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Preface

These are notes for a class on perfectoid spaces taught in Winter 2017. The goal of the class was to
develop the theory of perfectoid spaces up through a proof of the almost purity theorem, and then
explain the proof of the direct summand conjecture.
I have tried to make these notes self-contained, and hopefully accessible to anyone with a back-

ground algebraic geometry. In particular, I have not assumed any familiarity with rigid geometry,
so the relevant theory of adic spaces is developed from scratch. Likewise, I have not assumed
any familiarity with Hochster’s network of “homological conjectures”, so the direct summand
conjecture is proven directly, and not via (a non-trivial) reduction to some other statement. Two
exceptions: (a) I have used the language of derived categories in a couple of spots where I think it
brings out the essence of the argument faster, and (b) I have used some results in point set topology
(of spectral spaces) without proof.
Disclaimers. There are surely many errors, so please use at your own risk. The notes are unstable,

and being constantly revised. Also, essentially all references and attributions are missing, and will
be added later.
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Chapter 1

Conventions on non-archimedean fields

We establish some standard notation about non-archimedean fields.

Definition 1.0.1. A (complete) non-archimedean or NA field is a field K equipped with a multi-
plicative valuation | · | : K∗ → R>0 such that K is complete for the valuation topology. The group
|K∗| ⊂ R>0 is called the value group of K.

Remark 1.0.2. Some comments are in order:

1. It is convenient to extend the valuation to a map | · | : K → R≥0 by setting |0| = 0. With this
extension, the valuation topology on K is the unique group topology with a basis of open
subgroups given by | · |−1((0, γ)) for γ ∈ R>0. This topology defined by a metric on K:
d(x, y) = |x− y|.

2. Most authors do not impose a completeness hypothesis. However, our later constructions
with adic spaces work best for complete rings, so we impose completeness right away.

3. We shall typically work in a mixed/positive characteristic setting, i.e., |p| < 1 for some prime
p.

4. We shall always assume that K is nontrivially valued, i.e., there exists a nonzero element
t ∈ K with 0 < |t| < 1.

A NA field comes naturally with some associated rings and ideals:

Definition 1.0.3. LetK be a NA field. The subsetK◦ := {x ∈ K | |x| ≤ 1} is called the valuation
ring of K; this is an open valuation subring of K with maximal ideal K◦◦ := {x ∈ K | |x| < 1}.
The quotient k := K◦/K◦◦ is called the residue field of K. Any nonzero element t ∈ K◦◦ is called
a pseudo-uniformizer.

The next exercise shows that given the field K, specifying the topology on K is equivalent to
specifying the valuation. In particular, it is meaningful to ask if a topological field K is NA.

Exercise 1.0.4. Fix a NA field K.
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1. A subset S ⊂ K is bounded if there exists a nonzero t ∈ K such that t ·K ⊂ K◦; equiva-
lently, S is bounded for the metric topology on K. An element t ∈ K is power bounded if
the set tN := {tn | n ≥ 0} ⊂ K is bounded. Check that K◦ ⊂ K is exactly the set of power
bounded elements.

2. Check that K◦◦ ⊂ K is exactly the topologically nilpotent elements of K, i.e., those t ∈ K
such that tn → 0 as n→∞.

3. Fix a pseudouniformizer t ∈ K◦◦. Show that the t-adic topology on K◦ coincides with the
valuation topology.

4. Show that the given NA valuation | · | on K can be reconstructed from the valuation ring K◦.

The next table records some examples the concepts introduced above.
table:NAmy-label

K◦ K pu Value group

Zp Qp p |p|Z

OK K/Qp finite π |π|Z if π is a uniformizer

FpJtK Fp((t)) t |t|Z

Ẑp[p
1
p∞ ] Q̂p(p

1
p∞ ) p |p|Z[ 1

p
]

Ẑp Cp := Q̂p p |p|Q

K◦ perfect K perfect t p-divisible

Table 1.1: NA fields
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Chapter 2

Perfections and tilting

Recall that a characteristic p ring R is perfect is the Frobenius φ : R → R is an isomorphism;
if instead φ is merely assumed to be surjective, we say that R is semiperfect. In this chapter, we
introduce and study Fontaine’s tilting functor: it attaches a perfect ring of characteristic p any
commutative ring (and is typically of interest when the latter has mixed/positive characteristic).

def:Tilt Definition 2.0.1 (The tilting functor). Let R be a ring.

1. If R has characteristic p, set Rperf := lim−→φ
R and Rperf := lim←−φR, where φ : R → R

denotes the Frobenius.

2. (Fontaine) For any ring R, set R[ := (R/p)perf := limφR/p. Unless otherwise specified,
this ring is endowed with the inverse limit topology, with each R/p being given the discrete
topology.

Remark 2.0.2 (Universal properties of perfections). When R has characteristic p, both Rperf and
Rperf are perfect. The canonical map R → Rperf (resp. Rperf → R) is universal for maps into
(resp. from) perfect rings. Moreover, the projection Rperf → R is surjective exactly when R is
semiperfect.

ex:TiltingRings Example 2.0.3. We record some examples of these concepts.

1. Fp[t]perf = Fp[t
1
p∞ ] and Fp[t]

perf = Fp.

2. Fp[t]
[ ' Fp.

3. Say R is a finite type algebra over an algebraically closed field k of characteristic p. Then
R[ ' kπ0(Spec(R)) is the algebra of k-valued continuous functions on Spec(R). To see this,
we may assume Spec(R) is connected and reduced (see Exercise 2.0.4). We must show k '
Rperf . Assume first that Spec(R) is irreducible. Picking a closed point x ∈ Spec(R) gives a
map R→ R̂x, where R̂x is the completion of the local ring at x; this map is injective as R is
a domain. It is therefore enough to show that R̂x

perf
' k. We have R̂x = limnRx/m

n
x, and

thus R̂x

perf
= limn(Rx/m

n
x)perf . Using Exercise 2.0.4, it is easy to see that (Rx/m

n
x)perf '
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(Rx/mx)
perf ' kperf for all n, which gives the claim. The generalization to the case where

R is not a domain is left to the reader.

4. (Fp[t
1
p∞ ]/(t))perf ' F̂p[t

1
p∞ ]. More generally, if R is a perfect ring of characteristic p and

f ∈ R is a nonzerodivisor, then (R/f)perf is the f -adic completion of R.

5. (Zp)
[ ' Fp.

6. (Ẑp[p
1
p∞ ])[ ' F̂p[t

1
p∞ ] ' F̂p[t]perf '

(
Fp[t]perf/(t)

)perf
.

The perfection functors kill nilextensions.

exer:PerfectionNilp Exercise 2.0.4. Let f : R → S be a map of characteristic p rings that is surjective with nilpotent
kernel. Then Rperf ' Sperf and Rperf ' Sperf . More generally, the same holds if f factors a
power of Frobenius on either ring.

We repeatedly use the following elementary lemma.

lem:Binomial Lemma 2.0.5. Let R be a ring, and let t ∈ R be an element such that p ∈ (t). Given a, b ∈ R with
a = b mod t, we have ap

n
= bp

n
mod tn+1 for all n..

Proof. We prove this by induction on n. If n = 0, there is nothing to show. Assume inductively
that apn = bp

n
+ tn+1c for some c ∈ R. Raising both sides to the p-th power, and using that p |

(
p
i

)
for 1 ≤ i ≤ p− 1, we get

ap
n+1

= bp
n+1

+ p · tn+1 · d+ tp·(n+1)cp

for some d ∈ R. As p ∈ (t) and p ≥ 2, the claim follows.

The next lemma is critical in future applications. It gives a “strict” description of the (−)[ functor.

lem:FlatAbstract Lemma 2.0.6. AssumeR is p-adically complete. The projection mapR→ R/p induces a bijection

lim
x 7→xp

R→ lim
φ
R/p =: R[

of multiplicative monoids.

Proof. We first check injectivity. Fix (an), (bn) ∈ limx 7→xp R with an = bn mod p for all n.
Then ap

k

n+k = an for all n, k, and similarly for the b’s. Applying Lemma 2.0.5 to both sides of
an+k = bn+k mod p then shows that an = bn mod pk+1 for all n and k. As R is p-adically
separated, it follows that an = bn for all n, as wanted.
For surjectivity, fix (an) ∈ limx 7→xp R/p. Choose arbitrary lifts an ∈ R of an. Then apn+k+1 =

an+k mod p for all n, k. Lemma 2.0.5 shows that for each n, the sequence k 7→ ap
k

n+k is Cauchy
for the p-adic topology, and thus has a limit bn. Then one checks that bpn+1 = bn for all n, and that
bn lifts an, proving surjectivity.
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Remark 2.0.7. Note that the construction of (bn) from (an) in the second half of the proof above is
well-defined (i.e., independent of auxiliary choices), and gives an explicit inverse to the projection
limx 7→xp R→ limφR/p =: R[.

Remark 2.0.8. (Exercise) In Lemma 2.0.6, if one topologizes R with the p-adic topology and R/prmk:TiltTopology
with the discrete topology, then the bijection of Lemma 2.0.6 is a homeomorphism. Indeed, the
map is clearly continuous. For continuity in the other direction, note that we have a homeomor-
phism

lim
x 7→xp

R ' lim
x7→xp

lim
n
R/pn ' lim

(
· · · x 7→x

p

−−−→ R/p3 x 7→xp−−−→ R/p2 x 7→xp−−−→ R/p
)
.

Thus, for each k ≥ 0, a basic open subgroup Uk ⊂ limx 7→xp R is given by those (an) with ai ∈ (pi)
for i ≤ k. Now apn+1 = an for all n, so Uk is exactly those (an) with ai ∈ (pk). It suffices to show
that the image of Uk in limφR/p contains those (bn) with bi = 0 for all i ≤ 2k; this follows from
the explicit inverse constructed in the proof above.

rmk:SharpMap Remark 2.0.9 (Sharp map). In Lemma 2.0.6, via projection to the last term, we get multiplicative
map

] : R[ → R

denoted f 7→ f ]. Its image is exactly those f ∈ R that admit a compatible system {f
1

pk } of
p-power roots. We shall sometimes call such elements perfect.

Using the ] map, we can understand valuation rings under tilting; this will be useful when dis-
cussing adic spaces later.

lem:TiltValuationRing Lemma 2.0.10. If a p-adically complete ring R is a domain (resp. a valuation ring), the same is

true for its tilt R[. In fact, if | · | : R → Γ ∪ {0} is the valuation on R, then the map R[ ]−→ R
|·|−→

Γ ∪ {0} gives the valuation on R[. In particular, the rank of R[ is bounded above1 by the rank of
R.

Proof. We first check that R[ is a domain whenever R is a domain. We have R[ ' limx 7→xp R as a
multiplicative monoid. Fix elements (an), (bn) ∈ limx 7→xp R with an · bn = 0 for all n. Then either
a0 or b0 vanishes as R is a domain. By symmetry, assume a0 = 0. Then, as the transition maps
involve raising to powers, we get an = 0 for all n, and thus (an) = 0, so R[ has no zero divisors.
Now assume R is a valuation ring. Fix a, b ∈ R[, corresponding to (an), (bn) ∈ limx 7→xp R. As R

is a valuation ring, we have a0 | b0, or vice versa. Assume a0 | b0 by symmetry. Then, for valuation
reasons, we must have an | bn for each n ≥ 1: the element an

bn
in the fraction field of R must lie in

R (as its pn-th power does). Thus, (an) | (bn) in limx 7→xp R, and thus a | b in R[, proving that R[

is a domain.
Explicitly, this construction shows that if | · | : R→ Γ∪{0} is the valuation, then | · |[ := | · | ◦ ] :
R[ → Γ ∪ {0} gives a valuation on R[: indeed, given a = (an), b = (bn) ∈ R[, we checked above
that a | b exactly when a0 | b0, which happens exactly when |a|[ ≥ |b|[ as |a|[ = |a0| (and similarly
for b). The assertion about ranks is automatic.

1In this generality, the rank can indeed go down under tilting. For example, if R = Zp, then R[ = Fp. We shall
check later that this does not happen for perfectoids.
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Chapter 3

Perfectoid fields

In this chapter, we introduce and study perfectoid fields. These are NA fields that contain “lots
of” p-power roots. The main result is that the tilt of (the ring of integers of) a perfectoid field K
is a perfectoid field K[ of characteristic p that reflects the algebraic properties of K. In particular,
we formulate (and prove the key special case of) the almost purity theorem for perfectoid fields,
equating the Galois theory of K and K[.

3.1 Definition and basic properties
Fix a prime number p.

Definition 3.1.1. A perfectoid field K is a NA field with residue characteristic p such that:

• The value group |K∗| ⊂ R>0 is not discrete.

