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Abstract

In this report we discuss the theory of the ``condensed history technique'', an approximate solution to the Boltzmann

transport equation that sums the e�ect of up to thousands of discrete, small momentum transfer elastic and inelastic

collisions into single larger-e�ect quasi-events. This technique saves much calculational e�ort at the expense of intro-

ducing errors that are now understood quantitatively in terms of the development presented herein. We apply our anal-

ysis to modern realizations of the condensed history method, namely those of EGS/PRESTA, ETRAN/TLC, FLUKA,

PENELOPE, and LLCA. We have also constructed an algorithm that exhibits smaller large step size instabilities than

all of these methods and give several examples. Ó 1998 National Research Council of Canada, Published by Elsevier

Science B.V.

1. Introduction

The transport problem of particles in matter can be solved exactly, within the existing knowledge of the
elementary collision processes, by the analog 1 Monte Carlo technique. Monte Carlo simulations of particle
transport processes are a faithful simulation of physical reality: particles are ``born'' according to distribu-
tions describing the source, they travel a certain distance (determined by a probability distribution) to the
site of a collision and scatter into another energy and/or direction. This procedure is continued until the
particle is absorbed or leaves the geometry under consideration. Quantities of interest can be calculated
by averaging over a given set Monte Carlo particle ``histories''. The statistical uncertainty of the calculation
depends on N , the number of particle histories simulated, and decreases as Nÿ1=2. Depending on the desired
accuracy or the complexity and size of the geometry, this may lead to very long calculation times.
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An additional di�culty occurs in the case of the simulation of electron transport. In the process of slow-
ing down, a typical fast electron undergoes of the order of 105±106 collisions with surrounding matter. Be-
cause of this large number of interactions, an analog simulation of electron transport is often not practical.
To circumvent this di�culty, Berger [1] developed the ``condensed history'' technique. In this method, large
numbers of transport and collision processes are ``condensed'' to a single electron step. The cumulative ef-
fect of the individual interactions is taken into account by the appropriate change of the particle's energy
and direction of motion at the end of the step. This approach was motivated by the fact that single colli-
sions with the atoms cause in most cases only minor changes in the particle's energy and direction of ¯ight.

Recently, Larsen [2] has provided a mathematical proof that the condensed history technique is a solu-
tion to the Boltzmann transport equation in the limit of small step size. He has shown that conventional
realizations of the method have an O�Ds� truncation error, where Ds is the path-length of the step, proposed
an O�Ds2� version of the method and indicated that higher-order solutions may possibly be devised by split-
ting the operations of transport and scattering along a transport step.

In this article we analyze di�erent realizations of the condensed history technique in terms of a direct
comparison with the moments of the spatial distributions and spatial-angular correlations. Our analysis
seems to indicate that the order of the truncation error cannot be reduced by simply ``mixing'' di�erent op-
erator-split procedures. Finally, we propose a new electron transport algorithm which has a higher order
truncation error than previously proposed algorithms, at least for the low-order spatial moments and spa-
tial-angular correlations that we have investigated.

The remaining part of the paper is organized as follows. In Section 2 we summarize basic formulae and
notation used throughout the paper. In Section 3, existing electron transport algorithms are analyzed. In
Section 4 possible new algorithms are discussed. A simple example is presented in Section 5. The results
are discussed and summarized in Section 6.

2. Some basic formulas and notation

We consider the transport of electrons in a condensed history Class II scheme [1]. That is to say, the
bremsstrahlung process that results in the creation of photons above an energy threshold Ec, and Mùller
knock-on electrons set in motion above an energy threshold Ed, are treated discretely by creation and trans-
port. Sub-threshold processes are accounted for in a continuous slowing down approximation (CSDA)
model. For further description of the Class II scheme the reader is encouraged to read Berger's article
[1] who coined the terminology and gave a full description and motivation for the classi®cation scheme.

If the direction of motion is given by the unit vector ~v, the position by ~x, the cross section for elastic
scattering per unit solid angle by r and if energy loss is taken into account by considering the energy as
a function of the residual range of the particles, the electron transport process between interaction vertices
is governed by the following transport equation

of �s;~x;~v�
os

�~v~rf �s;~x;~v� � N
Z

d~v0 f �s;~x;~v0 � ÿ f �s;~x;~v�
h i

r�~v �~v0 �: �1�

Here, s is the arc length traversed by the particle and N is the number of atoms per unit volume. Lewis [3]
provided a formal solution of the above equation in terms of the longitudinal and transverse moments of
the phase space distribution function f �x; y; z; cos h;/�. A generalization of Lewis' method which allows
the calculation of arbitrary moments hxnx yny znz vmy

x vmy
y vmz

z i is given in Appendix A.
In this article we will discuss di�erent Monte Carlo electron transport algorithms and compare the re-

sulting moments to the exact one's derived by Lewis. We will consider up to second order moments, i.e.
hzi; hzvzi; hz2i; hxvx � yvyi and hx2 � y2i. Assuming that the initial position is at the origin and the initial di-
rection along the z-axis, Lewis' method gives:
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hzi �
Zs

0

ds0k1�s0�;

hzvzi � 1

3

Zs
0

ds0k1�sÿ s0� 1� 2k2�s0�
� �

;

hxvx � yvyi � 2

3

Zs
0

ds0k1�sÿ s0� 1ÿ k2�s0�
� �

;

hz2i � 2

3

Zs
0

ds0
Zs0

0

ds00k1�s0 ÿ s00� 1� 2k2�s00�
� �

;

hx2 � y2i � 4

3

Zs
0

ds0
Zs0

0

ds00k1�s0 ÿ s00� 1ÿ k2�s00�
� �

: �2�

Here, ki is short hand notation for

ki�s� � exp ÿ
Zs

0

ds0ji�s0�
24 35; �3�

where the j's are the moments of the single scattering cross section r�v�,

ji�s� � 2pN
Z1
ÿ1

d cos vr�v; s0� 1ÿ Pi�cos v�� �: �4�

In the above equation Pi denote the Legendre polynomials. In the following discussion we will frequently
use the ®rst two multiple scattering moments and give them therefore their own notation:

n �
Zs

0

ds0j1�s0�;

c � j2

j1

: �5�

At very high energies where the single scattering cross section is strongly forward peaked, c approaches 3.
At very low energies, where the single scattering cross section is almost isotropic, c goes to unity. For en-
ergies above few keV, c is always bigger then two and, for a given material, a very slowly varying function
of energy.

We will also need the average cosine and sine squared of the multiple scattering angle. From the theory
of Goudsmit and Saunderson [4,5] we have

f �s; cos h� �
Z

d/
Z

dx dy dz f �s; x; y; z; cos h;/� �
X1
i�0

i� 1

2

� �
ki�s�Pi�cos h�; �6�

and therefore:
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hcos hi � k1�s�;
h sin2hi � 2

3
1ÿ k2�s�� �: �7�

To simplify the following analysis we will neglect energy loss. Then we have

n � rTs � Tss
2

�8�

where rT is the transport cross section [6] and Ts the linear scattering power [7]. The approximate equation
holds for small-angle scattering. In addition, to be able to demonstrate the deviations from the exact answer
resulting from the di�erent transport algorithms, we will frequently expand the various expressions in a
power series in n. For instance, we obtain from Eq. (2):

sÿ hzi
s
� n

2
1ÿ n

3
� � � �

� �
;

hzvzi ÿ hzihvzi
s

� n
3ÿ c

3
� c2 � cÿ 9

9
n� � � �

� �
;

hxvx � yvyi
s

� n
c
3
ÿ c�c� 1�

9
n� � � �

� �
;

hz2i ÿ hzi2
s2

� n
2�3ÿ c�

9
� c2 � cÿ 9

18
n� � � �

� �
;

hx2 � y2i
s2

� n
2c
9
ÿ c�c� 1�

18
n� � � �

� �
: �9�

The ®rst equation expresses the di�erence between the curved electron path-length and the transport along
the initial direction of motion and has become known as ``path-length-correction'' or the ``detour'' correc-
tion. The second and third equations give the correlation strength between the ®nal position and ®nal di-
rection of motion. If the ®nal position was independent of the ®nal direction of motion these correlations
would be zero. The last two equations describe the straggling of the electron position around the mean val-
ue. It is apparent from Eq. (9) that the error introduced by a simple condensed history algorithm, where
particles are transported along the initial direction of motion, will become negligible for su�ciently small
step sizes (n! 0). This observation is in agreement with Larsen's operator formalism proof [2]. It is also
clear that detours due to multiple scattering are better described in terms of n instead of the path-length
(or the fraction of the residual range of the particles). We will therefore use n as a measure of step lengths
in the remaining part of the paper.

