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Abstract
A technique for analyzing the effect of the geometrical shape of a source or 
a detector, using a quadrupole expansion, is described herein. It is shown 
that this method may be exploited to predict, optimize the geometry of a 
source, or a measurement device, and nearly eliminate, the departure from 
the 1/r2 fall-off characteristic due to irradiation from small sources. We 
have investigated several simple shapes that have a vanishing Q2 quadrupole 
moment: a right circular cylinder with a diameter to depth ratio of 2 , a 
cone with a radius to height ratio of unity, and an oblate ellipsoid with a 
diameter to depth ratio of 3 / 2 . These ideal shapes produce optimally 
small departures in a 1/r2 field, nearly mimicking a point-like detector. We 
have also found a rotationally symmetric shape, intermediate to the other 
three, that has additionally, a vanishing Q4, the hexadecapole moment. This 
geometry further improves the 1/r2-perturbation characteristics and has an 
additional free parameter that may be adjusted to model the ideal cylinder, 
cone or oblate spheroid.
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1. Introduction

This paper studies the relationship of instrument response to γ-radiation, in the measurement 
regime where the source-to-detector distance is greater than the characteristic dimensions 
of the measurement device, and of the source. Similar investigations have been undertaken 
previously on this topic [Kondo and Randolph 1960, Bielajew 1990]. However, both of these 
papers discuss electron transport across the cavity, while this paper concerns itself with pho-
ton transport only, as well as geometrical shape optimization.
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The results developed herein may be used to design an instrument, specifically an ioniza-
tion chamber, that minimizes the 1/r2 ‘fluence perturbation’. However, the conclusions we 
reach, may apply to many other kinds of radiation detectors, as well as the geometry of the 
source.

Fluence [ICRU 2011] is a radiometric quantity that is defined at a point in space. Since 
practical instruments have a finite sensitive volume and, in principle, an arbitrary geo-
metric shape, their response must be integrated over their sensitive volume to model the 
instrument’s measurement. Therefore, if one assumes that the detector is measuring flu-
ence at the center of its sensitive volume, the actual measurements will show a variation 
from the anticipated 1/r2 response, that is dependent on the shape and composition of the 
instrument.

This begs the question, ‘What is the best detector shape?’, the motivation for the  
current study.

2. Unattenuated primary γ measurements

Consider a measurement of primary unattenuated photon integrated fluence, Φ ←
M
D S in a detec-

tor (D)–monochromatic source (S) arrangement.
The average integrated fluence is:

⃗ ⃗ ⃗
⃗

⃗ ⃗∫ ∫Φ
π

ρ
ρ← =

∣ − ∣
N

x x x
x

x x4
d ( ) d

( )
V V

M
D S 0

D D D S
S S

D S
2

D S

 (1)

where N0 is the number of particles that emanate from the source, VD is the volume of the 
detector, ⃗xD is the 3D integration variable over the geometry of the detector, and ⃗ρ x( )D D  is 
a response function of the detector, that, in principle, could have a spatial variability. VS, ⃗xS,  
and ⃗ρ x( )S S  have similar interpretations for the source, although ⃗ρ x( )S S  would play the role 
of a specific spatial-dependent activity of the source. The factor ⃗ ⃗∣ − ∣−x xD S

2 accounts for the 
1/r2 falloff, between the point of photon emission in the source, to the point of interaction in 
the detector.

⃗ρ x( )D D  and ⃗ρ x( )S  are each normalized so that:

⃗ ⃗∫ ε ρ ε=     =    i1 d ( ) where D or S
V

i i
i

 (2)

Equations (1) and (2) may be used to describe the differential 1/r2 falloff in the measurement. 
Note that (1) is symmetric under the interchange of the detector and source, D⇌S.