• K◦/p is semiperfect, i.e., the Frobenius map K◦/p→ K◦/p is surjective.

ex:PerfectoidField Example 3.1.2. The first condition rules out fields like Qp itself. Interesting examples are:

1. Let K = Q̂p(p
1
p∞ ). Then the value group is Z[1

p
]. To calculate the valuation ring, observe

that both completions and filtered colimits of valuation rings are valuation rings. It follows

that K◦ = Ẑp[p
1
p∞ ]: the natural map from the right to the left is an extension of rank 1

valuation rings with the same field of fractions, and must thus be an isomorphism. It is then
easy to see that K is perfectoid. A similar analysis applies to Q̂p(µp∞).

2. Let K = Cp = Q̂p. Then the value group Q. As K is algebraically closed, every t ∈
K◦ admits a p-th root, so the perfectoidness is clear. Alternately, one may argue directly
without using the algebraic closedness of K by observing that Zp/p is semiperfect (as Qp is
algebraically closed), and that Zp → K◦ is an isomorphism modulo any power of p.
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3. Let K be a NA field of characteristic p. Then K is perfectoid if and only if K is perfect.
In this case, semiperfectness of K◦ implies its perfectness, and hence the nondiscreteness of
the value group (as long as the valuation is not trivial).

As these examples illustrate, the perfectoid world is very non-noetherian:

Lemma 3.1.3. Let K be a perfectoid field.

1. The value group |K∗| is p-divisible.

2. We have (K◦◦)2 = K◦◦. Moreover, K◦◦ is flat.

3. The ring K◦ is not noetherian.

Proof. For (1). We temporarily call x ∈ K◦ small if |p| < |x| ≤ 1. We first check the p-divisibility
of |x| ∈ |K∗| for small x. The perfectoidness of K gives a y, z ∈ K◦ such that yp = x + p · z for
some z ∈ K◦. Taking absolute values and using the NA property shows that |y|p = |yp| = |x|, so
|x| ∈ |K∗| is divisible by p.
In general, as |K∗| is not discrete, the containment |p|Z ⊂ |K∗| must be strict, so we can choose

an x ∈ K∗ with |x| /∈ |p|Z. After rescaling by a suitable power of p, we can assume x is small.
By the total ordering of ideals in K◦, we must have p = xy for small y. But then |p| = |x| · |y|,
so |p| ∈ |K∗| is divisible by p. A similar argument shows |p|Z and |x| for x small generate|K∗|, so
we are done.
For (2). Pick some f ∈ K◦◦. By perfectoidness, we can write f = gp + ph for g ∈ K◦◦ and
h ∈ K◦. The previous proof shows that p ∈ (K◦◦)2, so this formula proves that f ∈ (K◦◦)2. For
flatness, we simply note that any torsionfree module over a valuation ring is flat.
(2) implies (3) by Nakayama’s lemma. Alternately,K◦◦ is not finitely generated as it has elements

of arbitrarily small valuation.

rmk:GenerateValueGroupPerfectoid Remark 3.1.4. The proof above shows that |K∗| ⊂ R>0 is generated by |x| for x ∈ K◦ with
|p| < |x| < 1. This observation will be useful later in analyzing the value group under tilting.

We shall see later that differential forms tend to vanish in the perfectoid world. An elementary
instance of this is:

Exercise 3.1.5. Let K be a perfectoid field. Show that Ω1
K◦/Zp

is never 0, and yet its p-adic
completion always vanishes.

3.2 Tilting
Fix a perfectoid field K. Our goal is to attach to K a perfectoid field K[ of characteristic p. We
shall do so by first constructing the ring of integers of K[ as K◦[, and then constructing K[ as
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a suitable localization. For the rest of the section, we fix1 a pseudouniformizer π ∈ K◦ with
|p| ≤ |π| < 1, so p ∈ (π). We obtain a commutative diagram

limx7→xp K
◦ pr0 //

'
��

K◦

��
K◦[ := limx 7→xp K

◦/p
pr0 //

'
��

]
66

K◦/p

��
limx 7→xp K

◦/π
pr0 // K◦/π,

(3.1) eq:TiltPerfectoidFieldMult

where all the vertical maps are the canonical reduction maps, the top half comes from Lemma 2.0.6
when K has characteristic 0 (and is trivial in characteristic p), the bottom half comes from Exer-
cise 2.0.4 when K has characteristic 0 (and is trivial in characteristic p), and the bottom two
horizontal maps are surjective by the semiperfectness of K◦/p. We can then topologize K◦[ as
follows:

Exercise 3.2.1. Check that the following 3 topologies on K◦[ are equivalent:

• The inverse limit topology arising via K◦[ ' limφK
◦/π.

• The inverse limit topology arising via K◦[ ' limx 7→xp K
◦.

• The inverse limit topology arising via K◦[ ' limφK
◦/p, where the topology on K◦/p is

the one induced from K (and is thus discrete when K has characteristic 0, but not so in
characteristic p).

Recall that we want to show that K◦[ is the valuation ring of a perfectoid field K[. To this end,
we first find a pseudouniformizer:

lem:TiltPU Lemma 3.2.2. There exists some element t ∈ K◦[ such that |t]| = |π|. Moreover, t maps to 0 in
K◦/π, and this gives an isomorphism K◦[/t ' K◦/π.

Proof. As p ∈ (π), the canonical projections give surjective maps K◦[ → K◦/p → K◦/π. By
p-divisibility of the value group, we may choose some f ∈ K◦ such that |f |p = |π|, and hence
|f | > |π|. In particular, f ∈ K◦/π is nonzero. Choose some g ∈ K◦[ lifting f under the
canonical map K◦[ → K◦/π. Then g] = f mod π by the diagram (3.1). By the NA property,
this gives |g]| = |f | since |f | > |π|. Setting t = gp and using the multiplicativity of ] shows that
|t]| = |f |p = |π|.
For the second part, note that t ∈ K◦[ maps to fp = π = 0 in K◦/π, thus giving a map
K◦[/t → K◦/π. To show this map is an isomorphism, consider the diagram (3.1) again. Choose
some g ∈ K◦[ such that g maps to in K◦/π. We must show that g ∈ (t). The diagram shows that
g] ∈ K◦ maps to 0 inK◦/π, and hence g] ∈ (π). But |π| = |t]|, so (π) = (t]). Hence, we can write

1For practical purposes, we may take π = p in characteristic 0, and any pseudouniformizer in characteristic p.
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g] = at] for suitable a ∈ K◦. It is then easy to see that a lifts to an element ã = (an) ∈ limx 7→xp K
◦

along the projection pr0: simply set

an =
(g

1
pn )]

(t
1
pn )]

∈ K,

and then observe that apnn = a ∈ K◦, so an ∈ K◦ for all n. By construction, we have g = ã · t as
elements in limx 7→xp K

◦. Going down the left vertical arrow, we learn that g ∈ (t), as wanted.

Using elements constructed above, the topology on K◦[ is seen to be algebraic:

cor:TiltROITopology Corollary 3.2.3. With t as above, K◦[ is t-adically complete, and that the t-adic topology coin-
cides with the given topology.

Proof. Using Lemma 3.2.2, we have a map of inverse systems of rings

.... // K◦[/(tp
n
) std //

std◦φ−n
��

... // K◦/(tp) std //

std◦φ−1

��

K◦[/(t)

std
��

.... // K◦/π
φ // ... // K◦/π

φ // K◦/π

with all vertical maps being isomorphisms. Comparing inverse limits as topological rings proves
the claim.

prop:TiltPerfectoidField Proposition 3.2.4. Fix an element t as in Lemma 3.2.2.

1. The ring K◦[ is a valuation ring, and the ring2 K[ := K◦[[1
t
] is a (necessarily perfect) field.

2. The ideal (t
1
p∞ ) is maximal, and the Krull dimension of K◦[ is 1.

3. The valuation topology on K[ coming from (1) coincides with the one induced by the t-adic
topology on K◦[. In this topology, K[ is a perfectoid field, and K[,◦ = K◦[.

4. The value groups and residue fields of K and K[ are canonically identified.

We shall repeatedly use the following: using the presentationK◦[ ' limx 7→xp K
◦ as multiplicative

monoids, we learn that an element shows that a ∈ K◦[ is a unit if and only if a] is a unit.

Proof. 1. Specializing Lemma 2.0.10 to R = K◦, we learn that K◦[ is a valuation ring of rank
≤ 1. In fact, the rank is exactly 1 since we know that |t|[ := |t]| = |π| is non-trivial. In
particular, inverting any nonzero nonunit in K◦[, such as t, produces the fraction field K[.

2There is abuse of notation here: when K has characteristic 0, the ring K[ is not the tilt of K in the sense of
Definition 2.0.1.
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2. The assertion about Krull dimensions follows from (1) as the rank of a valuation ring equals
its Krull dimension. For the rest, we already know that K◦[/t ' K◦/π by Lemma 3.2.2.
As the maximal ideal of K◦/π is its nilradical (since K◦ is a rank 1 valuation ring), the
same must be true for K◦[/t. But the nilradical of K◦[/t is just the image of (t

1
p∞ ) (as the

latter clearly lies in the nilradical, and the quotient K◦[/(t
1
p∞ ) is perfect, whence reduced),

so (t
1
p∞ ) must indeed be maximal.

3. As K◦[ is a rank 1 valuation ring, the valuation topology coincides with the f -adic topology
for any nonzero nonunit f . Taking f = t gives the first part of the claim. Corollary 3.2.3
shows that K◦[ is t-adically complete, and thus K[ is a NA field. Finally, it is clear that K[

is perfect, and thus K[ is perfectoid.

4. The claim about residue fields follows from (2) using the identification K◦/π ' K◦[/t from
Lemma 3.2.2. For value groups, using the notation above, we trivially have |K[|[ ⊂ |K∗|.
To show equality, note that |K∗| is generated by |x| for x ∈ K◦ with |p| < |x| < 1 (see
Remark 3.1.4). We must show |x| ∈ |K[|[ for any such x. But this is immediate from
Lemma 3.2.2.

rmk:TiltContVal Remark 3.2.5 (Tilting Continuous Valuations). Proposition 3.2.4 (1) is a special case of the fol-
lowing:

Proposition 3.2.6. For any continuous valuation | · | : K∗ → Γ (of any rank), the function | · |[ =
| · | ◦ ] : K[,∗ → Γ is also a continuous valuation. This construction identifies the space of
continuous valuations on either field.

Proof. Fix a continuous valuation | · | on K. It is clear that | · |[ is multiplicative. Moreover, as
] : K[ → K has trivial fiber over 0, it is clear that |f |[ = 0 if and only if f = 0. To check the NA
property, fix f := (fn), g := (gn) ∈ limx 7→xp K ' K[, so f ] = f0 and g] = g0. We must check
that

|f + g|[ ≤ max(|f |[, |g|[).

But this follows from

|f+g|[ := |(f+g)]| = | lim
n

(fn+gn)p
n| = lim

n
|fn+gn|p

n ≤ lim
n

max(|fn|, |gn|)p
n

= lim
n

max(|f0|, |g0|) = max(|f |[, |g|[),

where the second equality is obtained by chasing the behaviour of addition across the isomor-
phism limx 7→xp R ' limx 7→xp R/p for a p-adically complete ring R, and the third equality uses the
continuity of | · | on K.
For the second part, write | · |std for the given NA valuation on K. Observe that a valuation
| · | : K∗ → Γ is continuous if and only if for one (or, equivalently, any) pseudouniformizer
f ∈ K◦◦, we have |f |n → 0 as n → ∞. Using this remark, one checks the following about the
valuation ring R ⊂ K attached to | · |:

1. R contains K◦◦ inside its maximal ideal as |f | < 1 for any f ∈ K◦◦.
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2. We have R ⊂ K◦. Indeed, if not, then R has an element from K[ 1
f
] \ K◦, i.e., an element

of the form a/fn with a ∈ K◦ and |a|std > |fn|std. But then |fn/a|std < 1, so fn/a ∈ K◦◦,
so fn/a lies in the maximal ideal of R. As a/fn ∈ R as well, we find an element of the
maximal ideal of R that is invertible, which is absurd.

Conversely, one may check any valuation subring R ⊂ K that satisfies (1) and (2) defines a
continuous valuation on K: the key point is that the map R → K◦ is a localization of R (at its
unique height 1 prime, by the classification of rings between a valuation ring and its fraction field),
so K◦◦ must lie in all primes of R, and thus |t|n → 0 for t ∈ K◦◦. Passing to the quotient, we learn
that continuous valuations on K identify bijectively with valuation rings in K◦/K◦◦. Repeating
the same argument for K[, we conclude using the identification of K◦/K◦◦ with K[,◦/K[,◦◦.