If the exact solution of Eq. (1), f �s;~x;~v�, were known, particle transport between discrete interaction ver-
tices could be done in a single step. As this solution is not known yet, other step size restrictions have to be
applied. One popular choice is a constant fractional energy loss per step, �, built into the ETRAN Monte
Carlo code [1,8,9], and introduced by Rogers [10] into EGS4 [11]. The empirical observation that a smaller �
has to be used in high Z materials in order to obtain correct results [12,13] is readily understood in terms of
Eq. (9) and Fig. 1, where n is plotted as a function of kinetic energy E for three di�erent materials and
� � 0:1. As n is proportional to �,

n � rTs � rTE
L�E;Ec;Ed� �; �10�

n-values for other fractional energy losses can be obtained by multiplication with the appropriate factor.
Here, L�E;Ec;Ed� denotes the restricted stopping power for threshold energies of Ec and Ed (see the begin-
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ning of this section). The transport cross section has been calculated for simplicity from a screened Ruth-
erford cross section with a screening parameter as derived by Moli�ere [14]. This is not particularly a good
approximation for the single scattering cross section, yet it gives a reasonable ®rst estimate of the scattering
power of a medium [6]. It is not our intention to present an exact description of n as a function of � here but
rather to give the reader a better understanding of the deviations from the exact answer caused by the var-
ious transport algorithms discussed in Section 3.

3. Analysis of present algorithms

In this section we will discuss several existing electron transport algorithms and compare the resulting
moments to the exact one. To simplify the analysis we will not consider the di�erences resulting from
the di�erent multiple scattering theories used, but will assume that all multiple scattering theories yield
the correct result for hcos hi and h sin2hi.

3.1. Simple

In a simple condensed history algorithm, where particles are transported along the initial direction of
motion and lateral de¯ections are neglected, the relative error will be O�n0�. We have, for instance,

hxvx � yvyisimple ÿ hxvx � yvyi
hxvx � yvyi � ÿ1: �11�

A simple algorithm is presently implemented in EGS4 (without PRESTA [11], in the ITS system [17] and in
the electron component of MCNP [18,19]).

Fig. 1. The transport parameter n (see Eqs. (4), (5), (8) and (10)) for a path-length corresponding to 10% energy loss as a function of

kinetic energy for di�erent materials.
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3.2. PRESTA

According to PRESTA [15,16], an electron transport option of EGS4 [11], at the end of the step the elec-
tron is transported along the initial direction of motion to hzi, whereas the lateral displacement is related to
the ®nal scattering angle, i.e:

z � hzi;

x � s
2

sin h cos /;

y � s
2

sin h sin /: �12�

This procedure will give the exact result for hzi (provided the exact result for hzi is used) but under-estimates
the second longitudinal moment

hz2iPRESTA ÿ hz2i
hz2i � hzi

2

hz2i ÿ 1 � ÿ 2�3ÿ c�
9

nÿ c2 � 21cÿ 45

162
n2 � � � � �13�

The correlation between z and vz is also under-estimated

hzvziPRESTA ÿ hzvzi
hzvzi � hzihcos hi

hzvzi ÿ 1 � ÿ 3ÿ c
3

nÿ 5cÿ 9

18
n2 � � � � �14�

The correlation between the transverse position and direction of motion, hxvx � yvyi, is under-estimated at
high energies (where c > 2) and over-predicted at very low energies:

hxvx � yvyiPRESTA ÿ hxvx � yvyi
hxvx � yvyi � sh sin2hi

2hxvx � yvyi ÿ 1 � ÿ cÿ 2

6
n� c2 ÿ c� 1

36
n2 � � � � �15�

Finally, we obtain for the second order transverse moment

hx2 � y2iPRESTA ÿ hx2 � y2i
hx2 � y2i � s2h sin2hi

4hx2 � y2i ÿ 1 � ÿ 1

4
� 3�cÿ 1�

16
n� 13c2 ÿ 12c� 3

320
n2 � � � � �16�

i.e. it is under-estimated even for very short step sizes.
The derivations for hxvx � yvyi and hx2 � y2i ignore the fact that in PRESTA the transport distance per-

pendicularly to the initial direction of motion must be reduced in some cases to guarantee that
x2 � y2 � z26 s2. This implies the condition

sin2h6 4 1ÿ hzi
2

s2

 !
� n 1ÿ 7

12
n� � � �

� �
: �17�

The right-hand side of Eq. (17) is smaller than unity for n6 0:295 and so electrons will be placed at
r2 � s2 ÿ hzi2 every time a multiple scattering angle not satisfying Eq. (17) is sampled leading to a reduction
of hxvx � yvyi and hx2 � y2i (for a more detailed discussion of this issue see Ref. [25]). An analytical calcu-
lation for hxvx � yvyi and hx2 � y2i is not possible in this case and we have therefore used Eqs. (15) and (16)
to calculate PRESTA results shown in Figs. 4 and 6 (see Section 3.7).

The overall relative error of the algorithm is O�n0�.
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3.3. ETRAN/TLC

In his pioneering work on electron transport Monte Carlo, Berger [1] proposed to use the following sim-
ple relation between ®nal scattering angle and ®nal co-ordinates 2:

x � s
2

sin h cos /� dx� �;

y � s
2

sin h sin /� dy

ÿ �
;

z � s
2
�1� cos h�; �18�

where dx and dy are random numbers that are distributed independently according to a Gaussian distribu-

tion with mean zero and variance

�������������
hh2i=6

q
. When sampling on the basis of these formulas, one must of

course exclude very large values of dx and dy for which x2 � y2 � z2 > s2. Berger argued that this should
be extremely unlikely. We found however, that for typical step sizes currently in use in EGS4, this situation
occurs in 20±30% of all cases. We get for the ®rst order moments from Eq. (18):

hziETRAN ÿ hzi
hzi � s�1� hcos hi

2hzi ÿ 1 � n2

12
� � � � ;

hzvziETRAN ÿ hzvzi
hzvzi � s�hcos hi � hcos2hi�

2hzvzi ÿ 1 � 2c2 ÿ 4c� 3

36
n2 � � � � ;

hxvx � yvyiETRAN ÿ hxvx � yvyi
hxvx � yvyi � sh sin2hi

2hxvx � yvyi ÿ 1 � ÿ cÿ 2

6
n� c2 ÿ c� 1

36
n2 � � � � ; �19�

i.e. they are all correct to O�n� or better. For the second order longitudinal moment we have

hz2iETRAN ÿ hz2i
hz2i � s2�1� 2hcos hi � hcos2hi

4hz2i ÿ 1 � ÿ 3ÿ c
18

n� 13c2 ÿ 24c� 36

324
n2 � � � � �20�

In order to reproduce the second order longitudinal moment,

hd2
x � d2

yi
hx2 � y2i � 1ÿ s2h sin2hi

4hx2 � y2i �
1

4
� 3�cÿ 1�

16
nÿ 3ÿ 12c� 13c2

320
n2 � � � � �21�

has to be used for the d's. With this the accuracy of Berger's algorithm for the moments studied here will be
O�n�, i.e. an order of magnitude better than PRESTA.

