Problem set 5

Notation 0.1. When talking about coherent sheaves, we use f^{-1} to denote the set-theoretic inverse image functor associated a map $f : X \to Y$ of schemes.

1. The goal of this exercise is prove a theorem of Nagata showing that henselizations of noetherian local rings are also noetherian. Let (R, m, k) be a noetherian local ring.

 (a) Show that $R/m^n \simeq R^h/m^n$, and hence $\hat{R} \simeq \hat{R}^h$.

 (b) Using the criterion formulated in terms of the base-change behaviour of finitely generated ideals, show that $R^h \to \hat{R}^h$ is faithfully flat.

 (c) Show that R^h is noetherian.

 (d) (*) Show that R^{sh} is noetherian (or read EGA III, Chapter 0, Lemma 10.3.1.3).

2. (*) Let (R, m, k) be a henselian local ring. Show that reduction modulo m defines an equivalence of categories between finite étale covers of R, \hat{R}, and k.

3. (Topological description of henselian rings) Let (R, m, k) be a henselian ring.

 (a) Given a finite separable extension $i : k \to k'$, show that there is a unique henselian ring (R', m', k') finite étale over (R, m, k) such that $R \to R'$ reduces to i modulo m.

 (b) Show that the association $k' \mapsto R'$ (from the previous exercise) extends to a sheaf on $\text{Spec}(k)_{\text{ét}}$.

 (c) Given a pointed scheme (X, x) with $i : \text{Spec}(k(x)) \to X$ denoting the residue field, show that $\Gamma(\text{Spec}(k(x))_{\text{ét}}, i^{-1}\mathcal{O}_{X,x}) \simeq \mathcal{O}^h_{X,x}$.

4. Let (R, m, k) be a local normal domain with fraction field K. Assume that K is separably closed. Please do not assume R is noetherian for this exercise.

 (a) Let $A \to B$ be a faithfully flat ring map of domains. If there is a factorisation $A \to B \to \text{Frac}(A)$ with $B \to \text{Frac}(A)$ injective, then show that $A = B$.

 (b) Show that any $R \to S$ étale can be written as $S = \prod_{i=1}^k S_i$ with each $R \to S_i$ an open immersion, and at least one $R \to S_i$ an isomorphism.

 (c) Show that R is strictly henselian.

5. (The Nisnevich topology) Let X be a noetherian scheme, and fix $n \in \mathbb{Z}$. Define the small Nisnevich site X_{Nis} as follows: objects are étale maps $U \to X$, and a family $\{U_i \to U\}$ is a Nisnevich covering if it is an étale covering with the additional property that any field valued point $\text{Spec}(k) \to U$ lifts to some U_i. We use the subscript Nis to denote cohomology in the Nisnevich topology.
(a) Show that descent and cohomology for quasi-coherent sheaves work as expected, i.e., quasi-coherent \(\mathcal{O}_X \)-modules define Nisnevich sheaves, and the Nisnevich cohomology of the resulting sheaves agrees with Zariski cohomology.

(b) Given a point \(x \in X \), let \(i : \text{Spec}(\kappa(x)) \to X \) denote the corresponding map. Show that \(\Gamma(\text{Spec}(k)_{\text{Nis}}, i^{-1}\mathcal{O}_{X_{\text{Nis}}}) \simeq \mathcal{O}_{X,x}^h \).

(c) Show that exactness of a sequence of Nisnevich sheaves can be detected by pullbacks along all maps of the form \(i : \text{Spec}(\kappa(x)) \to X \), where \(x \in X \) is a point.

(d) Let \(X \) be a normal connected scheme. Show that \(H^1_{\text{Nis}}(X, \mathbb{Z}/n) = 0 \). This shows that Nisnevich cohomology does not agree with \(\acute{e}tale \) cohomology in general.

(e) Let \(X \) be a normal connected scheme. Show that there is a finite morphism \(X \to_{\text{Nis}} Y \). Moreover, if \(f \) is finite, show that \(f_* \) is exact.

(f) Let \(X \subset \mathbb{P}^2 \) be an irreducible nodal cubic. Show that \(H^1_{\text{Nis}}(X, \mathbb{Z}/2) \simeq \mathbb{Z}/2 \) while \(H^1_{\text{Zar}}(X, \mathbb{Z}/2) \simeq 0 \). This shows that Nisnevich cohomology does not agree with Zariski cohomology in general.

6. (Finite morphisms, following Morel-Voevodsky) We will see that finite morphisms are acyclic for the Nisnevich topology (like \(\acute{e}tale \)), but not for the Zariski topology.

(a) Let \(f : X \to Y \) be a morphism of schemes. Show that there is a morphism of sites \(f : X_{\text{Nis}} \to Y_{\text{Nis}} \). Moreover, if \(f \) is finite, show that \(f_* \) is exact.

(b) Let \(f : X \to Y \) be a morphism of schemes, with \(Y \) the spectrum of a local ring. Show that the functor \(f : X_{\text{Zar}} \to Y_{\text{Zar}} \) induces an exact functor \(f_* \) if and only if \(H^i(X_{\text{Zar}}, F) = 0 \) for all \(F \in \text{Ab}(X_{\text{Zar}}) \) and \(i > 0 \).