We give an explicit example of a rank 2 valuation on a perfectoid field.

ex:Rank2ValuationRing Example 3.2.7. Let k be a perfect field of characteristic p, and let K◦ =
̂

W (k)[p
1
p∞ ]. Then

K = K◦[1
p
] is a perfectoid field with K◦/K◦◦ ' k. In particular, given any valuation ring R ⊂ k,

the preimage R ⊂ K◦ of R is a valuation ring of K whose attached valuation | · | : K∗ → Γ
is continuous. For an explicit example, set k = Fp((t))perf . Consider its valuation ring R =
FpJtKperf ⊂ k. Then the preimage R ⊂ K◦ of R defines a rank 2 valuation on R with value group
Γ := |K∗| × |t|Z[ 1

p
] ' Z[1

p
]× Z[1

p
] ordered lexicographically.

The main theorem about perfectoid fields is:

Theorem 3.2.8 (Almost purity in dimension 0). Let L/K be a finite (necessarily separable) ex-
tension. Endow L with its natural topology as a finite dimensional K-vector space. Then

1. L is perfectoid.

2. The field extension L[/K[ is finite of the same degree as L/K.

3. The association L 7→ L[ defines an equivalence Kfet ' K[
fet.

Example 3.2.9. LetK = Q̂p(p
1
p∞ ). We explained in Example 3.1.2 thatK◦ = Ẑp[p

1
p∞ ]. A similar

argument shows that if L = K(
√
p), then L◦ =

̂
Zp[p

1
2p∞ ]. It is then easy to calculate that if we fix

the isomorphism K[ ' ̂Fp((t))perf by requesting t] = p, then L[ = K[(
√
t).

We shall prove the full result later, once the language of almost mathematics has been introduced.
In fact, the latter will allow us to explicitly construct an inverse to the operation L 7→ L[. Granting
the existence of this construction, the result will follow from the following consequence, which we
prove directly:

prop:KedlayaAPTField Proposition 3.2.10. Assume that K[ is algebraically closed. Then K is algebraically closed.

The proof below is due to Kedlaya.
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Proof. We assume that K has characteristic 0. Set x0 = 0. We shall inductively construct a
sequence {xn ∈ K◦} such that the following hold for each n:

1. |P (xn)| ≤ |p|n.

2. |xn+1 − xn| ≤ |p|
n
d .

Then (2) shows that {xn} converges to some x ∈ K◦, and (1) shows that |P (x)| = 0, and thus
P (x) = 0.
As x0 = 0 is already defined, assume by induction we have constructed x0, x1, ..., xn satisfying

the above two properties. Write

P (T + xn) =
d∑
i=0

biT
i,

so bd = 1. If b0 = 0, then P (xn) = 0, so we may simply take xi = xn for each i ≥ n. Assume
from now on that b0 6= 0. Consider the quantity

c = min{|b0

bj
|
1
j | j > 0, bj 6= 0}.

Considering j = d shows that c ≤ |b0|
1
d ≤ 1. By Proposition 3.2.4 (4) and the algebraic closedness

of K[, we know that |K∗| is a Q-vector space, so c = |u| for some u ∈ K; in fact, we have u ∈ K◦
as |u| = c ≤ 1. We have bi

b0
· ui ∈ K◦ by construction. Moreover, as the minimum defining c is

achieved, there exists i > 0 such that bi
b0
· ui is a unit.

Using Lemma 3.2.2, choose t ∈ K◦[ with |t]| = |p|. Consider any polynomial Q(T ) ∈ K◦[[T ]
lifting

∑d
i=0

bi
b0
uiT i ∈ K◦/p[T ] under the identification K◦[/t ' K◦/p. By construction, this is a

polynomial of degree > 0 whose constant coefficient and (at least) one non-constant coefficient is
a unit. Lemma 3.2.11 shows that there exists some unit y ∈ K◦[,∗ such that Q(y) = 0.
We shall check that xn+1 = xn + u · y] ∈ K◦ satisfies the analogs of (1) and (2). First, note that

P (xn+1) = P (u · y] + xn) =
d∑
i=0

biu
i · (yi)] = b0 ·

( d∑
i=0

bi
b0

ui · (y])i
)
.

Now the parenthesized term is congruent to Q(y) modulo p, and thus 0 modulo p as y is a root of
Q. It follows that

|P (xn+1)| ≤ |b0| · |p| ≤ |p|n · |p| = |p|n+1,

where we use induction to get |b0| = |P (xn)| ≤ |p|n. This gives (1), and for (2) we observe that

|xn+1 − xn| = |u||y]| = |u| = c ≤ |b0|
1
d = |P (xn)|

1
d ≤ |p|

n
d ,

where we use that y is a unit in the second equality, and the inductive hypothesis in the last one.

The following lemma was used above.
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lem:UnitRootWithoutNewton Lemma 3.2.11. Let V be the valuation ring of a complete and algebraically closed NA field. Let
P (T ) ∈ V [T ] be a polynomial of degree ≥ 1 such that the constant coefficient and (at least) one
non-constant coefficient are units in V . Then P vanishes at a unit of V .

This lemma can be proven using Newton polygons, but we give a direct algebraic proof.

Proof. Write m ⊂ V for the maximal ideal with residue field k = V/m. Our hypothesis ensures
that reduction of P (T ) modulo m is a non-constant polynomial with unit constant and leading
coefficients. We may then choose a pseudouniformizer t ∈ V such that the reduction modulo t
of P (T ) is also a non-constant polynomial with unit constant and leading coefficients. We view
P as a map fP : V [T ] → V [T ]. This map realizes the target V [T ] as a torsionfree module over
the source V [T ] that is finite free when reduced modulo t by our choice of t. Writing V 〈T 〉 for
the t-adic completion of V [T ], it follows that the t-adic completion f̂P : V 〈T 〉 → V 〈T 〉 is a finite
free morphism as well. In particular, the ring A := V 〈T 〉/P (T ) is a finite free V -algebra. As V is
henselian, we can decompose A '

∏
iAi as a finite product with each Ai being a finite free local

V -algebra. Reducing modulo m, this gives k[T ]/P (T ) '
∏

iAi/m with each factor being local.
Now the assumption on P (T ) ensures that one of the roots of P (T ) over k is a unit. It follows that
T maps to a unit in one of the residue fields of k[T ]/P (T ). As each Ai is local, it follows that T
maps to a unit in some Ai. Fix one such index i. As Ai is finite free over V and K is algebraically
closed, the ring Ai,red[1

t
] decomposes as a non-empty product of copies of K. Picking one such

copy gives a map Ai → K. This map has image contained inside V ⊂ K as Ai is integral over V .
Thus, we obtain a map Ai → V . As T mapped to a unit in Ai, the same must be true for its image
in V . Putting everything together, we have produced a map V [T ]/P (T ) → V that carries T to a
unit, as wanted.

ex:TiltCyclotomic Example 3.2.12. Let K = Q̂p(µp∞), so K◦ = Ẑp[µp∞ ]. We have an explicit presentation of K◦

as the p-adic completion of

Zp[ε
1
p∞ ]/(

ε− 1

ε
1
p − 1

) = Zp[ε
1
p∞ ]/(1 + ε

1
p + ε

2
p + ...+ ε

p−1
p ),

given by choosing a compatible system εn ∈ µpn of p-power roots of 1, and sending ε
1
pn to εn.

Reducing modulo p, and using that x
p−1
x−1

= (x− 1)p−1 in characteristic p, we learn that

K◦/p ' Fp[ε
1
p∞ ]/(ε

1
p − 1)p−1 ' Fp[t

1
p∞ ]/(tp−1),

where we use the substitution t 7→ ε − 1 (and similarly for p-power roots). By Exercise 2.0.4, we
learn that K◦[ = (K◦/p)perf identifies with the t-adic completion of Fp[t

1
p∞ ], and hence K[ '

̂Fp((t))perf .

Remark 3.2.13. Examples 3.2.12 and 2.0.3 show that K = Q̂p(µp∞) and L = Q̂p(p
1
p∞ ) have

isomorphic tilts, i.e., K[ ' L[. In particular, the tilting functor K 7→ K[ is not fully faithful
on perfectoid fields K/Qp. We shall see later that this is a consequence of working over the non-
perfectoid base Qp: the functorR 7→ R[ will be fully faithful on perfectoid fields (in fact, algebras)
over a perfectoid base field K.
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Chapter 4

Almost mathematics

In this chapter, we introduce Faltings’ theory of almost mathematics. This theory is essentially a
softening of commutative algebra that is possible when one works over a R equipped with an ideal
I such that I = I2; the basic idea is to redevelop the basic notions of commutative algebra whilst
systematically ignoring I-torsion modules. This idea was inspired by work of Tate (who observed
that ignoring K◦◦-torsion modules when working over the perfectoid field K = Q̂p(µp∞) was a
sensible and useful idea), and is crucial to a finer study of Fontaine’s tilting functor. We follow the
treatment of Gabber-Ramero [GR].

4.1 Constructing the category of almost modules
Let R be a ring equipped with an ideal I . In this situation, we have the following standard pair of
adjoints:

Construction 4.1.1. Restriction of scalars along R→ R/I gives a fully faithful functor

i∗ : ModR/I → ModR.

This functor has a left adjoint i∗ given by

i∗(M) = M ⊗R R/I,

and a right adjoint i! given by

i!(M) = HomR(R/I,M) = M [I].

We now specialize to the case of interest:

assumption:AlmostSetup Assumption 4.1.2 (The setup of almost mathematics). Assume I ⊂ R is a flat ideal and satisfies
I2 = I . This implies I ⊗R I ' I2 ' I .

The preceding assumption will be in place for the rest of this section.
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ex:AlmostSetup Example 4.1.3. Two classes of examples that will be relevant to us are:

• Let K be a perfectoid field. Set R = K◦ for a perfectoid field K and set I = K◦◦ to be the
maximal ideal. As torsionfree modules over valuation rings are flat, it is easy to see that I is
flat. In fact, we can be more explicit: if t ∈ K[,◦ is a pseudo-uniformizer, then a = t] has
a compatible system of p-power roots, and I = (a

1
p∞ ). In particular, I = colimn(a

1
pn ) is a

countable union of free K◦-modules, so it is flat of projective dimension ≤ 1.

• Let R be a perfect ring of characteristic p, and let I = (f
1
p∞ ) for f ∈ R. It is easy to see

that I2 = I in this case. Moreover, I is clearly flat if f ∈ R is a nonzerodivisor. To verify
flatness of I in general, set Mi = R for i ≥ 0, and consider the inductive system

M0
f
1− 1

p

−−−→M1
f

1
p−

1
p2

−−−−→M2 → ....→Mn
f

1
pn
− 1
pn+1

−−−−−−→Mn+1 → ...

Write M = colimMn, so M is a flat. There is an obvious map M → I given by sending
1 ∈ Mn to f

1
pn ∈ I . This map is surjective by construction, so it suffices to show it is also

injective. If α ∈ Mn = R goes to 0 in I , then αf
1
pn = 0. But then αpmf = 0 for all m ≥ n.

By perfectness of R, we learn that αf
1
pm = 0 for all m ≥ 0. In particular, the transition map

Mn →Mn+1 kills α, so α = 0 in M , proving injectivity of M → I .

Exercise 4.1.4. Using the second example in Example 4.1.3, show the following: if R is a perfect
ring of characteristic p and I ⊂ R is the radical of a finitely generated ideal, then R/I has finite
flat dimension over R.

In the situation above, one can construct an interesting localization ModaR of the category ModR
ofR-modules. This will be the category of almostR-modules. It can defined directly as an abstract
category. However, in order to have a tight relationship between this category and ModR, we will
need the following construction.

Construction 4.1.5 (The almost category in disguise). Let A ⊂ ModR be the full subcategory
spanned by all R-modules M such that the action map I ⊗RM → M is an isomorphism; equiva-
lently, as I ⊗R I ' I via the multiplication map, we can also describe A as the essential image of
the idempotent functor M 7→ I ⊗R M on ModR; this functor is exact by the flatness of I . Using
flatness of I , one checks that A is abelian subcategory of ModR that is closed under taking kernels,
cokernels, and images inside ModR. We will construct a series of auxiliary functors relating A

with ModR, eventually allowing us to realize A as a quotient of ModR.

• Write j! : A→ ModR for the resulting exact inclusion.

• The inclusion j! has an exact right adjoint j∗ : ModR → A given by the formula

j∗(M) = I ⊗RM.

The unit map N → j∗j!N is an isomorphism for any N ∈ A.
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Proof. We first note that I⊗RM ∈ A as I⊗R I ' I , so we have a well-defined functor. The
exactness is clear from the flatness of I . For adjointness, fix some N ∈ A and M ∈ ModR.
We must show that

HomA(N, I ⊗RM) ' HomModR(N,M).

Using the exact triangle
I ⊗RM →M →M ⊗LR R/I,

it is enough to show that RHomR(N,M ⊗LR R/I) ' 0. By adjointness, we have

RHomR(N,M ⊗LR R/I) ' RHomR/I(N ⊗LR R/I,M ⊗LR R/I).