3.4. FLUKA

Ferrari et al. [20] proposed and implemented in FLUKA [21] the following transport algorithm (we use
here their notation):

2 When energy loss is disregarded, Berger's algorithm is equivalent to the algorithm proposed by Larsen [2]. It should also be noted

that most of Berger's algorithm was not included in ETRAN until Seltzer [9] introduced the TLC version of ETRAN. Before then,

ETRAN (and also its well-known progeny, the ITS system [17] and the electron component of MCNP [18,19]) ignored lateral

correlation and detour corrections, i.e. total path-length s and forward drift z were equated.
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z � p cos g;

x � p sin g cos�/� Dx�;
y � p sin g sin�/� Dx�;
p � pcorr�cos h cos g� sin h sin g cos Dx� � puncorr;

g � qh; cos Dx � 1

2q
: �22�

Moli�ere's theory [14,22] and approximate expressions for hzi; hz2i were then used to calculate the free pa-
rameters pcorr; puncorr and q. Because their approach is a priori based on the small-angle approximation, we
will also use the small-angle approximation to analyze this algorithm. To do so, we expand the expressions
for the various moments in a power series of h2 up to O�h4� and use

hh2i � 2�12ÿ c�
9

nÿ 12ÿ c2

9
n2 � � � � ;

hh4i � 8�3ÿ c�
3

n� 4�c2 ÿ 3�
3

n2 � � � � ; �23�
to relate hh2i and hh4i to the quantities n and c used in the present paper. Note that in the limit of in®nitely
high energies where c! 3, we have hh2i � 2nÿ n2=3 and hh4i � 8n2, i.e. our n corresponds to their X di-
vided by two. We can therefore expand pcorr and puncorr in a power series of n, in analogy to their expansion
in X :

pcorr � s�p0c � p1cn� p2cn
2�;

puncorr � s�p0u � p1un� p2un
2�: �24�

With

q � 1���
3
p � q1n �25�

and the exact hzi and hz2i we obtain for the zeroth and ®rst order coe�cients

p0c �
���
3
p
ÿ 1

p0u � 2ÿ
���
3
p

p1u � 6� 7c

27
���
3
p ÿ 3� 2c

18
ÿ p1c: �26�

Note that these expressions di�er signi®cantly from the zeroth and ®rst order coe�cients found in Ref. [20].
We then have for the correlation moments

hz cos hiFLUKA � s 1ÿ 27ÿ 4
���
3
p �3ÿ c�
18

n� � � �
 !

;

hxvx � yvyiFLUKA � s
30ÿ cÿ 6

���
3
p �3ÿ c�

27
n� � � �

 !
; �27�

i.e. they agree with the exact ones only in the limit c! 3. If we consider this limit and go to O�n2�, we ob-
tain from hzi

p2u � 18ÿ 17
���
3
p

54
� p1c

3
ÿ p2c � 2q1 �28�
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which leads to an over-estimated hz2i:

lim
c!3
hz2iFLUKA � s2 1ÿ n� 11

12
n2 � � � �

� �
�29�

independent of p1c; p2c and q1. For c < 3 it is possible to simultaneously describe hzi and hz2i, however, the
resulting expressions for pic and piu contain factors of the form 3ÿ c in the denominator, i.e. they diverge at
high energies.

It is possible to take another subset of moments to ®x the parameters pcorr; puncorr and q. If we use for
instance the ®rst order spatial moments and their correlations with the multiple scattering angle we get

q � 1

2
; p0c � 1; p0u � 0; p1u � ÿp1c �30�

resulting in

hz2iFLUKA � s2 1ÿ 3� c
9

n� � � �
� �

;

hx2 � y2iFLUKA � s2 c
6

n� � � �
� �

: �31�
We see that the second order longitudinal moment agrees with the exact one in the limit c! 3. The second
order transverse moment is under-estimated for every possible value of c. By going to O�n2� we ®nd again
factors of the form 3ÿ c in the denominators of the various expressions for pic and piu.

The above analysis suggests that it is not possible to describe simultaneously the ®rst and second order
spatial moments and their correlations with the multiple scattering angle using the approach proposed by
Ferrari et al.

3.5. PENELOPE

Baro et al. [23] adopted a slightly modi®ed version of the algorithm proposed by Berger in their electron
transport Monte-Carlo code called PENELOPE [24]:

x � sg sin h cos /;

y � sg sin h sin /;

z � s�1ÿ g� g cos h�; �32�
where g is a uniformly distributed random number between zero and unity. This modi®cation leaves the
®rst order moments unchanged but improves the second order moments:

hz2iPENELOPE ÿ hz2i
hz2i � s2 1� hcos hi � hcos2hi

3hz2i ÿ 1 � 3� 2c�cÿ 1�
36

n2 � � � � ;

hx2 � y2iPENELOPE ÿ hx2 � y2i
hx2 � y2i � s2h sin2hi

3hx2 � y2i ÿ 1 � ÿ cÿ 1

4
n� 3ÿ 12c� 13c2

240
n2 � � � � �33�

Another advantage is that the ®nal position of the particle is no longer bounded in the range z > 0 but can
be anywhere in a sphere with a radius s. The overall accuracy of the algorithm is O�n�.

3.6. LLCA

Recently Kawrakow [25] developed an electron transport algorithm called LLCA (from Longitudinal-
and-Lateral-Correlation-Algorithm) which was shown to produce more step size stable results than
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PRESTA. In this algorithm the ®nal particle position is correlated to the scattering angle and calculated
according to:

x � �t sin w cos �/� ~/�;
y � �t sin w sin�/� ~/�;
z � �t cos w;

cos w � 1ÿ a�1ÿ cos h�: �34�
Here, ~/ is the angle between the transverse components of the vectors of motion and position, respectively.
This angle is sampled from a distribution pre-calculated by a single scattering Monte Carlo (SSMC). �t is a
short hand notation for

����������������������������hx2 � y2 � z2ip
and a is taken such that hzi is described exactly, i.e.

a � 1ÿ hzi=�t
1ÿ hcos hi �

1

3
1� n

4
� n2

360
� � � �

� �
: �35�

It is clear that LLCA automatically describes hzi and the combined second order moment hx2 � y2 � z2i.
The correlation hxvx � yvyi cannot be calculated analytically because hcos ~/i is known only numerically.
For the longitudinal correlation function we get from Eq. (34)

hzvziLLCA ÿ hzvzi
hzvzi � �t �1ÿ a�hcos hi � ahcos2hi� �

hzvzi ÿ 1 � ÿ 3ÿ c
9

n� �cÿ 3��cÿ 2�
27

n2 � � � � ; �36�

that is, this function is over-estimated and correct only to O�n�. However, at high energies (c! 3), the lon-
gitudinal correlation function is correct up to O�n3�.

For the second order moments we get

hz2iLLCA ÿ hz2i
hz2i �

�t2 �1ÿ a�2 � 2a�1ÿ a�hcoshi � a2hcos2hi
h i

hz2i ÿ 1 � ÿ4
3ÿ c

27
n� 81ÿ 57c� 7c2

486
n2 � � � � ;

hx2 � y2iLLCA ÿ hx2 � y2i
hx2 � y2i � �t2a 2ÿ aÿ 2�1ÿ a�hcos hi ÿ ahcos2hi� �

hx2 � y2i ÿ 1 � 2
3ÿ c

3c
ÿ 33ÿ 23c� 3c2

36c
n2 � � � � ;

�37�
i.e., hz2i is under-estimated and hx2 � y2i is over-predicted. For c! 3 these moments are correct to O�n2�.