Let \(X \) be the spectrum of the semilocal ring of \(\mathbb{A}^2 \) at two fixed points \(x_0 \) and \(x_1 \). Choose two irreducible curves \(C_1, C_2 \subset \mathbb{A}^2 \) such that \(C_1 \cap C_2 = \{ x_0, x_1 \} \). Let \(U \xrightarrow{j_1} V \xrightarrow{j_2} X \) be the sequence of open immersions defined by \(V = X - \{ x_0, x_1 \} \), and \(U = X - (C_1 \cup C_2) \); let \(j = j_2 \circ j_1 \).

(c) Using the Mayer-Vietoris sequence for the open cover \(V = (V - (C_1 \cap V)) \cup (V - (C_2 \cap V)) \), show that \(H(\text{V}_{\text{Zar}}, j_1, \mathbb{Z}) \) is non-zero.

(d) Using the Mayer-Vietoris sequence for the open cover \(X = (X - \{ x_0 \}) \cup (X - \{ x_1 \}) \), show that \(H^2(\text{X}_{\text{Zar}}, j, \mathbb{Z}) \) is non-zero.

(e) Show that there is a finite morphism \(X \to \text{Spec}(\mathcal{R}) \) for a local ring \(\mathcal{R} \). Conclude that finite morphisms need not be acyclic for the Zariski topology.

7. (Transfers) The goal of this exercise is to discuss the existence of norm maps in \(\acute{e}tale \) cohomology with coefficients in \(\mathbb{G}_m \).

(a) Let \(f : \mathcal{R} \to S \) be a finite locally free map of algebras. Given \(s \in S \), show that multiplication by \(s \) action of \(s \) on \(S \) gives a well-defined characteristic polynomial \(\phi_s \in \mathcal{R}[t] \) of degree \(\deg(f) \). In particular, show that there is a well-defined element \(\text{Nm}(s) \in \mathcal{R} \) such that \(\text{Nm}(f(r)) = r^{\deg(f)} \).

(b) Let \(f : Y \to X \) be a finite locally free map of schemes with \(X \) connected. Prove that there is a natural “norm” map \(\text{Nm}_f : f_*\mathbb{G}_m \to \mathbb{G}_m \) in \(\text{Ab}(\text{Sch}/X, \text{fppf}) \) such that the composite \(\mathbb{G}_m \xrightarrow{f_*} f_*f^*\mathbb{G}_m \xrightarrow{\text{Nm}_f} \mathbb{G}_m \) is \(x \mapsto x^{\deg(f)} \).
(c) Let \(f : Y \to X \) be a finite locally free map of schemes with \(X \) connected. Show that there is a natural map \(H^i(Nm_f) : H^i_{\text{fppf}}(Y, \mathbf{G}_m) \to H^i_{\text{fppf}}(X, \mathbf{G}_m) \) such that the composite

\[
H^i_{\text{fppf}}(X, \mathbf{G}_m) \xrightarrow{f^*} H^i_{\text{fppf}}(Y, \mathbf{G}_m) \xrightarrow{H^i(Nm_f)} H^i_{\text{fppf}}(X, \mathbf{G}_m)
\]

is multiplication by \(\deg(f) \), and similarly for étale cohomology.

(d) Show that for \(X = \text{Spec}(R) \) with \(R \) henselian local, the groups \(H^i_{\text{ét}}(k, \mathbf{G}_m) \) are torsion for \(i > 0 \). Can you give an example of a henselian ring \(R \) for which the torsion orders of \(H^2_{\text{ét}}(\text{Spec}(R), \mathbf{G}_m) \) can be arbitrarily large?

8. (More transfers) The goal of this exercise is to show norm maps exist for constant coefficients as well. As a corollary, we will see that étale cohomology with \(\mathbb{Q} \)-coefficients is typically uninteresting. Fix a scheme \(X \). Let \(A \) abusively denote the constant sheaf on \(X_{\text{ét}} \) associated to an abelian group \(A \).

(a) Let \(f : Y \to X \) be a finite étale map. Show that there is a norm map \(Nm_f : f_* f^* A \to A \) in \(\text{Shv}(X_{\text{ét}}) \) such that the composite \(A \xrightarrow{f_*} f_* f^* A \xrightarrow{Nm_f} A \) is multiplication by \(\deg(f) \).

(b) Assume that \(X \) is a henselian local scheme. Show that \(H^i_{\text{ét}}(X, A) \) is torsion for \(i > 0 \).

(c) Assume that \(X \) is a henselian local scheme. Show that \(H^i_{\text{ét}}(X, \mathbb{Q}) = 0 \) for \(i > 0 \). Deduce that \(H^1_{\text{ét}}(X, \mathbb{Z}) = 0 \) for \(X \) henselian.

(d) By contemplating singular curves, give an example of a local ring \(R \) such that \(H^1_{\text{ét}}(\text{Spec}(R), \mathbb{Z}) \) is non-zero.