But our hypothesis on N tells us that N ⊗R I ' N , and that this tensor product is derived
(by flatness of I). By associativity of (derived) tensor products, it is enough to show that

I ⊗LR R/I ' 0.

This follows from the flatness of I and the hypothesis I = I2.

Granting adjointness, the assertion about the unit map results from the isomorphism I '
I ⊗R I .

• The right adjoint j∗ has a further right adjoint j∗ given by the formula

j∗(M) = HomR(I,M).

The counit map j∗j∗M →M is an isomorphism for any M ∈ A.

Proof. Fix some N ∈ ModR. Then

HomA(j∗N,M) = HomR(I ⊗N,M) ' HomR(N,HomR(I,M)) = HomR(N, j∗(M)),

which proves the adjointness; here we use that Hom-⊗-adjunction the second isomorphism.

For the rest, fix some M ∈ A. We must show that I ⊗R HomR(I,M) ' M via the natural
“evaluation” map. As tensoring with I is exact, it suffices to show the stronger statement
that I⊗LR RHomR(I,M) 'M . As M ∈ A, we have I⊗LRM 'M , so it is enough to check
that the natural map M → RHomR(I,M) induces an isomorphism after tensoring with I .
Using the exact triangle

RHomR(R/I,M)→M → RHomR(I,M),

this reduces to showing that tensoring with I kills the term on the left. But the term on the
left admits the structure of an R/I-complex, so we can write

I ⊗LR RHomR(R/I,M) ' I ⊗LR R/I ⊗LR RHomR(R/I,M).

We now conclude using I ⊗LR R/I ' 0, as before.
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• The composition i∗j! is 0: we must show that if M ' I ⊗R M , then M ⊗R R/I ' 0. This
follows by observing that I ⊗R R/I ' 0.

• The composition i!j∗ is 0: we must show that ifM ' I⊗RM , then HomR(R/I,HomR(I,M)) '
0. But the adjointness of ⊗ and Hom identifies this with HomR(R/I ⊗R I,M), so we con-
clude using R/I ⊗R I ' 0.

• The composition j∗i∗ is 0: we must show that M⊗R I ' 0 ifM is I-torsion, but this follows
from M ⊗R I 'M ⊗R R/I ⊗R/I I ' 0, where the last equality uses R/I ⊗R I ' 0.

• The kernel of j∗ is exactly ModR/I : given M ∈ ModR with j∗(M) := I ⊗R M ' 0, we
must check that M is I-torsion. Tensoring M with the standard exact sequence 0 → I →
R→ R/I → 0 shows that M 'M/IM , so M is I-torsion.

The following remark explains why a more naive definition of A runs into trouble.

Warning 4.1.6. For generalM ∈ ModR, the action map I⊗RM →M has image inside IM ⊂M ,
and thus ifM ∈ A, then IM = M . However, the converse need not be true. ConsiderR = k[t]perf

for a perfect field k of characteristic p. Let I = (t
1
p∞ ), so R/I ' k is the residue field at the origin.

Let M ⊂ R/t be the maximal ideal inside the local ring R/t; this is the image of I/t inside R/t,
but does not coincide with I/t. As I = I2, it is easy to see that M = IM . However, the action
map I ⊗R M → M need not be injective. The kernel of this map is TorR1 (R/I,M). To calculate
this, we use the defining exact sequence

0→M → R/t→ R/I → 0.

Tensoring with R/I , and using that1 TorRi (R/I,R/I) = 0 for i > 0, we learn that

TorR1 (M,R/I) ' TorR1 (R/t,R/I).

The second group is computed to be nonzero using the standard resolution
(
R

t−→ R
)

of R/t, so
the claim follows.

We can now construct the promised category of almost R-modules.

Proposition 4.1.7. In the above situation, we have:

1. The image of i∗ is closed under extensions. In particular, i realizes ModR/I as an abelian
Serre subcategory of ModR, so the quotient ModaR := ModR/ModR/I exists by general
nonsense (see [SP, Tag 02MS]).

1This is a general fact about perfect rings. In our case, we may prove this as follows. Writing I = ∪nIn with
In := (t

1
pn ), we get TorRi (R/I,R/I) ' colimTorRi (R/In, R/In); here we use that Tor commutes with direct limits

in either variable. Using the standard resolution for
(
R

t
1

pn

−−→ R
)

of R/In, we see that the Tor’s vanish for i > 1.

For i = 1, we have a canonical identification TorR1 (R/In, R/In) ' In/I
2
n. We now observe that the transition maps

R/In → R/In+1 induce the 0 map In/I2n → In+1/I
2
n+1 as In ⊂ I2n+1. It follows that colimnTor

R
1 (R/In, R/In) =

0, as wanted.
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2. The quotient functor q : ModR → ModaR admits fully faithful left and right adjoints. Thus, q
commutes with all limits and colimits.

3. The image of i is a “tensor ideal” of ModR, so the quotient ModaR inherits a symmetric
monoidal ⊗-product from ModR.

4. The ⊗-structure on ModaR is closed, i.e., to X, Y ∈ ModaR, one can functorially an object
alHom(X, Y ) ∈ ModaR equipped with a functorial isomorphism

Hom(Z ⊗X, Y ) ' Hom(Z, alHom(X, Y )).

Proof. 1. If an R-module M can be realized as an extension of two R-modules killed by I ,
then M is itself killed by I2. But I = I2, so M is also killed by I . Thus, the image of i
is closed under extensions. The rest is by category theory, but we shall construct an explicit
candidate for ModaR in the proof of (2).

2. We claim that the functor j∗ : ModR → A introduced above provides an explicit realization
of the quotient functor q : ModR → ModaR. To check this, we must show that:

• j∗(ModR/I) = 0: this amounts to show that I ⊗R M = 0 for an R-module M killed
by I . But, for such M , we have I ⊗R M = I ⊗R R/I ⊗R/I M = I/I2 ⊗R M = 0 as
I = I2.

• j∗ is exact: this follows from the description j∗(M) = I ⊗RM and the flatness of I .

• j∗ is universal with the previous two properties: let q′ : ModR → B be an exact functor
of abelian categories such that q′(ModR/I) = 0. Fix some M ∈ ModR. We then have
the canonical action map I ⊗R M → M . The kernel and cokernel of this map are
identified with TorRi (R/I, I) for i = 1, 0. In particular, the kernel and cokernel are
killed by I , and thus also by q′. As q′ is exact, we learn that q′(I ⊗RM) ' q′(M). But
I ⊗R M =: j!j

∗(M), so we have shown that q′ ' q′j!j
∗, so q factors through j∗, as

wanted.

3. If M is killed by I , so M ⊗R N for any R-module N . By category theory, this implies that
the symmetric monoidal structure on ModR passes to the quotient A. In particular, j∗ is
symmetric monoidal.

4. Given M,N ∈ ModR, we simply set alHom(j∗(M), j∗(N)) = j∗HomR(M,N); this is
well-defined by (3) as HomR(M,N) is I-torsion if either M or N is so. Checking the rest is
left to the reader.

Remark 4.1.8 (The topological analog). The construction above can be summarized in the follow-
ing diagram:

ModR/I
i∗ //ModR
i!oo

i∗oo
j∗ //ModaR = A.

j!oo

j∗oo
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Here we have the adjoint pairs (i∗, i∗), (i∗, i
!), (j!, j

∗) and (j∗, j∗). Moreover, each composition in
a straight line in the above diagram is the 0 functor: i∗j! ' 0, i!j∗ ' 0, and i∗j∗ ' 0.
The notation is meant to remind the reader of the analogous situation in topology: if X is a

topological space with an open subset j : U ↪→ X with complement i : Z ↪→ X , then we have a
similar diagram of topoi:

Shv(Z)
i∗ // Shv(X)
i!oo

i∗oo
j∗ // Shv(U).

j!oo

j∗oo

Moreover, the pairs of functors giving adjoint pairs and the pairs composing to 0 are the same as
before. In fact, the analogy can be stretched a bit further. Recall that we may view ModR as quasi-
coherent sheaves on X := Spec(R), and ModR/I as quasi-coherent sheaves on Z := Spec(R/I).
However, the category ModaR is not the category of quasi-coherent sheaves on U := X − Z (or
any other open subset of X). Instead, we think of ModaR as quasi-coherent sheaves on some non-
existent open U ⊂ X that contains U (as restriction to U factors through j∗).

Exercise 4.1.9. Let R = k[t
1
p∞ ] for a perfect field k of characteristic p, and let I = (t

1
p∞ ). Show

that the extension of scalars functor ModR → ModR[t−1] given by M 7→ M ⊗R R[t−1] factors
through ModaR, and that the resulting functor ModaR → ModR[t−1] is not an equivalence.

4.2 Almost commutative algebra
We continue in the setup of Assumption 4.1.2. For notational ease and compatibility with Gabber-
Ramero, we rewrite some of the functors introduced in the previous section as:

Definition 4.2.1. Fix an R-module M . We say that an element f ∈ M is almost zero if I · f = 0.
We say that M is almost zero if all its elements are almost zero, i.e., M is I-torsion. In general,
write

Ma := j∗M ∈ Moda
R, M∗ := j∗M

a := HomR(I,M), M! := j!M
a = I ⊗RM,

We refer to elements of M∗ as almost elements of M . A map f : M → N of R-modules is
almost surjective (resp. almost injective, almost isomorphism) if fa is surjective (resp. injective,
isomorphism). We sometimes refer to an almost R-module as an Ra-module, and likewise for
algebras.

With the notation above, we have canonical maps M! → M → M∗, and they both become
isomorphisms on almostification, i.e., after applying (−)a. We record some useful examples of the
notion of almost elements.

ex:AlmostElements Example 4.2.2. Let R = K◦ for a perfectoid field K and I = K◦◦.

• If M is I-torsion, then M∗ = 0.

• If M is a torsionfree R-module, then M∗ ' {m ∈M ⊗K◦ K | ε ·m ∈M for all ε ∈ I}.
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• R∗ = R and I∗ = R. More generally, given an ideal J ⊂ R, the ideal J∗ is principal exactly
when

c := sup(|x| | x ∈ J) ≤ 1

lies in |K|. This is clear if J is principal: we have c = |x| for a generator x ∈ J , and J∗ = J .
If J is not principal, then J = {a ∈ K | |a| < c} for c = sup(|x| | x ∈ J) by valuation
yoga2. It then follows that J∗ = {a ∈ K | |a| ≤ c}, which is principal exactly when c ∈ |K|.

• If t ∈ R is a pseudouniformizer, then R/t→ (R/t)∗ is injective, but need not be surjective:
the obstruction lies in Ext1

R(I, R), which may be nonzero.

• Let K = Q̂p[p
1
p∞ ] and let L := (W (Fp(t)perf )[p

1
p∞ ])̂[1

p
]; these are both perfectoid fields,

and K ⊂ L. Let A ⊂ L◦ be the rank 2 valuation ring in Example 3.2.7. Then A is a
K◦-algebra, and A∗ = L◦: the cokernel of A→ L is killed by K◦◦ by construction.

The functor (−)! is exact, but the functor (−)∗ is only left exact. Its higher derived functors will
appear (at least implicitly) in some arguments that follow, so we explain how to calculate them.

exer:DeriveAlmostElements Exercise 4.2.3 (Derived functors of (−)∗). The bifunctor HomRa(M
a, Na) can be derived in any

variable to convert short exact sequences to long exact sequences (in the usual fashion). In fact, we
get these derivatives by the formula

ExtiRa(M
a, Na) := ExtiR(I ⊗M,N) ' ExtiR(M,RHomR(I,N)).

In particular, if 0 → M ′ → M → M ′′ → 0 be a short exact sequence of Ra-modules, we have a
long exact sequence

...→ ExtiRa(R
a,M ′)→ ExtiRa(R

a,M)→ ExtiRa(R
a,M ′′)→ Exti+1

Ra (Ra,M ′)→ ...,

deriving the functor of almost elements. An explicit nonzero example of a higher Ext-group is
given in Remark 4.2.5.

We now extend some basic notions of commutative algebra to the almost world:

Definition 4.2.4. Let M ∈ ModR with image Ma ∈ ModaR. Then

1. We say thatM orMa is almost flat ifMa⊗(−) is exact on ModaR; equivalently, TorR>0(M,N)
is almost zero for any R-module N .

2. We say thatM orMa is almost projective if alHom(M,−) is exact; equivalently, Ext>0
R (M,N)

is almost zero for any R-module N .