We define the centers of position of both the source and detector using:

⃗ ⃗ ⃗∫ ε ε ρ ε=0 d ( )
V

i i i
i

 (3)

If we position the coordinate system at the center of volume of the source, and let ⃗d  be the 
vector from the center of the source to the center of the detector, (1) becomes:

⃗ ⃗ ⃗
⃗

⃗ ⃗ ⃗
∫ ∫Φ

π
ε ρ ε ε

ρ ε

ε ε
← =

∣ + − ∣

N

d4
d ( ) d

( )
V V

M
D S 0

D D D S
S S

D S
2

D S

 (4)

An illustration of the geometry under investigation is given in figure 1
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Borrowing from the language and technique of multipole expansions in electrostatics, we 
expand (4), assuming ⃗ε∣ ∣≪d, from which it can be shown that:

O

∑ ∑Φ
π

ε ε ε ε ε ε

ε ε ε ε ε ε ε ε
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̂ (5)

The Qn’s are multipole moments, and related to the geometry of the sensitive volume by (5).  
We note that there is no first order term (the dipole moment), as these have vanished by 
virtue of locating the endpoints of the ⃗d  at the centers of the source and the detector, as 
described in (3).

The multipole moments are expressed below in (6), in terms of the longitudinal (∥), with 
respect to the direction of ⃗d ) and lateral (⊥) geometric moments:

∫
∫
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In (6) and following, m and n are integers, ⩾ 0.
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(7)

With respect to Q2, we note that the longitudinal and radial second moments can be arranged, 
by selection of the geometry of the detector (or source), to cancel each other out, resulting in 
Q2 = 0. This fact, proven below in (11), is the major result of this work. The simplest shapes 

Figure 1. A graphical depiction of the symbols used in (1)–(4).
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that realize this are rotationally symmetric (about the ⃗d  -axis) ellipsoids, right circular cyl-
inders, and double right circular cones, with their bases touching. As demonstrated in the 
following development, the optimum one-parameter shape is an ellipsoid1, with its short axis 
aligned with and centered on the ⃗d  line, with a long axis to short axis ratio of 3 / 2 . A cylin-
der2 with its flat face perpendicular to and centered on the ⃗d  line can be designed so that its 
Q2 = 0, if =D L/ 2 , where D is its diameter, and L is its length. The ideal cone has a = 1. The 
ideal ellipsoid has a much smaller magnitude of Q4, compared to the two other ideal shapes.

We also studied another geometry, that we named the ‘cyllipsoid’, with an additional 
parameter that allows its surface to obtain the shape of a sphere, an arbitrary ellipsoid, as well 
as a cylinder. As will be demonstrated in the next section, the two parameters of the cyllipsoid 
may be chosen to eliminate Q4 as well.

2.1. An investigation of several geometrical shapes

In this section  we present the details of several shapes, all rotationally symmetric with 
respect to the source-to-detector axis. We restricted the investigation to a pure point source, 

⃗ ⃗ ⃗ρ ε δ ε= −x( ) ( )S S S , and a detector that measures integrated fluence, ⃗ρ ε = V( ) 1 /D D D, with 
the application of ionization chambers in mind.

Equation (4) simplifies to:

⃗
⃗ ⃗

∫Φ
π

=
∣ + ∣

d
N

V
x

d x
( )

4

1
d

1

V

0
2

 (8)

The 5 shapes studied were:

In all cases, 2R is the longest interior chord length of the volume, a is the ratio of the long-
est interior chord length to the shortest, and b  > = 2 is a parameter for the ellipsoid, that models 
the sphere, the ellipsoid, as well as the cylinder. The surfaces are related by:

=

=

→∞ =

=

=

S R a S R a

S R a S R a

S R a b S R a

S R S R

S R S R

( , , 1) ( , )

( , , 2) ( , )

( , , ) ( , )

( , 1, 2) ( )

( , 1) ( )

cyllipsoid cone

cyllipsoid ellipsoid

cyllipsoid cylinder

cyllipsoid sphere

ellipsoid sphere

 (9)

1 We shall adopt the usual convention in physics that an ellipsoid, refers to a spheroid, and in this particular case, an 
oblate spheroid.
2 Similarly, we shall adopt the name ‘cylinder’, to mean a right circular cylinder, and ‘cone’, to denote the double 
cone arrangement.

