Problem set 2

1. Give an example of a ring map $A \rightarrow B$ which satisfies the infinitesimal lifting criterion for being étale, but is not flat itself.

 Hint: Consider the ring $k[\mathbb{Q}_{\geq 0}]$ for some characteristic p field k and build a map.

2. Give an example of a flat ring map $A \rightarrow B$ such that $\Omega^1_{B/A} = 0$, but $A \rightarrow B$ does not satisfy the infinitesimal lifting criterion for being étale. Note that such a map cannot be finitely presented.

 Hint: try playing with quotients of perfect rings in characteristic p.

3. Let $f : X \rightarrow S$ be a locally finitely presented unramified morphism. Show that any section of f is an open immersion. If f is additionally assumed to be separated, then show that a section has to be an isomorphism onto a connected component.

 Hint: Consider the map $X \rightarrow X \times_S X$ defined by $(s \circ f, \text{id})$ where $s : S \rightarrow X$ is a section of f, and use that $\delta : X \rightarrow X \times_S X$ is an open immersion if f is unramified (and also closed if f is separated).

4. A morphism $f : X \rightarrow S$ is called a finite étale cover if f is finite, surjective, and étale. Classify all finite étale covers of:

 (a) $\text{Spec}(\mathbb{R})$ where \mathbb{R} is the field of real numbers.
 (b) $\mathbb{P}^1_\mathbb{C}$ and $\mathbb{P}^1_{\mathbb{F}_p}$
 (c) $\mathbb{A}^1_\mathbb{C} = \text{Spec}(\mathbb{C}[t])$.
 (d) $\mathbb{G}_{m, \mathbb{C}} = \text{Spec}(\mathbb{C}[t, t^{-1}])$.
 (e) $\text{Spec}(O_{C,x})$ where C is a smooth projective curve over \mathbb{C}, and $x \in C$ is a closed point. Answer in terms of the projective geometry of C.
 (f) An artinian local \mathbb{C}-algebra.
 (g) A complete local \mathbb{C}-algebra.
 (h) An elliptic curve E over \mathbb{C}.
 (i) The nodal cubic in $\mathbb{P}^2_\mathbb{C}$.
 (j) The cuspidal cubic in $\mathbb{P}^2_\mathbb{C}$. (The next exercise may be useful here.)
 (k) $\text{Spec}(\mathbb{Z})$.
 (l) $\text{Spec}(\mathbb{Z}_{(p)})$, the local scheme of $\text{Spec}(\mathbb{Z})$ at a prime p. Answer in terms of number fields.
 (m) $\text{Spec}(\mathbb{Z}_p)$, the completion of $\text{Spec}(\mathbb{Z})$ at a prime p.
 (n) (*) $\mathbb{A}^2_\mathbb{C} - \{0\}$
5. Let \(S \) be a noetherian, integral, normal, excellent scheme; you may take \(S \) to be a variety if you wish. Let \(U \subset S \) be a dense open subset. Show that the restriction functor \(X \mapsto X_U := X \times_S U \) is fully faithful on the category of finite étale covers of \(S \). Give an example to show that the normality condition cannot be dropped.

Hint: For the first part, “normalise.” For the example, see list above.

6. Let \(k \) be a field, and let \(X \) be a \(k \)-scheme of finite type. Show that \(X \) is smooth over \(k \) of dimension \(d \) if and only if for every affine \(U \subset X \), the ring \(\mathcal{O}(U) \) is geometrically regular of dimension \(d \), i.e., for any field extension \(L/k \), the base change \(\mathcal{O}(U) \otimes_k L \) is a regular ring of dimension \(d \).

For the forward direction, use the fact that, locally around \(x \), \(X \) is étale over affine space. For the backwards direction, reduce to the case that \(k \) is algebraically closed.

7. (Local structure for étale morphisms) Let \(f : X \to S \) be a locally finitely presented morphism which is étale at \(x \in X \). Then show that, Zariski locally on \(S \) around \(f(x) \), there exists a presentation \(\mathcal{O}_{X,x} \cong (\mathcal{O}_S[t]/(f))^p \), with \(f \) monic, and \(p \in \text{Spec}(\mathcal{O}_S[t]/(f)) \) some prime where \(f' \) is invertible.