2The containment ⊂ is clear as J is non-principal, and the reverse follows by noting that if |a| < c with a /∈ J ,
then |a| > |x| for any x ∈ J (as |J | ⊂ |K| is closed under taking smaller elements, via scalar multiplication), whence
|a| ≥ c, contradicting the assumption |a| < c.
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3. We say that M or Ma is almost finitely generated (resp. almost finitely presented) if for each
ε ∈ I , there exists a finitely generated (resp. finitely presented) R-module Nε and a map
Nε → N with kernel and cokernel killed by ε. If the number of generators of Nε can be
bounded independently of ε, we say that M is uniformly almost finitely generated.

The last definition given above depends a priori on the choice of the R-module M giving Ma

on almostification. However, one checks readily that, in fact, the definition is independent of this
choice.

rmk:AlmostCategoricalProjective Remark 4.2.5 (Categorical projectivity gives the incorrect notion). The notion of almost projec-
tivity is distinct from the categorical notion of projectivity in the abelian category ModaR: the latter
is far more restrictive. Indeed, the ring R is almost projective with the above definition. However,
Ra need not be a projective object of ModaR. In fact, using Exercise 4.2.3, one can show: with
R = K◦ and I = K◦◦ for a perfectoid field K with residue field k, the group Ext1

Ra(R
a, Ra)

identifies with Ext2
R(k,R), and is nonzero if K is not spherically complete (such as K = Q̂p).

rmk:AlmostCategoricalInjective Remark 4.2.6 (Injectives behave well). The category ModaR has enough injectives. In fact, if I is
an injective R-module, then Ia is injective (as (−)a has an exact left-adjoint (−)!). Conversely, if
J ∈ ModaR is injective,then J∗ is an injective R-module (as (−)∗ has an exact left-adjoint (−)a)
such that (J∗)

a ' J . Thus, we may construct injective resolutions in ModaR by simply computing
them in ModR (under either (−)∗ or (−)!) and applying almostification.

We give an example illustrating why the notion of almost finite generation is defined as above
(instead of a stronger condition).

ex:QuadraticROI Example 4.2.7 (A quadratic extension of a perfectoid field). Let K = Q̂p[p
1
p∞ ], and L = K(

√
p)

with p 6= 2. Then we claim that L◦ is a uniformly almost finitely presented projective K◦-module.
For this, it suffices to show: for each n, there exists a finite free K◦-module Rn of rank 2 and an
injective map Rn → L◦ with cokernel annihilated by p

1
pn . (Indeed, then p

1
pn on either module will

factor over this map, showing Ext>0
K◦(L

◦,−) is killed by p
1
pn for all n, and thus almost zero.)

Set Rn = K◦ ⊕K◦ · p
1

2pn ⊂ L◦, so we have L◦ ' ̂colimnRn. We first claim that the cokernel of
Rn → Nn+1 is killed by p

1
pn . To see this, observe that

p
1
pn · p

1
2pn+1 = p

(p+1)/2

pn+1 · p
1

2pn .

It follows that the cokernel of Rn → colimmRm is killed by

p
∑
m≥n

1
pn = p

p
pn·(p−1) .

Strictly speaking, the element written above does not make sense: its norm does not live in |K∗| =
|p|Z[ 1

p
]. However, any element that is more divisible (i.e., has smaller norm) also works by the

same reasoning. In particular, the cokernel of Rn → colimmRm is killed by p
1

pn−1 . This shows
that, as R0 is p-adically complete, so is colimnRn, and thus L◦ = colimnRn. But then each Rn is
finite projective of rank 2, and the cokernel of the injective map Rn → L◦ is killed by p

1
pn−1 . In

particular, L◦ is an uniformly almost finitely presented projective K◦-module.
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We also pause to explain the construction of honest algebras from almost algebras in a fashion that
respects faithful flatness. Strictly speaking, the rest of these notes can be developed without refer-
ence to this functor. However, this functor is quite convenient in extracting honest consequences
out of an almost mathematical statement, so we shall use it.

rmk:LeftAdjointAlmostAlgebras Remark 4.2.8 (Left adjoint to almostification for algebras). As ModaR has a symmetric monoidal
structure, there is an evident notion of a commutative algebra object in this category: it is given
by an object S ∈ ModaR with maps Ra → S and S ⊗ S → S satisfying some natural natural
axioms). Write CAlg(ModaR) for the category of commutative algebras in almost R-modules. The
almostification functor M 7→ Ma commutes with tensor products, and hence takes commutative
algebras to commutative algebras, inducing a functor

(−)a : CAlg(ModR)→ CAlg(ModaR).

The functor M 7→ M∗ is lax symmetric monoidal (i.e., there is a canonical map M∗ ⊗R N∗ →
(M ⊗ N)∗ for M,N ∈ ModaR), and hence takes commutative algebras to commutative algebras.
In fact, the resulting functor

(−)∗ : CAlg(ModaR)→ CAlg(ModR)

is easily seen to be a right adjoint to the almostification functor (−)a. In contrast, the left adjoint
M 7→ M! to almostification does not preserve commutative algebras: if A is an almost R-algebra,
then A! does carry a multiplication as (−)! commutes with non-empty tensor products, but, as
Ra

! = I does not coincide with R, so one does not have a unit for A!. To fix this, given such an
A, define A!! as pushout of R ← I ' Ra

! → A!. There is then a unique way to make A!! into a
commutative ring such that the defining map R → A!! is a unit and the defining map A! → A!! is
compatible with the multiplication. This construction gives a functor

(−)!! : CAlg(ModaR)→ CAlg(ModR)

that is left-adjoint to the almostification functor (−)a, see [GR, §2.2.23]. The crucial properties
are:

1. (−)!! commutes with colimits (clear by adjointness).

2. (Exercise) (−)!! preserves faithful flatness. However, it may not preserve flatness; see [GR,
Remark 3.1.3].

Note that there is a natural map A!! → A∗ of almost algebras which is an almost isomorphism; this
can often be used to move completeness properties between the two rings.

4.3 Almost étale extensions
The main point of making the definitions earlier is to enable discussion of the following key notion:

Definition 4.3.1. A map A→ B of Ra-algebras is almost finite etale if

25



1. (Finite projectivity) B is an almost finite presented projective A-module.

2. (Unramifiedness) There exists a diagonal idempotent in (B ⊗A B)∗, i.e., an element e ∈
(B ⊗A B)∗ such that e2 = e, µ∗(e) = 1, and ker(µ)∗ · e = 0, where µ : B ⊗A B → B is the
multiplication map.

We write Aafet for the category of almost finite étale maps A→ B.

An instructive example of such maps arises from Example 4.2.7.

Example 4.3.2. Let K = Q̂p[p
1
p∞ ], and L = K(

√
p) with p 6= 2. We shall show that L◦/K◦ is

almost finite étale. In fact, as K◦ is a valuation ring and L◦ is a torsionfree K◦-module, flatness
is clear. We have already shown that L◦ is a uniformly almost finitely presented projective K◦-
module in Example 4.2.7. It remains to verify almost unramifiedness. For this, note that L/K is a
Galois extension of degree 2, and hence we have a canonical isomorphism

can : L⊗K L ' L× L via a⊗ b 7→ (ab, aσ(b)),

where σ : L → L denotes the non-trivial Galois automorphism. Using this presentation, we see
that the idempotent e ∈ L⊗K L is given by the formula

e =
1

2
√
p⊗ 1

(1⊗√p+
√
p⊗ 1) ∈ L⊗K L.

It is then easy to see that p · e ∈ L◦ ⊗K◦ L◦. But note that using the isomorphism can above, we
also have

e =
1

2p
1

2pn ⊗ 1
(1⊗ p

1
2pn + p

1
2pn ⊗ 1) ∈ L⊗K L.

This then gives p
1
pn · e ∈ L◦ ⊗K◦ L◦. As this is true for all n ≥ 0, we learn that e ∈ (L◦ ⊗K◦ L◦)∗,

as wanted.

To give further examples, we review a standard algebraic construction that explicitly exhibits
finite étale algebras as finite projective modules in terms of the diagonal idempotent:

cons:FiniteEtaleDiagonalIdempotent Construction 4.3.3 (Finite étale algebras seen explicitly as finite projective modules). Let R be a
ring, and let R → S be a finite étale extension. Let e ∈ S ⊗R S be the diagonal idempotent
cutting out the multiplication µ : S ⊗R S → S, i.e., e2 = e and ker(µ) = 0. Using e, one has a
product decomposition ψ : S ⊗R S ' S × S ′ with the projection to S map corresponding to µ and
ψ(e) = (1, 0). Write e =

∑n
i=1 ai ⊗ bi for ai, bi ∈ S. Then we can explicitly realize S is a direct

summand of Rn via the maps
S

α−→ Rn β−→ S

given by

α(f) = (TrS/R(fai)) and β((gi)) =
n∑
i=1

gibi.
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To see this works, we must show that β ◦ α = id. In other words, we want to check that

n∑
i=1

TrS/R(fai)bi = f (4.1) eq:TraceIdentity

for any f ∈ S. To prove this, note that

Tri2(e) = TrS/S(1) = 1,

where i2 : S → S ⊗R S is the second inclusion s 7→ 1 ⊗ s; this formula is proven by using
the isomorphism ψ and the observation that trace maps are additive across products of finite étale
S-algebras. Plugging in e =

∑
i ai ⊗ bi above and using the compatibility of trace maps with base

change, we get
n∑
i=1

TrS/R(ai)bi = 1.

In particular, this verifies (4.1) for f = 1. In general, one repeats the same argument by replacing
e with (f ⊗ 1) · e (which equals (1⊗ f) · e as ker(µ) · e = 0).

Using this construction, we arrive at the almost purity theorem in characteristic p, which provides
a large supply of almost finite étale covers:

prop:APTCharp Proposition 4.3.4 (Almost purity in characteristic p: primitive version). Let η : R → S be an in-
tegral map of perfect rings. Assume that η[1

t
] is finite étale for some t ∈ R. Then η is almost finite

étale with respect to the ideal I = (t
1
p∞ ).

In other words, the assumption that η[1
t
] on the “generic fibre” spreads out to the conclusion that

η is almost finite étale on the “almost integral fibre”. This style of propogation of information from
the generic fibre to the almost integral context will occur repeatedly in the sequel.

Proof. We first begin by reducing to the t-torsionfree case by observing that the t-power torsion
ideals R[t∞] ⊂ R and S[t∞] ⊂ S are almost zero. Indeed, given α ∈ R with tc · α = 0 for some
c ≥ 0, we have tcαpn = 0 in R for all n ≥ 1, and therefore t

c
pnα = 0 in R by perfectness; this

shows that R[t∞] is almost zero, and similarly for S[t∞]. Replacing R with R/R[t∞] and S with
S/S[t∞] (which does not change the corresponding almost rings), we may assume that both R and
S are t-torsionfree.
Next, we reduce to the case where R is integrally closed in R[1

t
], and likewise for S. Let Rint be

the integral closure of R in R[1
t
]. Then, for any f ∈ Rint, the R-submodule of R[1

t
] spanned by

fN is finitely generated, and hence contained in t−cR for some c ≥ 0. Thus, we have tcfpn ∈ R
for all n ≥ 0. By perfectness, this means that t

c
pn f ∈ R for all n ≥ 1, so f ∈ R∗. In other words,

the map R→ Rint is an almost isomorphism. As the conclusion of the proposition is insenstive to
passage to the almost world, we may assume that both R and S are integrally closed in R[1

t
] and

S[1
t
] respectively.

We next check almost unramifiedness. Let e ∈ (S⊗R S)[1
t
] be the diagonal idempotent. Then tce

comes from S⊗R S for some c ≥ 0. As epn = e and all rings in sight are perfect, we conclude that
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t
c
pn e comes from S ⊗R S for all n ≥ 0. In other words, e ∈ (S ⊗R S)∗. Thus, R → S is almost

unramified.
It remains to show that S is almost finite projective over R. Fix some m ≥ 0, and represent
t

1
pm · e ∈ (S ⊗R S)[1

t
] as an element

∑n
i=1 ai ⊗ bi ∈ S ⊗R S (which is possible by the previous

paragraph). Now consider the maps
S

α−→ Rn β−→ S

given by

α(f) = (TrS/R(fai)) and β((gi)) =
n∑
i=1

gibi.

The maps make sense as R is integrally closed in R[1
t
]. The analysis in Construction 4.3.3 shows

that we have an equality of maps β ◦ α = t
1
pm : this is true after inverting t, and thus on the nose as

S is t-torsionfree. In particular, multiplication by t
1
pm on S factors through a finite free R-module.