Type Equation of surface Parameters

Sphere Ssphere(R) = r2 − R2 = 0 R: spherical radius
r2 = x2 + y2 + z2

Right circular Scylinder(R, a) = ρ2 − R2 = 0 R: cylindrical radius
cylinder  −  R/a ⩽ z ⩽ R/a ρ2 = x2 + y2

a: eccentricity
Ellipsoid Sellipsoid(R, a) = ρ2 + a2 z2 − R2 = 0 R: radius of ρ

a: eccentricity
Cone Scone(R, a) = ρ + a |z| − R = 0 R: radius of ρ

a: eccentricity
Cyllipsoid Scyllipsoid(R, a, b) = ρb + ab |z|b − Rb = 0 R: radius of ρ

a: eccentricity
b: ‘squareness’
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The spatial moments expressed by (6) are essential to determining the quadrupole 
moments3. They are

∫ ∫
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With the spatial moments given in (10), the quadrupoles may be determined using (7) directly:
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In (11) we see directly, that the cylinder’s Q2 may be set to zero by setting =a 2, the cone’s by 
setting a = 1 and the ellipsoid’s by setting =a 3 / 2. All the odd Q’s vanish owing to the symmetry 
of these geometries about the z = 0 plane. (The cyllipsoid will be treated as a special case, below.)

The ideal cylinder, cone and oblate ellipsoid are shown in figure 2
With these optimized values, the quadrupole expansion takes the following form:
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(12)

3 The expressions are for even n only. The odd-n moments vanish due to the symmetry of the shapes about the  
z = 0 plane.
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Note that the Q4 for the ideal ellipsoid is much smaller than that of the ideal cylin-
der’s, and the ideal cone’s. Additionally, the cylinder’s Q4 has a negative sign, oppo-
site to the positive sign of the two others. This suggests that an intermediate shape 
could be made to have its Q4 vanish, motivating the development and investigation of  
the ‘cyllipsoid’.

2.1.1. Optimizing the parameters for the cyllipsoid. This section describes the procedure used 
to determine the optimum shape parameters, a and b.

The last equation  in (10) demonstrates that the functional dependence of the spatial 
moments depends very simply on R and a. This allows a simple prescription for determining 
the optimum parameters.

Combining (10) with (7) yields a functional relationship between a and b arising from 
requiring that Q2 = 0, namely:

=a b f b f b( ) 3 (2, 0, ) / (0, 1, )0
2 (13)

Figure 3 depicts Q2 = 0 condition, establishing the relationship between a and b.
To choose the optimum value of b, we rewrite Q4, substituting a0 for a, using (7), (10) and 

(13), and search for the b0 that causes Q4 to vanish.

= − +Q a b b f b a b f b a b f b[ ( ) , ] 5 (4, 0, ) / ( ) 10 (2, 1, ) / ( ) (0, 2, )4 0 0
4

0
2

 
(14)

Equation (14) is shown in figure 4
The result of these computations is that:

= =b a b2.40231 ( ) 1.264350 0 0 (15)

Figure 2. Two dimensional representations of the optimum shapes. These shapes are all 
rotationally symmetric about the horizontal axis.
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The cyllipsoid is shown in figure  5, and contrasted with the oblate ellipsoid, that has 
the smallest non-vanishing Q4 among the three other ideal non-cyllipsoidal geometries 
investigated.

2.1.2. Expressions for the complete physical range of d. In evaluating (8) it is possible to 
obtain analytic expressions for the sphere, cylinder and ellipsoid, although the cyllipsoid must 
be left in the form of a single integral that may be evaluated numerically. For brevity, the 
results are expressed in their integral forms, that were submitted to the symbolic or numerical 
processing software. In the equations below, y = R/(ad).
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(16)

These results are depicted in figures 6 and 7.

Figure 3. The relationship between the eccentricity parameter, a and the squareness 
parameter, b, that arises from the requirement that Q2 = 0. The impulses drawn are ob-
tained from the optimum value of b obtained from the requirement that Q4 = 0.
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Figure 6 depicts the results of the ‘fluence perturbation’, 4π d2Φ(d)/N0 for the 4 geometries 
studied, over the entire physical range, from d → ∞ up to d = R/a, at which point the source 
touches the measurement volume. A ‘perfect’ instrument would measure the fluence at the 
distance d, with no perturbation. Therefore, the departure from unity represents the amount of 
the perturbation, due to the finite size of the measurement device. The results for the individual 
geometries are differentiated in the legend of the figure. Even in the extreme (and impractical) 
case where the source touches the measurement volume, the perturbation is  + 14.45% for the 
ideal cyllipsoid,  + 31.65% for the ideal cone,  + 21.64% for the ideal ellipsoid,  − 12.18% for 
the ideal cylinder, and  + 50% for the sphere.