3.7. Graphical representation

We conclude the analysis of presently available electron transport algorithms with a set of graphs de-
picting the moments analyzed in Sections 3.2±3.6. FLUKA's algorithm [20] is not included in the compar-
isons due to the fact that the various coe�cients derived in this paper di�er signi®cantly from those
derived in [20]. Results from the new algorithm presented in Section 4.4 are shown in order to demon-
strate the strong improvement compared to the algorithms analyzed in Sections 3.2±3.6. In all cases the
ratio of the moment resulting from the various algorithms to the exact moment, calculated from
Eq. (2), is shown as a function of n. The maximum value of 0.5 for n chosen to plot the data roughly cor-
responds to an average multiple scattering angle of one radian and is considered to be the maximum value
acceptable in a condensed history simulation of electron transport. Results for a simple condensed history
algorithm (see Section 3.1) are not included in the ®gures in order to avoid a substantial expansion of the
plot ranges which would make much more di�cult or impossible to see the di�erences between the various
algorithms.
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In Fig. 2 the results for hzi are depicted. Because PRESTA and LLCA are constructed from the require-
ment that this moment is exactly reproduced they are not included in this ®gure. The algorithms of PE-
NELOPE's and ETRAN/TLC produce identical results and over-estimate the average transport distance
in the initial direction of motion by about 2% for n � 0:5. The maximum deviation from the exact answer
for the new algorithm is 0.002%.

In Fig. 3 the results for hzvzi, the average correlation between the longitudinal component of the ®nal
direction of motion and the transport distance in the initial direction of motion, are shown for two di�erent
values of c. The dependence of this and also all other moments on c is rather weak and therefore it is suf-
®cient to present results only for the two extreme situations: c! 3 (in®nitely high energies) and c! 1
(very low energies). Due to the fact that in PRESTA the electrons are always transported by hzi, indepen-
dently of the sampled multiple scattering angle, this correlation function is under-estimated for all energies,
the maximum deviation being 30% at n � 0:5 and c � 1. ETRAN/TLC and PENELOPE produce again
identical results hzvzi being over-predicted at high energies and under-estimated at low energies. LLCA
agrees with the exact answer within 0.1% at high energies but under-estimates the longitudinal correlation
by 10% at n � 0:5 and c � 1. The new algorithm reproduces the exact expression to better than 0.05% for
all energies.

Results for the transverse correlation function hxvx � yvyi are shown in Fig. 4. LLCA is not included in
this comparison for the reasons described in Section 3.6. PENELOPE and ETRAN/TLC are identical
again. Note that PRESTA results will be lower than shown for n6 0:295 (see Section 3.2).

Results for the second longitudinal moment hz2i are represented in Fig. 5. PRESTA shows again the
strongest variation with step size. From the moments studied, hz2i is the moment for which we observe
the maximum deviation between the new algorithm described in Section 4.4 and the exact answer. This
maximum deviation is achieved for n � 0:5 and c � 3 and is 0.3%.

Finally we show in Fig. 6 the results for the average lateral transport hx2 � y2i. ETRAN/TLC is not in-
cluded in the comparisons because it reproduces the correct answer, provided Eq. (21) is used to calculate
the straggling functions dx and dy (see Section 3.3). Note also that PRESTA results will be lower than
shown for n6 0:295 (see Section 3.2).

Fig. 2. The ratio of the average transport distance in the initial direction of motion hzi resulting from various algorithms to the exact

expression given in Eq. (2). Both PRESTA and LLCA force this moment to be exact (see Sections 3.2 and 3.6) and are therefore not

included in this ®gure.
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4. New algorithms

In this section we will discuss ways of decreasing the order of the truncation error due to the use of the
condensed history technique. We start with a general discussion in Section 4.1, analyze di�erent ways of
step subdivisions in Sections 4.2 and 4.3 and present the best solution we were able to ®nd in Section 4.4.

4.1. General discussion

Larsen [2] studied the condensed history technique in an operator formalism and showed that this tech-
nique gets the correct answer in the limit of small step sizes providing that the exact theory is employed to
describe multiple scattering. We will use Larsen's analysis to show that the sampling of at least two multiple
scattering angles per electron step is required in order to improve the convergence of the condensed history
technique to one additional order of the step length.

We can write Eq. (1) in the following form:

o
os

f �s;~x;~v� � ÿ�A� B�f �s;~x;~v�; �38�

where A is the ``streaming operator'',

Af �s;~x;~v� �~v~rf �s;~x;~v�; �39�

Fig. 3. The ratio, resulting from various algorithms to the exact expression given in Eq. (2), of the average correlation between the

transport distance in the initial direction of motion and the longitudinal component of the ®nal direction hzvzi.
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Fig. 4. The ratio, resulting from various algorithms to the exact expression given in Eq. (2), of the average correlation between lateral

transport and the transverse component of the ®nal direction, hxvx � yvyi. Note that in reality PRESTA's results will be lower than

shown for n6 0:295 (see Section 3.2).

Fig. 5. The ratio of the second longitudinal moment hz2i resulting from various algorithms to the exact expression given in Eq. (2).
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and B the ``angular scattering'' operator,

Bf �s;~x;~v� � N
Z

d~v f �~x;~v0 ; s� ÿ f �~x;~v; s�
h i

r�~v �~v0 �: �40�

Eq. (38) has the formal solution

f �s;~x; ~X� � exp ÿ �A� B�s� �f �0;~x; ~X� �41�
which, expanded in a power series of s, reads

f �s;~x;~v� � 1ÿ �A� B�s� A2 � AB� BA� B2

2
s2 ÿ A3 � A2B� AB2 � ABA� BAB� BA2 � B2A� B3

6
s3

�
� � � �

�
f �0;~x;~v�: �42�

Berger's algorithm, for instance, corresponds to

f �s;~x;~v� � exp ÿ As
2

� �
exp�ÿBs� exp ÿ As

2

� �
f �0;~x;~v� �43�

(i.e. transport the particle by s=2, sample a scattering angle from the distribution resulting from the whole
step and rotate, and transport again by s=2). Expanded in a power series of s, the above equation gives

Fig. 6. The ratio of the second transverse moment hx2 � y2i resulting from various algorithms to the exact expression given in Eq. (2).

Note that in reality PRESTA's results will be lower than shown for n6 0:295 (see Section 3.2).
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f �s;~x;~v� � 1ÿ �A� B�s� A2 � AB� BA� B2

2
s2ÿ

�
A3

6
� A2B

8
� AB2

4
� ABA

4
� B2A

4
� BA2

8
� B3

6

� �
s3

� � � �
�

f �0;~x;~v�: �44�

In addition to the wrong coe�cients for A2B;AB2;ABA and B2A we are missing the term BAB. To get such a
term, two or more factors of the form exp�biBs� are required. In other words, at least two multiple scat-
tering angles per step have to be sampled in order to improve the convergence of the condensed history
technique by one additional order of s.

Before we conclude this section it is interesting to note that the improvement achieved by the modi®ca-
tion of Berger's algorithm used in PENELOPE can be observed also in Larsen's operator formalism. We
have namelyZ1

0

dg exp�ÿgAs� exp�ÿBs� exp�ÿ�1ÿ g�As� �1ÿ �A� B�s� A2 � AB� BA� B2

2
s2 ÿ A3

6
� A2B

6
� AB2

4

�

�ABA
6
� B2A

4
� BA2

6
� B3

6

�
s3 � � � � ;

�45�
i.e. now only the coe�cients of AB2 and B2A are wrong.