As this is true all m, we conclude that S is an almost finite projective R-module.

rmk:AlmostFiniteEtaleMapsCoversCharp Remark 4.3.5 (Covers spread out to covers). In the context of Proposition 4.3.4, assume further
that R[1

t
] → S[1

t
] is injective. Then one can show that R → S is almost split; consequently,

this map is an almost finite étale cover, i.e., it is almost faithfully flat. In fact, by the reductions
in the proof above, we may assume that R is an integrally closed subring of R[1

t
]. There is then

an induced trace map Tr : S[1
t
] → R[1

t
]. We claim that this map satisfies t

1
p∞ ∈ Tr(S); this

immediately implies that R → S is almost split. To see this claim, observe that tc ∈ Tr(S) for
some c ≥ 0 since Tr(S[1

t
]) = R[1

t
] as R[1

t
]→ S[1

t
] is a finite étale cover. It is easy to see that trace

maps are compatible with Frobenius; this is a version of the projection formula. So, if we write
tc = Tr(f) for some f ∈ S, then t

c
pn = Tr(f

1
pn ). As this holds true for all n, the claim follows.

We can upgrade the preceding objectwise statement to an equivalence of categories:

thm:APTCharp Theorem 4.3.6 (Almost purity in characteristic p: categorical version). Let R be a perfect ring of
characteristic p, and consider almost mathematics with respect to I = (t

1
p∞ ) for a fixed element

t ∈ R. Then inverting t gives an equivalence of categories Rafet ' R[1
t
]fet.

Proof. As in the proof of Proposition 4.3.4, we may assume that t is a nonzerodivisor on R. We
must show that the functor Rafet → R[1

t
]fet obtained via S 7→ S∗[

1
t
] is an equivalence. As any

integral extension ofR[1
t
] is obtained by inverting t in an integral extension of R, Proposition 4.3.4

gives the essential surjecitivty. For full faithfulness, fix some S ∈ Rafet. We claim:

Lemma 4.3.7. S ' T a for the integral closure T of R in S∗[1
t
]

Proof. We begin by noting that S is perfect: this follows from the almost version of Lemma 4.3.8
as almost finite étale maps are easily seen to be weakly étale. By functoriality, we learn that
S∗ is perfect. Moreover, as S is almost flat over R, the element t ∈ S∗ is a nonzerodivisor, so
S∗ ⊂ S∗[

1
t
]. It is also clear that T is perfect, that t ∈ T is a nonzerodivisor, and that R → T is

an integral extension of perfect rings that is identified with R[1
t
] → S∗[

1
t
] on inverting t. To show

T a = S, we shall check T∗ = S∗. For ⊂, fix some f ∈ T . As R→ T is integral, the set fN spans
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a finitely generated R-submodule of T ⊂ T [1
t
] = S∗[

1
t
]. Hence, it must lie inside some t−cS∗. This

gives tcfN ∈ S∗. By perfectness of S∗, we conclude that t
c
pn · f ∈ S∗ for all n ≥ 0, and hence

f ∈ (S∗)∗ = S∗. This gives T ⊂ S∗, and hence T∗ ⊂ S∗. Conversely, for any g ∈ S∗, the set t · gN
is contained in finitely generated R-submodule of S∗ by almost finite generation of S over R. In
particular, t · gN lies in a finitely generated T -submodule of S∗. As T [1

t
] = S∗[

1
t
], it follows that

t · gN ∈ t−cT for some c ≥ 0. Thus, tc+1gN ∈ T . But then t
c+1
pn g ∈ T for all n ≥ 0 by perfectness

of T , so g ∈ T∗.

The lemma recovers S functorially from the map R→ S∗[
1
t
], so the claim follows.

The next result is a slightly non-standard variant of a standard result in commutative algebra and
was used above. The proof given below may feel a bit contrived, but we have tried to make sure it
adapts readily to the almost context; see also [GR, Theorem 3.5.13] for the original source of the
argument.

lem:WeaklyEtaleFrobenius Lemma 4.3.8. Let A → B be weakly étale map of Fp-algebras, i.e., both A → B and µ : B ⊗A
B → B are flat. Then the diagram

A
FrobA //

��

A

��
B

FrobB // B

is a pushout square of rings. In particular, if A is perfect, so is B.

Proof. We shall use the following stability properties of weakly étale maps without proof: weakly
étale maps are stable under base change and composition, and any map between weakly étale maps
is weakly étale.
Now let B(1) = B ⊗A,FrobA A be the actual pushout, and consider the induced relative Frobenius
FB/A : B(1) → B. We must show that FB/A is an an isomorphism. This is a map between weakly
étale A-algebras, and is thus weakly étale. On the other hand, a diagram chase reveals that FB/A
factors Frobenius on both B(1) and B. So it suffices to show that any weakly étale map α : R→ S
of Fp-algebras that factors a power of Frobenius on R and S is an isomorphism. We first claim
that any such α is faithfully flat, i.e., if R/I ⊗R S ' 0 for some ideal I ⊂ R, then R/I = 0. By
base change, we reduce to the case R = R/I , so we must check that S = 0 implies R = 0. But
Frobenius on R factors over S, so this is clear. To show that α is an isomorphism, note that the
property of a map to factor a power of Frobenius on source and target is stable under composition,
base change, and passes to sections. By base change along itself, we may assume α has a section
β : S → R. But then β is also weakly étale, and factors a power of Frobenius on both S and R
(as the same holds true for α). It follows that β is a faithfully flat surjective map, and hence an
isomorphism: the kernel is carried to 0 along β∗ and must thus be 0. As β is a section to α, it
follows that α is an isomorphism too.

Exercise 4.3.9. Let (R,m) be a complete noetherian local Fp-algebra. Using a suitable Noether
normalization, show that Rperf is almost Cohen-Macaulay, i.e., there exists some nonzerodivisor
g ∈ R such that H i

m(Rperf ) is almost zero with respect to I = (g
1
p∞ ) for i < dim(R).
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4.4 Some more almost commutative algebra
We end this chapter by collecting some lemmas in almost commutative algebra that will be useful
later. They are mainly concerned with the interaction of the completion operation with the functors
relating the almost category to the honest modules.

lem:AlmostElementsCompletion Lemma 4.4.1. Fix a perfectoid field K. Let R = K◦ and I = K◦◦. Fix a pseudouniformizer t ∈ I
and M ∈ ModaR.

1. M is almost flat if and only if M∗ is R-flat if and only if M! is almost flat.

2. Assume M is almost flat. Then M is t-adically complete if and only if M∗ is so.

3. Assume M is almost flat. Then for each t ∈ K◦, we have tM∗ ' (tM)∗, and M∗/tM∗ ⊂
(M/tM)∗ by the canonical map. Moreover, for each ε ∈ I , the images of

(M/tεM)∗ → (M/tM)∗ ←M∗/tM∗

are identical.

Proof. 1. For (−)∗: asR is a valuation ring,M∗ isR-flat exactly whenM∗[t] = 0. AsM 7→M∗
is left exact, we have M∗[t] = (M [t])∗. Thus, if M is almost flat, then M∗ is R-flat. The
converse is clear as M = (M∗)

a.

For (−)!: this follows from the observation that both (−)! and (−)a are exact and commute
with tensor products.

2. As (−)a commutes with limits and colimits, there is nothing to prove in the forward direc-
tion. Conversely, assume M is flat and t-adically complete. Then M∗ and M! are also flat by
(1). Now consider the commutative diagram

M!
a //

d

��

lim(M/tnM)! ' limM!/t
nM! =: M̂!

b
��

M∗
c // lim(M/tnM)∗.

Here the isomorphism on the top right arises from the commutation of (−)! with colimits.
The map c is an isomorphism as (−)∗ commutes with limits and M is t-adically complete.
Both b and d are almost isomorphisms as (−)! → (−)∗ is an almost isomorphism of functors.
It particular, a is an almost isomorphism as well. As M! is torsionfree, it follows that a and
d are injective with almost zero cokernel. As the target of a is clearly t-adically complete,
Lemma 4.4.2 shows that M! must be t-adically complete. But then Lemma 4.4.2 again
applied to d shows that M∗ must be t-adically complete as well.

3. The assertion tM∗ = (tM)∗ follows from the left-exactness of (−)∗. Exactness of (−)a and
left-exactness of (−)∗ then give M∗/tM∗ ⊂ (M/tM)∗.
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For the rest, consider the canonical map of short exact sequences of Ra-modules:

0 //M
t //

��

M //

��

M/tM //

��

0

0 //M/εM
x //M/tεM //M/tM // 0.

Applying (−)∗ = HomRa(R
a,−) and using Exercise 4.2.3, we get a diagram

0 //M∗/tM∗
a //

��

(M/tM)∗ // Ext1
Ra(R

a,M)[t] //

c
��

0

0 // (M/tεM)∗
b // (M/tM)∗ // Ext1

Ra(R
a,M/εM)

with exact rows. We wish to show that a and b have the same image. It thus suffices to show
c is injective. Now note that Ext1

Ra(R
a,M) is almost zero (as it vanishes once we pass back

to the almost world), and thus

Ext1
Ra(R

a,M)[t] = Ext1
Ra(R

a,M).

Thus, we want the canonical map M → M/εM to induce an injection on Ext1
Ra(R

a,−).
Applying HomRa(R

a,−) to the sequence

0→M
ε−→M →M/εM → 0,

it is enough to show that multiplication by ε on Ext1
Ra(R

a,M) is 0. But this group is almost
0, so multiplication by ε certainly vanishes.

2. We can also give a proof of (2) using (3), and avoiding the (−)! functor. If M∗ is complete,
so is M ' (M∗)

a: the functor (−)a commutes with limits and colimits. Conversely, assume
M is complete. Then we have M ' limM/tnM . As (−)∗ commutes with limits, this gives
M∗ ' lim(M/tnM)∗. Using the pro-isomorphism {M∗/tnM∗} and {(M/tnM)∗} from (3),
this yields M∗ ' limM∗/t

nM∗, as wanted. , we get the conclusion.

The following general lemma was used above:

lem:CompletionSubobjects Lemma 4.4.2. Let A be a ring equipped with a nonzerodivisor t. Let α : M → N be a map of t-
torsionfree A-modules. Assume that α is injective with t-torsion cokernel Q. Then M is t-adically
complete if and only if N is so.

Proof. Consider the short exact sequence

0→M → N → Q→ 0. (4.2) eq:AlmostCompletion1

Reducing modulo tn, we get an exact sequence

0→ Q[tn]→M/tn → N/tn → Q→ 0.
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As n varies, these form a natural projective system of exact sequences, where the transition maps
Q[tn+1] → Q[tn] are given by multiplication by t, and are thus 0 as Q is killed by t. Passing to
inverse limits, we get an exact sequence

0→ M̂ → N̂ → Q→ 0. (4.3) eq:AlmostCompletion2

The claim now follows by the snake lemma applied to the obvious map of short sequences from
(4.2) to (4.3).

In fact, it turns out that completions and (−)∗ interact well in general. The next proposition
fleshes this out using the language of derived completions; this is not relevant to the sequel.

Proposition 4.4.3. Fix (R, I) as in the rest of this section. Fix J = (f1, ..., fr) ⊂ R a finitely
generated ideal. Then an Ra-module M is J-adically complete if and only if M∗ is so.

Proof. As (−)∗ commutes with limits and colimits, the ”if” direction is clear. Conversely, assume
M is J-adically complete, and fix a representative N with Na = M . The J-adic completeness
of M means that R limfi N is almost zero for all i, and thus R-complex RHomR(I,N) is derived
J-complete. Passing to cohomology shows that M∗ = HomR(I,N) is also derived J-complete.
The J-adic completeness of M and commutation of (−)∗ with limits shows that

M∗ ' lim(M/JnM)∗

The canonical factorization

M∗ → lim(M∗/J
nM∗)→ lim(M/JnM)∗,

shows that the first map must be injective. This implies that M∗ is J-adically separated. As any
derived J-complete and J-adically separated R-module is J-adically complete, we are done.
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Chapter 5

Non-archimedean Banach algebras via
commutative algebra

The goal of this chapter is record a dictionary to translate the language of Banach algebras over
a non-archimedean field into classical commutative algebra. Along the way, we also need to dis-
cuss the behaviour of integral closures (as well as variants, such as total integral closures) under
completions.

5.1 Commutative algebras: completions and closures
We discuss the preservation of certain integral closedness properties under completions. We begin
with the notion of p-root-closedness:

lem:CompletionPRC Lemma 5.1.1. Let A be a ring equipped with a nonzerodivisor f ∈ A. Assume that A ⊂ A[ 1
f
] is

p-root closed, i.e., if g ∈ A[ 1
f
] and gp ∈ A, then g ∈ A. Then:

1. Â ⊂ Â[ 1
f
] is p-root-closed (where the completion is f -adic).

2. Assume that f admits a compatible system of p-power roots. Then A∗ ⊂ A∗[
1
f
] is p-root-

closed (where almost mathematics is performed with respect to (f
1
p∞ )).