Figure 7 depicts the perturbation for a typical measurement region. The smallest value of d 
represented is for d = 10R/a, about 50cm for a 10 cm diameter spherical chamber. The pertur-
bation for the sphere is  + 0.0020,  − 9.9 × 10 − 5 for the ideal cylinder,  + 1.4 × 10 − 5 for the ideal 
cone,  + 8.6 × 10 − 6 for the ideal ellipsoid and  + 7.6 × 10 − 8 for the ideal cyllipsoid. The curve 
for the sphere is almost ‘off the chart’, just visible in the upper left corner in this figure. The 
curve for the ideal cyllipsoid appears to be completely level, at this magnification. The effect 
of eliminating quadrupole moments is quite evident!

3. Discussion and conclusions

We have developed a quadrupole technique for analyzing the effect of the geometrical shape 
of a detector, upon the 1/r2-perturbation. The quadrupole expansion technique allows one to 
characterize the shape of a detector or source in terms of quadrupole moments, similar to the 
quadrupole expansion technique employed in electrostatics. The parameters of the geometry 
(radius, or depth) may be adjusted to cause these moments to vanish, resulting in smaller 1/r2 

Figure 4. Q4[a0(b), b] used to determine the optimum value of b = b0 for the cyllipsoid. 
At b = b0, and a = a0(b0), Q2 = 0 and Q4 = 0.
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perturbations that arise from the finite size of the detector or source. We have found three 
simple shapes that have a vanishing Q2 moment: a cylinder with a diameter to depth ratio of 

2 , an ellipsoid with a diameter to depth ratio of 3 / 2 , and an arrangement of back-to-back 
cones with a diameter to depth ratio of 1. We have also found another shape, intermediate to 
the others, that has additionally, a vanishing Q4.

Such an instrument could be exploited to measure 1/r2 variations that arise from other 
aspects, such as chamber composition, orientation, source shape and size, air scatter and room 
scatter, as well as electron transport.

The next phase of this study will be to investigate the effect of attenuation and self-scatter 
due to chamber composition, both analytically, and with Monte Carlo calculations. Once these 
aspects are fully understood, and the behavior of these chambers characterized completely, 
the only remaining variables will be source composition, room scatter, and electron transport 
in the walls of the device. Such an instrument could then be used to research these aspects of 
the measurement.

An unexplored aspect of this work, is the geometry of the source. The formalism, and 
the optimization technique developed herein, can be applied to the geometry of the source. 
This leaves open the intriguing possibility that radiative sources, for example, irradia-
tion capsules or accelerator bremsstrahlung targets, could be further optimized. Another 
application that may follow from this work is to consider the specific case of line sources, 
and closer distances, that are germane to brachytherapy dosimetry. The validity of ana-
lytic theories [Kondo and Randolph 1960, Bielajew 1990], has recently brought some 
criticism because of their restriction to point sources [Vianello and de Almeida 2008]. 
This hypothesis is supported by detailed Monte Carlo calculations [Rodríguez and de  
Almeida 2004].

Figure 5. Two dimensional representations of the cyllipsoid and the oblate ellipsoid. 
They are very close, except the cyllipsoid is somewhat ‘squarer’. These shapes are all 
rotationally symmetric about the horizontal axis.
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Figure 7. The same data as figure 6 zoomed into a typical measurement region.
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Figure 6. The fluence perturbation for the geometries studied. These values represent all 
possible measurement distances. The solid line that has the greatest departure from unity 
is the sphere, while that with the smallest departure is the ideal cyllipsoid. The horizontal 
line at unity would represent a ‘perfect’ instrument, with no 1/r2 perturbation.
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