4.2. Continuous integration

In the last section we have seen that at least two multiple scattering angles per step are required to obtain
additional improvement of the condensed history technique. In general, there are two di�erent ways to sub-
divide the step into two or more sub-steps: (i) use a ®xed intermediate point and (ii) sample the intermediate
point from a given distribution. In this subsection we will discuss the second possibility.

First of all, we note that we can rewrite Eq. (2) in the following manner:

hzi � s
Z1

0

dghcos h�gs�i

hzvzi � s
Z1

0

dghcos2h�gs�ihcos h��1ÿ g�s�i

hxvx � yvyi � s
Z1

0

d gh sin2h�gs�ihcos h��1ÿ g�s�i

hz2i � s2

Z1
0

2g1 dg1

Z1
0

dg2hcos2h�g1g2s�ik1�g1�1ÿ g2�s�

hx2 � y2i � s2

Z1
0

2g1dg1

Z1
0

dg2h sin2h�g1g2s�ik1�g1�1ÿ g2�s�:

�46�
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Here, hcos h�gs�i, for instance, means averaging the cosine of the scattering angle over the multiple scat-
tering distribution evaluated for a step length of gs. It is easy to construct a Monte Carlo algorithm that
satis®es the ®rst three equations:

A1 Sample a random number g uniformly distributed between zero and one.
A2 Sample h1 from the multiple scattering distribution f �gs; cos h� and /1 uniformly distributed be-
tween zero and 2p.
A3 Sample h2 from the multiple scattering distribution f ��1ÿ g�s; cos h� and /2 uniformly distributed
between zero and 2p.
A4 Take the ®nal scattering angle and co-ordinates to be:

vz � cos h � cos h1 cos h2 ÿ sin h1 sin h2 cos /2;

vx � sin h cos / � sin h2�cos h1 cos /1 cos /2 ÿ sin /1 sin /2� � cos h2 sin h1 cos /1;

vy � sin h sin / � sin h2�cos h1 sin /1 cos /2 � cos /1 sin /2� � cos h2 sin h1 sin /1;

z � s cos h1;

x � s sin h1 cos /1;

y � s sin h1 sin /1:

�47�

It can be shown that this procedure satis®es also higher order correlation functions hzvn
z i and hxvn

xi. Unfor-
tunately, the second order spatial moments hz2i and hx2 � y2i are over-estimated. We have x2 � y2 � z2 � s2

(i.e. the particle is always on a sphere with the radius s, whereas in reality the particle can be somewhere
within this sphere) and also:

hz2i � s2

Z1
0

dghcos2h�gs�i � s2 1ÿ c
3

n� c2

9
n2 � � � �

� �
;

hx2 � y2i � s2

Z1
0

dgh sin2h�gs�i � s2 c
3

nÿ c2

9
n2 � � � �

� �
:

�48�

We can try to improve the situation by undertaking one additional subdivision. Then three scattering angles
have to be sampled from f �g1g2s; cos h�; f �g1�1ÿ g2�s; cos h� and f ��1ÿ g1�s; cos h�, respectively. Here, g1

is chosen from 2g1dg1 and g2 from dg2. In order to satisfy the ®rst three equations of (46) the co-ordinates
have to be calculated according to

z � s
2
�cos h1 � cos h1 cos h2 ÿ sin h1 sin h2 cos /2�;

x � s
2
� sin h1 cos /1 � sin h2�cos h1 sin /1 cos /2 ÿ cos /1 sin /2� � cos h2 sin h1 cos /1�;

y � s
2
� sin h1 sin /1 � sin h2�cos h1 sin /1 cos /2 � cos /1 sin /2� � cos h2 sin h1 sin /1�:

�49�

With this we have for the second order moments

hz2i � s2

4

Z1
0

2g1 dg1

Z1
0

dg2 hcos2h�g1g2s�i � hcos2h�g1s�i� �2hcos2h�g1g2s�ihcos h�g1�1ÿ g2�s�i
�

� s2 1ÿ 3� 5c
9

n� 3� 2c� 6c2

72
n2 � � � �

� �
;
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hx2 � y2i � s2

4

Z1
0

2g1 dg1

Z1
0

dg2 h sin2h�g1g2s�i � h sin2h�g1s�i� �2h sin2h�g1g2s�ihcos h�g1�1ÿ g2�s�i
�

� s2 5c
18

nÿ c�1� 3c�
36

n2 � � � �
� �

;

�50�

i.e. they are again over-estimated. If we calculate the di�erence between the exact Lewis' moments and the
moments resulting from one or two subdivisions, hz2; x2 � y2i1 or hz2; x2 � y2i2, we obtain

hz2i1 ÿ hz2i � 3ÿ c
9

n� � � � ; hx2 � y2i1 ÿ hx2 � y2i � c
9

n� � � � ;

hz2i2 ÿ hz2i � 3ÿ c
18

n� � � � ; hx2 � y2i2 ÿ hx2 � y2i � c
18

n� � � � :
�51�

The above procedure can be generalized to N subdivisions of the electron step. To satisfy the ®rst order
spatial moments and their correlations with the ®nal direction of motion we have to calculate the ®nal
co-ordinates according to

~x � s
N

XN

i�1

~Xi �52�

where ~Xi is the direction of motion after i subsequent scattering with the scattering angles h1; . . . ; hi sampled
from the multiple scattering distributions f �g1g2 . . . gN s; cos h�; f �g2 . . . gN s; cos h�; . . . ; f �gi . . . gN s; cos h�.
Here, g1; g2; . . . ; gN are random numbers distributed according to Ng�Nÿ1�

1 dg1, �N ÿ 1�g�Nÿ2�
2 dg2; . . . ; dgN .

The di�erence between the second order moments resulting from N subdivisions and the exact ones turns
out to be

hz2iN ÿ hz2i � 3ÿ c
9N

n� � � � ; hx2 � y2iN ÿ hx2 � y2i � c
9N

n� � � � �53�

Indeed, by going to very big N 's the di�erence goes to zero as 1=N (this is true also for higher order terms in
n). However, this is equivalent to a SSMC, i.e. there is no gain of CPU time.

We tried to construct a Monte Carlo algorithm starting from the second order moments. Looking at the
last two equations of Eq. (46) we see that the following procedure will give an exact description of hz2i and
hx2 � y2i:

B1 Sample a random number g1 from 2g1dg1 and a random number g2 from dg2, both between zero
and unity.
B2 Sample h1 from f �g1g2s; cos h� and h2 from f ��1ÿ g1g2�s; cos h�.
B3 Calculate the ®nal direction of motion from h1;/1 and h2;/2 (see Eq. (47)), and the ®nal co-ordi-
nates according to:

z � s
������������������������������
k1�g1�1ÿ g2�s�

p
cos h1;

x � s
������������������������������
k1�g1�1ÿ g2�s�

p
sin h1 cos /1;

y � s
������������������������������
k1�g1�1ÿ g2�s�

p
sin h1 sin /1:

�54�

This algorithm will give for the ®rst order moments and their correlations to the ®nal scattering angle
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hzi � s
Z1

0

2g1 dg1

Z1
0

dg2

������������������������������
k1�g1�1ÿ g2�s�

p
hcos h�g1g2s�i � s 1ÿ n

2
� 7n2

48
� � � �

� �
;

hz cos hi � s
Z1

0

2g1 dg1

Z1
0

dg2

������������������������������
k1�g1�1ÿ g2�s�

p
hcos2h�g1g2s�ihcos h��1ÿ g1g2�s�i

� s 1ÿ 15� 4c
18

n� 57� 20c� 8c2

144
n2 � � � �

� �
;

hx sin h cos /i � s
2

Z1
0

2g1 dg1

Z1
0

dg2

������������������������������
k1�g1�1ÿ g2�s�

p
h sin2h�g1g2s�ihcos h��1ÿ g1g2�s�i

� s
c
9

nÿ c�5� 2c�
72

n2 � � � �
� �

;

�55�

i.e. they are all under-estimated. One could think of replacing
������������������������������
k1�g1�1ÿ g2�s�

p
in Eq. (54) by a distributed

quantity �t with h�t2i � k1�g1�1ÿ g2�s�. However, in this case h�ti < ������������������������������
k1�g1�1ÿ g2�s�

p
and the under-predic-

tion of the ®rst order moments will be even stronger.