Solution sketch: using Zariski’s main theorem, realise \(f \) as \(X \subset X' \to S \) with \(X' \to S \) finite and \(X \subset X' \) an open immersion. May work locally on \(S \), so we may assume \(S \) is local. Now \(\kappa(x)/\kappa(s) \) has a single generator \(\overline{g} \) by the primitive element theorem. Lift this generator to an element \(g \in \mathcal{O}_{X,x} \) with the property that its image in all other residue fields lying above \(s \) is \(0 \); we can do this by the Chinese remainder theorem. This generator defines a map \(X \subset X' \to \mathbb{A}^1_S \). Choose some monic polynomial \(f \in \mathcal{O}_S[t] \) that \(g \in X \) satisfies. Then the map factors as \(X \subset X' \to \text{Spec}(\mathcal{O}_S[t]/(f)) \). Now observe that by the choice of \(g \), this last map has the property that \(i^{-1}(i(x)) = x \) (because the element \(t \) is invertible in \(\kappa(i(x)) \), and hence also for any point in the preimage). Hence, by Nakayama applied to \(\mathcal{O}_S[t]/(f) \), conclude that the map \(\mathcal{O}_S[t]/(f) \to \mathcal{O}_{X,x} \) is surjective. Since \(g \) a primitive element at \(x \), there is a factorisation \(\mathcal{O}_S[t]/(f) \to (\mathcal{O}_S[t]/(f))_{f'} \to \mathcal{O}_{X,x} \). This map is étale since both the source and target are so. Hence, the composite \(\text{Spec}(\mathcal{O}_S[t]/(f))_{f'} \to \text{Spec}(\mathcal{O}_S[t]/(f)) \subset \text{Spec}(\mathcal{O}_S[t]/(f(t))) \) is an immersion at \(x \in X \) that is also étale. Show that this forces the map to be an open immersion.

8. Let \(f : (A, \mathfrak{m}_A) \to (B, \mathfrak{m}_B) \) be a local homomorphism of noetherian local rings. Assume that \(f \) is essentially finitely presented and étale. Then show

(a) \(A \) is regular if and only if \(B \) is so.
(b) \(A \) is Cohen-Macaulay if and only if \(B \) is so.
(c) \(A \) is Gorenstein if and only if \(B \) is so.
(d) \(A \) is an integral domain if \(B \) is so; the converse fails (example?).

Hint: use the characterisation of étale ring maps as flat and unramified ones, and homological criteria.

9. Let \(S \) be a scheme, and \(S_0 \subset S \) be a closed subscheme defined by a quasi-coherent ideal of square zero. The goal of this exercise is to show that the functor \(X \mapsto X_0 := X \times_S S_0 \) induces an equivalence between categories of étale schemes over \(S \) and \(S_0 \).

(a) Show using the infinitesimal lifting criterion that if \(X \) and \(Y \) are \(S \)-schemes with \(X \) étale, then \(\text{Hom}_S(Y, X) \cong \text{Hom}_{S_0}(Y_0, X_0) \). Note that \(Y \) is not assumed to be affine.

(b) Show that if \(X_0 \) is a standard étale \(S_0 \)-scheme (i.e., one of the form \(\text{Spec}((\mathcal{O}_{S_0}[t]/(f)))_{f'} \) with \(f \) monic), then \(X_0 \) comes from an étale \(S \)-scheme \(X \). Moreover, show that \(X \) is determined uniquely up to unique isomorphism once \(X_0 \) is specified.
(c) Using the uniqueness in the previous step, show by glueing that all étale S_0-schemes arise from those over S by base change.

10. The goal of this exercise is to introduce some ideas of deformation theory, putting the preceding exercise in some perspective. Let $S_0 \subset S$ be a closed immersion of affine schemes defined a quasi-coherent ideal \mathcal{I} of square zero on a scheme S. Let $f_0 : X_0 \to S_0$ be a smooth finitely presented morphism. A deformation of f_0 to S is defined to be a pair (f,i) where $f : X \to S$ is a flat morphism, and $i : X_0 \to X \times_S S_0$ is an S_0-isomorphism; we sometimes abusively refer to f as the deformation. Let $\text{Def}(f_0, S)$ denote the category of all deformations of f_0 to S, and let $\pi_0(\text{Def}(f_0, S))$ denote the set of isomorphism classes.

(a) Show that if f_0 arises via base change from a flat morphism $f : X \to S$, then f has to be smooth.

(b) Show that $\text{Def}(f_0, S)$ is a groupoid, i.e., any morphism in $\text{Def}(f_0, S)$ is an automorphism.

