(xi, xj) =
u(xi, xj)

u(xi)u(xj)
(1.58)

If we make the transformation ui(y) ≡ |∂f/∂xi| u(xi), Eq. (1.57) becomes

u2
c(y) =

N∑
i=1

u2
i (y) + 2

N∑
i=1

N∑
j=i+1

ui(y)uj(y)u(xi, xj) (1.59)

that corresponds to the estimated combined variance of the measurement when the input quantities xi
are correlated. For independent or uncorrelated quantities the second term in Eq. (1.59) cancels out, as
u(xi, xj) = 0, and the estimated combined variance takes the form

u2
c(y) =

N∑
i=1

u2
i (y) (1.60)

i.e., the estimated combined standard uncertainty is obtained as the square root of the variance.

Expressions (1.59) and (1.60) constitute what is termed by the GUM and others as the Law of propaga-
tion of uncertainty. This is often referred to in the literature as ‘the law of error propagation’ but, as
emphasized earlier, in the current nomenclature the term ’error’ is used for a different purpose.

To conclude the section on uncertainties, it should be emphasized that the old terms ‘random’ and ‘sys-
tematic’ uncertainties do not have a one-to-one correspondence to Type A and Type B uncertainties.
Readers should also be warned that in spite of the remarks made throughout this section, available in the
cited GUM references for many years now, the scientific literature still uses sometimes incorrectly terms
like precision and accuracy, classifies uncertainties by their nature (random and systematic), rather than
by their method of determination (Type A and Type B), considers errors as uncertainties or combines
the two, or uses the absolute difference between values as an estimated of the uncertainty. Caution is
therefore advised in the reading of references.

1.8 Exercises

(1) What is the photon energy range corresponding to the UV radiation band?

Answer: 10 nm–400 nm corresponds to 124 eV–3.1 eV

(2) For a kinetic energy of 100 MeV, calculate the velocity, β, for (a) electrons, (b) protons and (c) al-
pha particles. The corresponding rest energies are given in the Data Tables.

Answer: (a) 0.9999; (b) 0.4282; (c) 0.2271

(3) Reversely, given a value of β = 0.95, calculate the corresponding kinetic energies of electrons,
protons and alpha particles

Answer: (a) 1.1255 MeV; (b) 2066.6 MeV; (c) 8209.86 MeV

(4) The result of a given process is derived as the product of several independent quantities,Q =
∏
qi.

The type A and B uncertainty of each qi, (uA, uB)i, given as a relative standard uncertainty, are
(0.1, 0.5), (0.01, 0.1), (0.02, 0.4) and (0.3, 0.19). Determine the combined standard uncertainty
of Q.

Answer: uc(Q) = 0.75
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(5) Given the following set of data (75.4, 79.7, 75.0, 77.0, 78.4), with standard uncertainties (0.95,
0.5, 0.2, 1.2, 0.8), determine the non-weighted and weighted mean and the corresponding type A
uncertainties. Determine the Birge ratio for the data and comment on the uncertainty estimates of
the data.

Answer: x̄ = 77.1, s(x̄) = 0.89; x̄w = 75.8, s(x̄w) = 0.18; RBirge = 2.2

(6) Using the half-width of the set of data in the previous exercise, estimate the type B uncertainty
assuming rectangular, triangular and Gaussian (with k = 2) distributions. Which of the three is
considered to be more conservative?.

Answer: uB rect = 1.36, uB trian = 0.96, uB Gauss = 1.18.
The rectangular distribution is a special case, because in general for most data sets there is a
higher probability that the true value lies nearer to the middle than at the extremes. This leaves
the triangular and Gaussian (k = 2 → 95%) distributions as conceptually similar, with the 95%
Gaussian being more conservative.
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