4.3. N-point integration

To perform the integration in the ®rst Eq. of (46), for instance, one also could use N -point numerical
integration. As an example, Cotes formula,

hzi � s
1

6
� 2

3
hcos h�s=2�i � 1

6
hcos h�s�i

� �
; �56�

suggests the following relation between scattering angles and ®nal co-ordinates:

z � s
6

1� 4 cos h1 � cos h� �;

x � s
6

4 sin h1 cos /1 � sin h cos /� �;

y � s
6

4 sin h1 sin /1 � sin h cos /� �;

�57�

where h1 is the angle sampled from f �s=2; cos h� and h the ®nal scattering angle resulting from h1;/1 and
h2;/2 (h2 is the multiple scattering angle for the substep s=2 . . . s). This procedure describes hzi, hzvn

z i and
hxvn

xi up to O�n4�. Looking again at the second order moments, we get:

hz2i � s2

36
1� 16hcos2h�s=2�i � hcos2h�s�i � 8hcos h�s=2�i � 2hcos h�s�i � 8hcos2h�s=2�ihcos h�s=2�i� �

� s2 1ÿ 15� 13c
54

n� 9� 4c� 7c2

108
n2 � � � �

� �
;

hx2 � y2i � s2

36
16h sin2h�s=2�i � h sin2h�s�i � 8h sin2h�s=2�ihcos h�s=2�i� � � s2 13c

54
nÿ c�4� 7c�

108
n2 � � � �

� �
�58�

they are over-estimated again. One could think that using a generalized formula,
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~x � s
XN

i�0

ai
~X�bis�; N P 2; �59�

there will be enough freedom to choose the coe�cients ai and the intermediate points bis such that all ®rst
and second order moments are reproduced. However, it turns out that after using the ®rst three equations
of Eq. (46) to ®x three of the free parameters, there is no real solution of the equation

XN

i�0

ai
~X�bis�

 !2

z

� hz2i! �60�

The best we can do is to minimize the di�erence between the resulting second order moments and the exact
ones. The minimization has a unique solution

bi �
i
N
; a0 � aN � 1

2�N � 1� ; a1 � a2 � . . . � aNÿ1 � N
N 2 ÿ 1

: �61�

Using these values for the intermediate points and the coe�cients, we get for the di�erence between the
second order spatial moments resulting from Eq. (59) and the exact second order moments:

hz2iN ÿ hz2i � s2 3ÿ c
18�N 2 ÿ 1� n� � � � ;

hx2 � y2iN ÿ hx2 � y2i � s2 c
18�N 2 ÿ 1� n� � � � �62�

It is remarkable to observe that the N -point integration procedure shows a faster convergence then the con-
tinuous integration discussed in the last subsection!

Larsen [2] stated that the process of ``mixing'' the order of the streaming and scattering processes over
several steps can clearly be generalized to yield higher order truncation error of the condensed history tech-
nique. We did not ®nd a general proof for or against this statement, however, the discussion of the last two
subsections seems to indicate that there is no possible representation of the operator exp�ÿ�A� B�s� of the
form

Q
exp�ÿaiPss�, where Pi is either A or B and the alpha's are numbers with

P
ai � 1, which gives an

O�s4� error. Thus, some more elaborate methods are required to improve the convergence of the condensed
history technique.

4.4. The best solution found

Let us consider a step subdivision with one intermediate point at s=2 and scattering angles h1;/1 and
h2;/2. If we relate the ®nal co-ordinates to these scattering angles according to:

z � s
1

6
� 1

3
� d

� �
cos h1 � 1

3
ÿ d

� �
cos h2 � 1

6
cos h

� �
;

x � s
1

3
� d

� �
sin h1 cos /1 �

1

3
ÿ d

� �
sin h2�cos /1 cos /2 ÿ cos h1 sin /1 sin /2� �

1

6
sin h cos /

� �
;

y � s
1

3
� d

� �
sin h1 sin /1 �

1

3
ÿ d

� �
sin h2� sin /1 cos /2 � cos h1 cos /1 sin /2� �

1

6
sin h sin /

� �
;

�63�
the ®rst order moments and their correlations with the ®nal scattering angle h;/ will be correct up to O�n4�.
The remaining free parameter d can be ®xed from one of the second order moments. If we use for instance
hx2 � y2i we obtain for d
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d � 1

2
���
3
p 1ÿ 6ÿ �5ÿ 2

���
3
p �c

36
n� � � �

 !
�64�

reproducing in this way hx2 � y2i with an O�n3� error. With this d we get for the second order longitudinal
moment

hz2iA � s2 1ÿ 3� 2c
9

n� 36� �66ÿ 12
���
3
p �c� �29� 4

���
3
p �c2

648
n2 � � � �

 !
�65�

i.e., hz2i is automatically correct to O�n�. The subscript A indicates moments resulting from the proposed
algorithm. It is worth noticing that for n6 1=2 (this is the maximum step length considered acceptable
in a condensed history simulation of electron transport and also the maximum step size for which a recently
developed exact multiple scattering theory has been implemented [26]) the maximum di�erence between hz2i
resulting from the proposed algorithm and the exact one is below 0.3%, i.e. of the same order as numerical
uncertainties due to interpolations during the sampling of the multiple scattering angles. To see this, let us
consider two extreme situations: (i) transport at very low energies where c! 1 and (ii) transport at very
high energies where

c � 3ÿ f; f � 3hh4i
4hh2i � 1: �66�

We have then:

case �i�: hz2iA ÿ hz2i
hz2i � ÿ0:0136n2 � � � � ;

case �ii�: hz2iA ÿ hz2i
hz2i � �0:0189ÿ 0:0135f�n2 � � � � �67�

There is no way of representing Eq. (63) as a series of subsequent particle transport and scattering pro-
cesses. Therefore, we cannot use Larsen's operator formalism to study the truncation error of this algo-
rithm. From the moments studied above we can conclude that the truncation error is O�s4�. 3 In
principle it is possible to study arbitrary high order moments using Lewis' method. However, the resulting
expressions become more and more complicated with increasing order of the moments. So, we could not
®nd a general proof that the truncation error of the algorithm presented above is O�s4�. It is worth giving
the next few higher order moments. We have

hz2vzi � 2

3

Zs
0

ds0k1�sÿ s0�
Zs0

0

ds00 k1�s00� � 2

5
k2�s0 ÿ s00��2k1�s00� � 3k3�s00��

� �

� s2 1ÿ 2�12� 5c� 3c3�
45

n� 33� 14c� 10c2 � 6c3�1� c� c3�
180

n2 � � � �
� �

;

�68�

where we have de®ned c3 � j3=j1. The proposed algorithm yields

3 To be consistent with Larsen's de®nition of truncation error [2] we have to consider absolute instead of relative errors. First order

moments have therefore a truncation error proportional to sn4 and if we remember that n / s, it is clear that the truncation error is