Proof. We first check that we can replace A with its maximal separated quotient A/I , where
I = ∩nfnA. First, we need f to be a nonzerodivisor on A/I: if g ∈ A such that fg ∈ I , then
fg ∈ fnA for all n, and thus g ∈ fn−1A for all n as f is a nonzerodivisor, which gives g ∈ I .
Next, we need A/I ⊂ A/I[ 1

f
] to be p-root-closed: if a ∈ A/I[ 1

f
] such that ap ∈ A/I , then we can

write ãp = b + f−cd for some lift ã ∈ A[ 1
f
] of a, an integer c ≥ 0, and elements b, d ∈ A with

d ∈ I . But I = fI = f cI , so f−cd ∈ I as well, and thus ãp ∈ A, so ã ∈ A by the p-root-closure
assumption. Thus, we have reduced to the case where A is f -adically separated. In particular,
A→ Â is injective.
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1. Choose g ∈ Â[ 1
f
] such that gp ∈ Â. Choose some N such that fN · g ∈ Â. Choose another

integer m with m ≥ N · (p − 1). By the density of A[ 1
f
] ⊂ Â[ 1

f
], as fmÂ ⊂ Â[ 1

f
] is open,

we can write
g = g0 + fmg1,

where g0 ∈ A[ 1
f
], and g1 ∈ Â. Note that fN · g0 ∈ Â since fN · g and fN · fmg1 both lie in

Â. Raising to the p-th power, we can write

gp = gp0 +

(
p

1

)
gp−1

0 fmg1 +

(
p

2

)
gp−2

0 (fmg1)2 + ..+ (fmg1)p.

As m ≥ N · (p − 1), it is easy to see that all terms on the right except possibly gp0 lie in Â.
The same is true for the left side by assumption. But then gp0 ∈ A. As A ⊂ A[ 1

f
] is p-root

closed, it follows that g0 ∈ A, and thus g ∈ Â.

2. Choose g ∈ A[ 1
f
] with gp ∈ A∗. Then f

1
pn · gp ∈ A for all n ≥ 0. But then (f

1
pn+1 · g)p ∈ A

for all n ≥ 0. As A is p-root closed, we learn f
1

pn+1 · g ∈ A for n ≥ 0, and thus g ∈ A∗.

Analogously, integral closures also behave well under completions:

lem:CompletionIC Lemma 5.1.2. Let A be a ring equipped with a nonzerodivisor f ∈ A. Assume that A ⊂ A[ 1
f
] is

integrally closed. Then:

1. Â ⊂ Â[ 1
f
] is integrally closed.

2. Assume that f admits a compatible system of p-power roots. Then A∗ ⊂ A[ 1
f
] is integrally

closed (where almost mathematics is performed with respect to (f
1
p∞ )).

Proof. We first check that we can replace A with its maximal separated quotient A/I , where
I = ∩nfnA. As in the proof of Lemma 5.1.1, we know that f is a nonzerodivisor on A/I , and
that I is uniquely f -divisible. Choose some g ∈ A/I[ 1

f
] which satisfies a monic polynomial

h(X) ∈ A/I[X] over A/I . Choose lifts g̃ ∈ A[ 1
f
] and h̃(X) ∈ A[X]. Then h̃(g̃) ∈ I[ 1

f
]. But

I is uniquely f -divisible, so I = I[ 1
f
], and thus h̃(g̃) ∈ I ⊂ A. Thus, g̃ is integral over A. The

hypothesis on A then shows that g̃ ∈ A, and thus g ∈ A/I as well. We have now reduced to the
case where A is f -adically separated. In this case, one checks that A = Â ∩ A[ 1

f
] ⊂ Â[ 1

f
].

1. Choose g ∈ Â[ 1
f
] with g integral over Â. Then g = f−ch with h ∈ Â and c ≥ 0. By

integrality, we can write

gn = an−1g
n−1 + an−2g

n−2 + ...+ a0
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for some ai ∈ Â. Scaling by f cn, this gives

hn = f can−1h
n−1 + f 2can−2h

n−2 + ...+ f cna0.

for some bi ∈ Â. By approximation, we can choose h0 ∈ A with h0 ≡ h mod f cn and
bi ∈ A with bi ≡ ai mod f cn. This allows us to write

hn0 = f cbn−1h
n−1
0 + f 2cbn−2h

n−2
0 + ...+ f cnb0 + f cnd

for some d ∈ Â. But then d ∈ Â ∩ A[ 1
f
] = A, so the previous equation is taking place in A.

Dividing both sides by f cn then shows that g0 = f−ch0 ∈ A[ 1
f
] is integral over A, and hence

g0 ∈ A by integral closedness. Thus, h0 ∈ f cA. As we have h ≡ h0 mod f cn+1, it follows
that h ∈ f cÂ, and thus g = f−ch ∈ Â.

2. Choose g ∈ A[ 1
f
] with g integral over A∗. Then we have an equation

gn = an−1g
n−1 + an−2g

n−2 + ...+ a0

with ai ∈ A∗. Let ε = f
1

pk for some k ≥ 0. Scaling both sides by εn gives

(εg)n = an−1ε(εg)n−1 + an−2ε
2(εg)n−2 + ...+ εna0.

As ai ∈ A∗, we have an−iεi ∈ A for each i ≥ 1. In particular, the above equation shows
that εg is integral over A, and thus εg ∈ A. As this is true for ε = f

1

pk for any k ≥ 0, we
conclude that g ∈ A∗.

Finally, we discuss the preservation of total integral closedness1 under completions

lem:CompletionTIC Lemma 5.1.3. Let A be a ring equipped with a nonzerodivisor f ∈ A admitting a compatible
system of p-power roots f

1
pn for all n ≥ 0. Assume that A ⊂ A[ 1

f
] is totally integrally closed. Then

we have:

1. Â ⊂ Â[ 1
f
] is totally integrally closed.

2. A = A∗ (where almost mathematics is performed with respect to (f
1
p∞ )).

1Recall its definition: given an inclusion A ⊂ B of rings, the total integral closure Atic of A in B is the set of all
f ∈ B such that fN is contained in a finitely generated A-submodule of B. This can easily be checked to be a ring;
if A is noetherian, then this coincides with the integral closure, but is different in general. If A = Atic, then we say
that A is totally integrally closed in B. Unlike the case of integral closures, it need not be true that Atic is itself totally
integrally closed.
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Proof. 1. Note that A ⊂ A[ 1
f
] is p-root closed, and thus the same holds for Â ⊂ Â[ 1

f
] by

Lemma 5.1.1. Now fix some g ∈ Â[ 1
f
] such that fk · gN ⊂ Â for some k > 0. By p-root-

closedness of Â ⊂ Â[ 1
f
], we learn that f

k
pn · g ∈ Â for all n ≥ 0, i.e., g gives an almost

zero element g of Â[ 1
f
]/Â. We must show g = 0. But A[ 1

f
]/A ' Â[ 1

f
]/Â, so g gives an

almost zero element of A[ 1
f
]/A. Undoing the previous reasoning, we see that g lifts under

A[ 1
f
]→ A[ 1

f
]/A to an element in the total integral closure of A in A[ 1

f
]. As the latter equals

A, we must have g.

2. We have A∗ ⊂ f
− 1

pkA for any k ≥ 0 by definition of A∗. But then each g ∈ A∗ is totally
integral over A, and thus lies in A by hypothesis.

5.2 The dictionary
We can now give the promised dictionary. Fix a NA field K with a nontrivial valuation. The basic
objects we wish to describe are:

Definition 5.2.1 (K-Banach algebras). Let K be a NA field. A Banach K-algebra R is a K-
algebra R equipped with a map | · | : R→ R≥0 extending the norm on K such that

1. (Norm) |f | = 0 only if f = 0.

2. (Submultiplicativity) |fg| ≤ |f ||g|, with equality if f ∈ K

3. (NA property) |f + g| ≤ max(|f |, |g|).

4. R is complete in the metric d given by d(f, g) = |f − g|.

The category of K-Banach algebras has as objects Banach K-algebras, and morphisms given by
continuous maps.

We wish to access K-Banach algebras in terms of (usual) algberas over K◦. To this end, we
formalize a procedure for extracting a K◦-algebra out of a K-Banach algebra.

Definition 5.2.2. For a K-Banach algebra R, define the set R◦ ⊂ R of power bounded elements
as

R◦ := {f ∈ R | {|fn|} is bounded.} = {f ∈ R | {fn} ⊂ R is bounded.}

Some easy observations include that R◦ is a subring (by the NA property and submultiplicativity
for the norm) which is open (as it contains unit ball R≤1 of all elements with norm ≤ 1), and the
construction R 7→ R◦ only depends on R as a topological ring. A good source of examples arises
as follows:
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ex:AdictoBanach Example 5.2.3 (Complete K◦-algebras yield K-Banach algebras). AssumeK is discretely valued,
and fix a uniformizer t ∈ K. Let A be a t-adically complete and t-torsionfree K◦-algebra. Set
R = A[1

t
]. Define a seminorm on R via

|f | = min{|t|n | f ∈ tnA}. (5.1) eq:BanachNorm

One can check that this construction endows R with the structure of a Banach K-algebra, and that
the resulting topology coincides2 with the t-adic topology, i.e., the group topology on R with a
basis of open subgroups given by tnA. We trivially have A ⊂ R≤1 ⊂ R◦, and one checks that
R<1 ⊂ A. In particular, the systems {tnA} and {R≤|t|n} are cofinal amongst each other. Note R◦

can be much larger than R≤1 in practice: if A = K◦[x]/(x2), then 1
tn
x ∈ R◦ for each n, but these

elements have norm > 1 for n > 0, so they are not in R≤1.
More generally, the same discussion applies to potentially non-discretely valued base fields with

the following modification of the norm. For each γ ∈ |K|, choose tγ ∈ K with |tγ| = γ. Then we
can set

|f | = inf{γ | f ∈ tγA}.

This seminorm turns R into a Banach K-algebra, and all the preceding properties hold true in this
setting. In fact, if |K∗| ⊂ R>0 is dense, then we can describe R≤1 as A∗ := Hom(K◦◦, A).

We shall often restrict to the following class of rings to avoid having a large ring of power bounded
elements.

Definition 5.2.4. A K-Banach algebra R is uniform if R◦ is itself a bounded subset of R in the
metric topology.

By a variant of the argument in Example 5.2.3, one sees that any uniform BanachK-algebra must
be reduced3. In fact, this category can be described completely algebraically as follows:

prop:BanachNAField Proposition 5.2.5. Fix a pseudouniformizer t ∈ K. The following categories are equivalent:

• The category C of uniform Banach K-algebras R with continuous K-algebra maps.

• The category Dtic of t-adically complete and t-torsionfree K◦-algebras A with A totally
integrally closed4 in A[1

t
].

The functors between C and Dtic (for any i) areR 7→ R◦ andA 7→ A[1
t
] (equipped with the Banach

algebra structure from Example 5.2.3).
2Fix some ε > 0, and say |f | ≤ ε. Then 2ε ≥ |t|n for some n with f ∈ tnA. As 0 < |t| < 1, this means that n

must be very large. Conversely, it is clear that if f ∈ tmA for m large, then |f | is small.
3Indeed, for any K-Banach algebra R, a nilpotent element is power bounded, so it lies in R◦. On the other hand, if

ε ∈ R◦ is a nonzero nilpotent, then so is any multiple, so { 1
tn ε} ⊂ R

◦. But | 1tn ε| = |t|
−n|ε| is unbounded as n→∞,

so R◦ cannot be bounded.
4This means that given f ∈ A[ 1t ] with fN lying in a finitely generated A-submodule of A[ 1t ] (or, equivalently,

inside 1
tcA for some c > 0), we have f ∈ A.
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Proof. We first construct the functor C → Dtic. Let R be a uniform Banach K-algebra. Then
R◦ ⊂ R contains the unit ball R≤1 = {f ∈ R | |f | ≤ 1} by the NA inequality, and is thus an
open subring. Moreover, R◦ is bounded by assumption, so R◦ ⊂ R≤r for some r > 0. As R is a
K-Banach algebra, we have have |tn| → 0 as n → ∞, and thus tn → 0 as n → ∞. In particular,
∩ntnR≤r = 0 as an element in the intersection must have norm 0. It follows that R◦ is t-adically
separated. Similarly, using the completeness of R for the metric topology, it is easy to see that
R≤r, and hence its open subgroup R◦, is t-adically complete. To check that R◦ is totally integrally
closed in R, fix some f ∈ R such that fN is contained in a finitely generated R◦-submodule of R.
As R = R◦[1

t
], it follows that fN ⊂ 1

tk
R◦ ⊂ 1

tk
R≤r; but this immediately implies that f is power

bounded, so f ∈ R◦. The extraction of R◦ from R is functorial in continuous maps of K-Banach
algebras, so we obtain a functor F : C→ Dtic.
Conversely, fix some A ∈ Dtic, and view R = A[1

t
] as a Banach K-algebra, as in Example 5.2.3,

so A ⊂ R≤1 ⊂ R◦. We shall show that A = R◦; this will construct the functor G : Dtic → C and
checks that F ◦ G ' id. Pick some f ∈ R◦. Then fN is bounded. As {tnA} and {R≤|t|n} are
cofinal amongst each other, there must be some c > 0 such that tcfN ⊂ A by boundedness of fN.
But then fN ⊂ 1

tc
A, so f ∈ A as is totally integrally closed in A[1

t
].