(c) If f_0 admits a deformation $f : X \to S$, then show that the kernel of $\text{Aut}_S(X) \to \text{Aut}_{S_0}(X_0)$ is identified naturally with $\text{Hom}_{X_0}(\Omega^1_{X_0/S_0}, f_0^*\mathcal{I})$. Note that this is simply the automorphism group in the category $\text{Def}(f_0, S)$ at the point defined by f, and turns out to be independent of f.

(d) If f_0 is affine, then show that $\text{Def}(f_0, S)$ is non-empty and connected, i.e., there exists a deformation $f : X \to S$, and any two deformations are isomorphic.

Hint: To show non-emptiness, embed in affine space, and lift a set of well-chosen equations. To show uniqueness (up to non-unique isomorphism), use the infinitesimal lifting property to lift the identity map to an isomorphism between any two deformations.

(e) Show that $\pi_0(\text{Def}(f_0, S))$ is a torsor for $\text{Ext}^1_{X_0}(\Omega^1_{X_0/S_0}, f_0^*\mathcal{I})$, i.e., the latter group acts simply transitively on the former set, provided this set is non-empty.

Hint: Given two deformations f_1 and f_2, pick an affine chart for X_0, write down isomorphisms between f_1 and f_2 over those charts using the previous claim, and see what you get.

(f) (*) Give an example to show that $\text{Def}(f_0, S)$ could be empty.

(g) Show that there exists a canonical element $\text{ob} \in \text{Ext}^2_{X_0}(\Omega^1_{X_0/S_0}, f_0^*\mathcal{I})$ which is zero if and only if $\text{Def}(f_0, S)$ is non-empty.

Hint: Pick an affine chart for X_0, deformations of pieces of the chart to S, and isomorphisms over the overlaps. What is the obstruction to glueing?

(h) Observe what happens when f_0 is étale.

11. The goal of this exercise is to introduce some ideas that become useful when thinking about the cotangent complex. Let $A \to B$ be a ring homomorphism. Let \mathcal{C} be the category of A-algebras equipped with a map to B. For a B-module M, let $B \oplus M$ denote the square-zero extension of B by M, i.e., we define multiplication by

$$(b_1,m_1) \cdot (b_2,m_2) = (b_1b_2, b_1m_2 + b_2m_1).$$

(a) Show that the association $M \mapsto B \oplus M$ defines a functor $\mathcal{F} : \text{Mod}(B) \to \mathcal{C}$. Observe that the two maps $0 \to M$ and $M \to 0$ define maps $B \simeq \mathcal{F}(0) \to \mathcal{F}(M)$ and $\mathcal{F}(M) \to \mathcal{F}(0) \simeq B$ for any B-module M.

(b) Show that for any $R \in \mathcal{C}$, there is a natural isomorphism $\text{Hom}_\mathcal{C}(R, \mathcal{F}(M)) \simeq \text{Der}_A(R, M)$. Conclude that if $A \to B$ satisfies the infinitesimal lifting criterion for smoothness, then $\Omega^1_{B/A}$ is a projective B-module. Note the absence of finiteness conditions.
(c) (*) Observe that $\mathcal{F}(M)$ is an abelian group object of \mathcal{C} (i.e., that $\text{Hom}_\mathcal{C}(-, \mathcal{F}(M))$ is naturally valued in abelian groups) thanks to the formula above in terms of derivations. Show that every abelian group object in \mathcal{C} is (uniquely, up to unique isomorphism) of this form, i.e., that \mathcal{F} factors as an equivalence $\text{Mod}(B) \simeq \text{Ab}(\mathcal{C})$ followed by the forgetful functor $\text{Ab}(\mathcal{C}) \to \mathcal{C}$.

(d) Reinterpret the preceding results to show that the forgetful functor $\text{Ab}(\mathcal{C}) \to \mathcal{C}$ admits a left adjoint “abelianisation” functor $(-)^{\text{Ab}} : \mathcal{C} \to \text{Ab}(\mathcal{C})$ defined by $R \mapsto R^{\text{Ab}} := \mathcal{F}(\Omega_{R/A}^1 \otimes_R B)$. Note that you could also have predicted the existence of $(-)^{\text{Ab}}$, and hence that of theory of Kahler differentials, by simply observing that \mathcal{F} preserves limits, and applying the adjoint functor theorem.