O�s5�. The truncation error of second order moments is proportional to s2n2 (longitudinal) or s2n3 (transversal) and thus O�s4�. The

truncation error of fourth or higher order moments is automatically O�s4� or higher as such moments are proportional to at least s4.
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hz2vziA � s2 1ÿ 2�12� 5c� 3c3�
45

n

�
� 801� c�48

���
3
p ÿ 72� � c2�150ÿ 40

���
3
p � � c3�54� c�66� 12

���
3
p � � 9c3�

3240
n2 � � � �

!
: �69�

We observe again an O�n� agreement between both expressions. Although the second order terms look
completely di�erent, they have almost the same value. The maximum deviation between both is well below
1% for n6 1=2. To show this, we consider again the two extreme situations discussed above and
obtain:

case �i�: hz2vziA ÿ hz2vzi
hz2vzi � 0:02n2 � � � � ;

case �ii�: hz2vziA ÿ hz2vzi
hz2vzi � �0:0139ÿ 0:0321f�n2 � � � � �70�

In case (ii) we have made use of c3 � 6ÿ 5f. Further we have

hz2v2
z i �

2

9

Zs
0

ds0 1� 4

5
k2�sÿ s0�

� �Zs0
0

ds00k1�s0 ÿ s00� 1� 2k2�s00�
� �

� 12

105

Zs
0

ds0k2�sÿ s0�
Zs0

0

ds00k3�s0 ÿ s00� 3k2�s00� � 4k4�s00�
� � � s2 1ÿ 63� 130c� 42c3 � 24c4

315
n

�

� 189� 210c� 500c2 � 180cc3 � 126c2
3 � 72c4�c� c3 � c4�

3780
n2 � � � �

�
�71�

with c4 � j4=j1. From Eq. (63) we get

hz2v2
z iA � s2 1ÿ 63� 130c� 42c3 � 24c4

315
n� � � �

� �
�72�

(we don't show here the second order term because of its length). Comparing again for case (i) and (ii) we
have:

case �i�: hz2v2
z iA ÿ hz2v2

z i
hz2v2

z i
� ÿ0:0057n2 � � � � ;

case �ii�: hz2v2
z iA ÿ hz2v2

z i
hz2v2

z i
� �0:0139ÿ 0:0506f�n2 � � � � �73�

We conclude the comparison of moments with the expressions for the third order longitudinal moment:

hz3i � 2

Zs
0

ds0
Zs0

0

ds00k1�s0 ÿ s00�
Zs00

0

ds000 k1�s000� � 2

5
k2�s00 ÿ s000��2k1�s000� � 3k3�s000��

� �

� s2 1ÿ 12� 5c� 3c3

30
n� 33� 14c� 10c2 � 6c3�1� c� c3�

300
n2 � � � �

� �
:

�74�

The proposed algorithm again yield the exact moment to O�n�. Using the two extreme cases to compare the
second order terms we have:
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case �i�: hz3iA ÿ hz3i
hz3i � 0:02n2 � � � � ;

case �ii�: hz3iA ÿ hz3i
hz3i � 0:0194fn2 � � � � �75�

Eq. (63) has one obvious disadvantage: the ®nal longitudinal position z is bounded to the interval
ÿ5=6s6 z6 s whereas in reality z can take values between ÿs and s. To avoid this problem, the ®xed co-
e�cients in Eq. (63) can be replaced by distributed quantities:

z � s g0 � g1 cos h1 � g2 cos h2 � �1ÿ g0 ÿ g1 ÿ g2� cos h� �;
x � s g1 sin h1 cos /1 � g2 sin h2�cos /1 cos /2 ÿ cos h1 sin /1 sin /2� � �1ÿ g0 ÿ g1 ÿ g2� sin h cos /� �;
y � s g1 sin h1 sin /1 � g2 sin h2� sin /1 cos /2 � cos h1 cos /1 sin /2� � �1ÿ g0 ÿ g1 ÿ g2� sin h sin /� �:

�76�
The coe�cients gi must then satisfy

hg0i �
1

6
; hg1 � g2i �

2

3
; �77�

in order to reproduce the ®rst order spatial moments to O�n4�. From the O�n� term of the second order
moments we derive the following condition

h�g0 � g1�2i � h�g0 � g2�2i �
2

3
� O�n�: �78�

This procedure can be continued to higher order terms in n, however, the expressions become more and
more complicated and will not be given here for the sake of brevity.

There are many di�erent distributions in the variables gi which simultaneously satisfy Eqs. (77) and (78).
This gives us one additional degree of freedom to optimize not only the description of the spatial moments
but also the resulting spatial distribution. Several distributions have been investigated until we decided to
use the following form of the coe�cients:

g0 � �1ÿ g�=2;

g1 � gd;

g2 � g�1ÿ d�; �79�
where g is sampled from 2g dg in the interval 06 g6 1. The parameter d is given now by

d � 1

2
�

���
6
p

6
ÿ 1

4
���
6
p ÿ c

4ÿ ���
6
p

24
���
6
p

 !
n� � �80�

5. An example

In this section we will present a simple example which demonstrates that the proposed lateral correlation
algorithm approximates very closely the exact solution. A more detailed study of step size stability of the
new algorithm will be presented elsewhere.

We consider electrons in an in®nite homogeneous phantom starting at the origin and moving initially in
z-direction. Not to obscure the results, all physical processes except elastic scattering are ``turned o�''. Sin-
gle elastic scattering is described for simplicity by the screened Rutherford cross section with a screening
parameter va. For this single scattering cross section an exact multiple scattering theory (without a small
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angle approximation) applicable for all step sizes has been recently found [26]. We will be interested in the
probability distributions Fz�t; z� to ®nd the electron at longitudinal position z after traveling a curved path
length of t and Fr�t; r� to ®nd the electron at lateral displacement r. To characterize the correlation between
®nal position and ®nal direction of motion, we de®ne the variable y,

y �
���������

1

2kv2
a

s ��������������������
1ÿ cos h
p

ÿ
�����������
1ÿ z

t

r� �
; �81�

k being the number of mean free paths corresponding to path length t, and calculate the probability
distribution Fy�t; y� to ®nd the electron having a correlation y. 4 The above distributions are calculated
by sampling the ®nal co-ordinates according to the algorithm presented in the last section and compared
to a SSMC. To demonstrate the improvement compared to previously proposed algorithms, distribu-
tions resulting from them are also included. The new multiple scattering theory described in [26] has
been used in all condensed history calculations to isolate the di�erences to geometrical transport meth-
ods only. Also, to make the comparison ``fair'', the other algorithms are allowed to take the transport
distance in two steps. (since the new algorithm samples two multiple scattering angles per step and this
is the most computationally intensive part of an electron transport algorithm, approximately the same
CPU time is required for all condensed history calculations). LLCA results are not included in the com-
parisons as they have been discussed in Ref. [25] and also because the LLCA algorithm has not been
implemented in a general purpose Monte Carlo code. FLUKA's algorithm [20] is not included as well
due to the fact that the various coe�cients derived in this paper di�er signi®cantly from those derived
in [20].

In Fig. 7 we show the longitudinal distribution Fz�z; t� for 128 keV electrons in gold and a path-length t
corresponding to approximately 10 mean free paths and n � 0:5. Circles with error bars represent the single
scattering result, line with dots corresponds to PRESTA, dashed line with circles to ITS/MCNP, long
dashed line to the algorithm proposed by Berger and implemented by Seltzer as TLC, dashed line to PE-
NELOPE and the full line to the algorithm proposed in this paper. Only our algorithm and PENELOPE
``®ll-in'' the backscatter part of the distribution, PENELOPE's algorithm approaching even better the sin-
gle scattering result in the extreme backward direction. However, in the more probable forward part of the
distribution, our algorithm reproduces almost perfectly the result of the analog simulation. This is demon-
strated in Fig. 8 where the same distribution as in Fig. 7 is shown but on a linear scale and only in the range
z=t > 0:6 to allow for a better resolution of the various distributions.

In Fig. 9 the radial distribution for the same situation and with the same symbols as in the previous
®gure is depicted. The singularity in the PRESTA result was reported in Ref. [25]. Berger's algorithm
has a similar singular behavior after 1 sub-step, however, due to longitudinal straggling the singularity
is not so pronounced after two sub-steps. The distribution resulting from ITS/MCNP's algorithm is not
shown because it does not ®t in the plot scale chosen. Again, PENELOPE and the new algorithm are very
close to the analog simulation, the new algorithm slightly outperforming PENELOPE in the region
r=t! 1.

The distribution in the position-direction correlation variable y is shown in Fig. 10. Here, the agreement
between the analog simulation and the new algorithm is excellent. PRESTA and ITS/MCNP are again very
far from the correct answer. PENELOPE and TLC show almost identical behavior being not too far from
the single scattering result.

4 It has been found empirically that Fy�t; y� is nearly independent on the path-length t and screening parameter va.
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Fig. 7. The longitudinal distribution Fz�t; z� of 128 keV electrons in gold starting at the origin and moving initially in the positive z
direction after a path-length t corresponding to 10 elastic collisions (n � 0:5). Points with error bars correspond to the single scattering

calculation, line with dots to PRESTA, dashed line with circles to ITS/MCNP, long dashed line to ETRAN/TLC, short dashed line to

PENELOPE and the full line to the algorithm proposed in Section 4.4.

Fig. 8. The same as in Fig. 7 but plotted on a linear scale in the range z=t > 0:6 only to better visualize the various distributions in the

forward region.
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6. Summary

In this paper we have studied available electron transport algorithms in terms of the moments of the
spatial distribution and the average correlations between the electron's direction of motion and co-ordi-
nates. This study is possible, for arbitrary moments and correlations, due to a generalization of Lewis' so-
lution of the transport equation given in the Appendix.

Fig. 9. Radial distribution for the same situation as in Fig. 7.

Fig. 10. The distribution in the position-direction correlation variable y (see Eq. (81)) for the same situation as in Fig. 7.
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Our analysis shows that electron transport algorithms currently in use have O�Ds� or O�Ds2� truncation
errors due to the condensed history technique. This observation is in agreement with Larsen's operator for-
malism study. The analysis of di�erent ways of electron-step subdivisions indicates that there is no easy way
of improving the convergence of the condensed history technique by simply mixing di�erent transport and
scattering strategies.

The new algorithm proposed in Section 4.4 is correct, for all moments studied, to O�Ds4� or better.
Therefore, the truncation error of this algorithm after 1=Ds steps will be of the order of Ds3, i.e. an order
of magnitude better than the truncation error of previously proposed algorithms.

Finally, it is demonstrated in Section 5 that the new algorithm not only reproduces average quantities
but approximates also very well the distributions in longitudinal and transverse direction resulting from
the multiple scattering of the electrons.
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Appendix A. Generalization of Lewis' solution of the electron transport problem

We will solve Eq. (1) under the boundary condition f �~x;~v; 0� � d�~x�d�vx�d�vy�d�1ÿ vz�, corresponding to
a single particle, incident at the origin, and moving in z direction. Following Lewis [3] we expand the so-
lution in normalized spherical harmonies in~v,

f �~x;~v; s� �
X

lm

flm�~x; s�Ylm�~v�; �A:1�

the cross section in Legendre polynomials Pl, and obtain from Eq. (1) and Eq. (A.1)

oflm

os
� jlflm � ÿ

X
kl

~rfkl � ~Qkl
lm; �A:2�

where

~Qkl
lm �

Z
d~vY �lm�~v�~vYkl�~v� �A:3�

and jl given in Eq. (4). The boundary conditions to be satis®ed by the flm are

flm�~x; 0� �
�������������
2l� 1

4p

r
dm0d�~x�: �A:4�

To solve Eq. (A.2), we multiply with xpzq and integrate with respect to x; y and z. 5 If we de®ne

5 Because the problem is symmetric with respect to rotations around the z axis, it is su�cient to solve the equation for one of the

transverse co-ordinates, x or y.
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hp;q
l;m�s� �

Z
dx dy dz xpzqflm�~x; s�; �A:5�

we obtain the following set of equations for the hp;q
l;m

o
os
� jl

� �
hp;q

l;m �
p
2

Al
mhpÿ1;q

lÿ1;mÿ1 � Al�1
m�1hpÿ1;q

l�1;m�1 ÿ Al
ÿmhpÿ1;q

lÿ1;m�1 ÿ Al�1
ÿm�1hpÿ1;q

l�1;mÿ1

h i
� q Bl

mhp;qÿ1
lÿ1;m � Bl�1

m hp;qÿ1
l�1;m

h i
�A:6�

with

Al
m �

��������������������������������������
�l� m��l� mÿ 1�

4l2 ÿ 1

r
; Bl

m �
������������������������������
�l� m��lÿ m�

4l2 ÿ 1

r
: �A:7�

Eq. (A.6) can be solved in ascending order in p and q. For p � 0, hp;q
l;m � 0 unless m � 0, and therefore

Eq. (A.6) simpli®es to Lewis' Eq. (25) for the longitudinal moments. For q � 0 we obtain Lewis'
Eq. (29) for the transverse moments. 6 We will give here two examples for mixed moments which can
not be derived from Lewis' Eqs. (25) and (29). The lowest order such moments are of the form hxzvn

xvm
z i

and can be calculated from h1;1
l;m. We have h1;1

l;m � 0 for m2 6� 1 and

h1;1
l;1 � ÿh1;1

l;ÿ1 �
������������������������

l�l� 1�
16p�2l� 1�

s Zs
0

ds0kl�sÿ s0�
Zs0

0

ds00
klÿ1�s0 ÿ s00�

2lÿ 1
2�lÿ 1�klÿ2�s00� � kl�s00�
� ��

� kl�1�s0 ÿ s00�
2l� 3

kl�s00� ÿ 2�l� 2�kl�2�s00�
� ��

; �A:8�

where

kl�s� � exp ÿ
Zs

0

ds0jl�s0�
24 35: �A:9�

This gives, for instance,

hxzvxi � 1

15

Zs
0

ds0k1�sÿ s0�
Zs0

0

ds00 5k1�s00� � k2�s0 ÿ s00� k1�s00� ÿ 6k3�s00�
ÿ �� �

: �A:10�

By going to p � 2 we ®nd

hx2zi � 1

15

Zs
0

ds0
Zs0

0

ds00k1�s0 ÿ s00�
Zs00

0

ds000 10k1�s000� � k2�s00 ÿ s000� 8k1�s000� ÿ 18k3�s000�
ÿ �� � �A:11�

6 Note that the subscript on the last term of the right hand side of Eq. (29) in Lewis' paper was wrong. His Eq. (29), from which the

average correlation between longitudinal co-ordinate and direction of motion hzvzi can be derived, contains also a typographic error.

The correct formula reads

Hl1 � kl�s�����������������������
4p�2l� 1�p Zs

0

ds0
lklÿ1�s0� � �l� 1�kl�1�s0�

kl�s0� ;

where Lewis' function Hl1 corresponds to our h0;1
l;0 . This leads to a missing factor 1/3 in Lewis' Eq. (28).
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