To finish proving the theorem, we must show thatG◦F ' id. Unwinding definitions, this amounts
to showing the following: given R ∈ C, the given Banach norm | · |given on R is equivalent to the
one | · |R◦ coming from Example 5.2.3 via R = R◦[1

t
]. In other words, we must show that the

identity map on R is bounded for either norm. The unit ball for | · |R◦ is exactly R◦, and we always
have a containment R|·|given,≤1 ⊂ R◦ for any K-Banach algebra. Conversely, by uniformity, we
also have R◦ ⊂ R|·|given,≤r for some r > 0. Combining these gives the claim.

When K is perfectoid, the category Dtic admits alternative descriptions.

prop:BanachPerfectoidField Proposition 5.2.6. In the context of Proposition 5.2.5, assume K is a perfectoid field. Then the
categories mentioned in Proposition 5.2.5 are equivalent to:

• The category Dic of t-adically complete and t-torsionfree K◦-algebras A with A integrally
closed in A[1

t
] and A ' A∗.

• The category Dprc of t-adically complete and t-torsionfree K◦-algebras A with A p-root
closed in A[1

t
] and A ' A∗.

Proof. For A ∈ Dtic, we have A = A∗ by Lemma 5.1.3, so we have containments Dtic ⊂ Dic ⊂
Dprc. It suffices to show that any A ∈ Dprc is totally integrally closed in A[1

t
]. Fix some f ∈ A[1

t
]

with fN ⊂ 1
tk
A for some k > 0. Then tk · fpn ∈ A for all n ≥ 0. As A is p-root closed in A[1

t
], we

learn that t
k
pn · f ∈ A for all n ≥ 0, and thus f ∈ A∗. But A = A∗, so we are done.

Using these descriptions, we will show that uniform Banach K-algebras admit all limits and
colimits.

cor:LimitsColimitsBanach Corollary 5.2.7. Assume K is a perfectoid field. The category of uniform Banach K-algebras has
all colimits and limits.
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Proof. For colimits, we work with Dic. It is clear that the category Dall of all t-adically complete
and t-torsionfreeK◦-algebrasA has all colimits (given by the t-adic completion of the t-torsionfree
quotient of the underlying colimit of rings), so it is enough to show that the fully faithful inclusion
Dic ⊂ Dall has a left adjoint. In other words, given A ∈ Dall, we seek a universal map A→ Au in
Dall withAu ∈ Dic. For this, setAint to be the integral closure ofA inA[ 1

f
], and setAu := (Âint)∗.

Then Au ⊂ Au[
1
t
] is integrally closed by Lemma 5.1.2: the act of completion and applying (−)∗

preserve integral closedness by the lemma. Moreover, as M → M∗ is an almost isomorphism
for any B, it is clear that Au is t-adically complete as well. Finally, we have Au = (Au)∗ by
construction. Thus, Au ∈ Dic. We leave to the reader to check that the natural map A → Au has
the desired universal property.
For limits, we work with Dprc. It is clear that Dall has all limits, and that they are computed by the

underlying limit of sets. It thus suffices to show that {Ai} is a diagram in Dprc, then A := limAi
is p-root closed in A[1

t
], and that A ' A∗. The former can be checked directly using the injectivity

of A[1
t
] → limiAi[

1
t
] (as both sides embed into

∏
iAi[

1
t
]), while the latter follows as M 7→ M∗

commutes with limits.

39



Chapter 6

Perfectoid algebras

In this chapter, we introduce perfectoid algebras over a perfectoid field, and prove the tilting cor-
respondence equating the theory in characteristic 0 with characteristic p; for the latter, we follow
Scholze’s approach based on the cotangent complex, which is reviewed first. Finally, we formulate
the almost purity theorem for perfectoid algebras, and explain why our previous work establishes
this theorem in two special cases: in characteristic p in general, and for perfectoid fields. The
general case will be established later once the theory of adic spaces has been introduced.

6.1 Reminders on the cotangent complex
Recall the following construction from non-abelian homological algebra:

Construction 6.1.1 (Free resolutions of rings). For any ring A and a set S, we write A[S] for the
polynomial algebra over A on a set of variables xs indexed by s ∈ S. The functor S 7→ A[S] is
left adjoint to the forgetful functor from A-algebras to sets. In particular, for any A-algebra B, we
have a canonical map ηB : A[B] → B, which is evidently surjective. Repeating this construction,
we obtain two A-algebra maps ηA[B], A[ηB] : A[A[B]] → A[B]. Iterating this process allows one
to define a simplicial A-algebra P •B/A augmented over B that looks like

P •B/A :=
(
...A[A[A[B]]]

////// A[A[B]]
//
// A[B]

)
// B.

This map is a resolution of B in the category of simplicial A-algebras, and is called the canonical
simplicial A-algebra resolution of B; concretely, this implies that chain underlying P •B/A (obtained
by taking an alternating sum of the face maps as differentials) is a free resolution of B over A.
Slightly more precisely, there is a model category of simplicial A-algebras, and the factorization
A → P •B/A → B provides a functorial cofibrant replacement of B, and can thus be used to
calculate non-abelian derived functors. We do not discuss this theory here, and will take certain
results (such as the fact that such polynomial A-algebra resolutions are unique up to a suitable
notion of homotopy) as blackboxes.

Using the previous construction, the main definition is:
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Definition 6.1.2 (Quillen). For any map A → B of commutative rings, we define its cotangent
complex LB/A, which is a complex ofB-modules and viewed as an object ofD(B), as follows: set
LB/A := Ω1

P •/A ⊗P • B, where P • → B is a simplicial resolution of B by polynomial A-algebras.
Here we view the simplicial B-module Ω1

P •/A⊗P • B as a B-complex by taking an alternating sum
of the face maps as a differential.

For concreteness and to obtain a strictly functorial theory, one may choose the canonical resolu-
tion P •B/A in the definition above. However, in practice, it is important to allow the flexibility of
changing resolutions without changing LB/A (up to quasi-isomorphism). The following properties
can be checked in a routine fashion, and we indicate a brief sketch of the argument:

1. If B is a polynomial A-algebra, then LB/A ' Ω1
B/A[0]: this follows because any two poly-

nomial A-algebra resolutions of B are homotopic to each other, so we may use the constant
simplicial A-algebra with value B to compute LB/A.

2. If B and C are flat A-algebras, then LB⊗AC/A ' LB/A ⊗B C ⊕ B ⊗A LC/A: this reduces
to the case of polynomial algebras by passage to resolutions. The flatness hypothesis gets
used in concluding that if P • → B and Q• → C are polynomial A-algebra resolutions, then
P • ⊗A Q• → B ⊗A C is also a polynomial A-algebra resolution.

3. Given a composite A→ B → C of maps, we have a canonical exact triangle

LB/A ⊗LB C → LC/A → LC/B

in D(C). To prove this, one first settles the case where A→ B and B → C are polynomial
maps (which reduces to a classical fact in commutative algebra). The general case then
follows by passage to resolutions as the exact sequences constructed in the previous case
were functorial.

4. Given a flat map A → C and an arbitrary map A → B, we have LB/A ⊗A C ' LB⊗AC/C .
Again, one first settles the case of polynomial rings, and then reduces to this by resolutions,
using flatness to reduce a derived base change to a classical one.

5. IfA→ B is étale, then LB/A ' 0: for this, assume first that A→ B is a Zariski localization.
Then B ⊗A B ' B, so (2) implies that LB/A ⊕ LB/A ' LB/A via the sum map. This
immediately gives LB/A = 0 for such maps. In general, asA→ B is étale, the multiplication
map B ⊗A B → B is a Zariski localization, and thus LB/B⊗AB ' 0. By the transitivity

triangle for B i1−→ B ⊗A B → B, this yields LB⊗AB/B ⊗B⊗AB B ' 0. But, by (4), we have
LB⊗AB/B ' LB/A ⊗A B, so the base change of LB/A along A → B → B ⊗A B → B
vanishes. The latter is just the structure map A→ B, so LB/A⊗A B ' 0. The standard map
LB/A → LB/A ⊗A B has a section coming from the B-action on LB/A, so LB/A ' 0.

6. If B → C is an étale map of A-algebras, then LB/A ⊗B C ' LC/A: this follows from (3)
and (5) as LC/B ' 0.
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7. For any map A → B, we have H0(LB/A) ' Ω1
B/A. This can be shown directly from the

definition.

8. If A→ B is smooth, then LB/A ' Ω1
B/A[0]. By (6), there is a natural map LB/A → Ω1

B/A[0].
To show this is an isomorphism, we may work locally on A by (6). In this case, there is an
étale map B′ := A[x1, ..., xn]→ B. We know that LB′/A ' Ω1

B/A[0] and LB/B′ ' 0. By (3),
it follows that LB/A ' LB′/A ⊗B′ B ' Ω1

B/A[0].

The main reason to introduce the cotangent complex is that it controls deformation theory in com-
plete generality, analogous to how the tangent bundle controls deformations of smooth varieties.
In particular, the following consequence is relevant to us:

thm:CCDeformations Theorem 6.1.3 (Infinitesimal invariance of formally étale rings). For any ring A, write CA for the
category of flat A-algebras B such that LB/A ' 0. Then for any surjective map Ã → A with
nilpotent kernel, base change induces an equivalence CÃ ' CA.

Any étale A-algebra B is an object of CA. In particular, for such maps, Theorem 6.1.3 captures
the invariance of the étale site under infinitesimal thickenings. For our purposes, the following
class of examples is crucial:

prop:CCRelativelyPerfect Proposition 6.1.4 (Perfect rings have a trivial cotangent complex). AssumeA has characteristic p.
Let A → B be a flat that is relatively perfect, i.e., the relative Frobenius FB/A : B(1) :=
B ⊗A,FA A→ B is an isomorphism. Then LB/A ' 0.

Proof. We first note that for any A-algebra B, the relative Frobenius induces the 0 map LFB/A :
LB(1)/A → LB/A: this is clear when B is a polynomial A-algebra (as d(xp) = 0), and thus follows
in general by passage to the canonical resolutions. On the other hand, if A → B is relatively
perfect, then LFB/A is also an isomorphism by functoriality. The only way the 0 map can be an
isomorphism is if both source and target are 0, so LB/A ' 0.

The following consequence is derived by passing to the limit from Theorem 6.1.3

cor:CCDeformationsLimit Corollary 6.1.5. Let R be a ring equipped with a nonzero divisor f ∈ R. Then reduction modulo
f gives an equivalence between the category of f -adically complete and f -torsionfree R-algebras
S with R/f → S/f flat and LS/R ⊗R R/f ' 0 and the category CR/f from Theorem 6.1.3.

Proof. We first observe that specifying an f -adically complete and f -torsionfree R-algebra S with
R/f → S/f flat is the same as specifying a projective system {Sn} of flat R/fn-algebras with
Sn⊗R/fnR/fn−1 ' Sn−1: the functors are S 7→ {S/fn} and {Sn} 7→ limn Sn. The corollary now
follows immediately from Theorem 6.1.3 the observation that for such an R-algebra S, we have
LS/R ⊗R R/f ' L(S/f)/(R/f).

This leads to the following conceptual description of the Witt vector functor:
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Example 6.1.6 (Witt vectors via deformation theory). Let R be a perfect ring of characteristic p.
Then R is relatively perfect over Z/p. Proposition 6.1.4 tells us that LR/Fp ' 0, so Theorem 6.1.3
implies that R has a flat Rn to Z/pn for any n ≥ 1, and that this lift is unique up to unique
isomorphism. In fact, this lift is simply given by the Witt vector construction Wn(R). Setting
W (R) = limnWn(R) gives the Witt vectors of R, which can also be seen as the unique p-adically
complete p-torsionfree Zp-algebra lifting R by Corollary 6.1.5. This perspective also allows one to
see some additional structures on W (R). For example, the identity map R → R of multiplicative
monoids lifts uniquely across the map Wn(R) → R: the monoid R is uniquely p-divisible, while
the fiber over 1 ∈ R of Wn(R) → R is p-power torsion. Explicitly, one simply sends r ∈ R

to r̃n
pn , where r̃n ∈ Wn(R) denotes some lift of rn := r

1
pn . The resulting multiplicative maps

R → Wn(R) and R → W (R) are called the Teichmuller lifts, and denoted by r 7→ [r]. From the
universal property describing W (R), it is clear that if R is f -adically complete for some elemnt
f ∈ R, then W (R) is (p, [f ])-adically complete.

rmk:FontaineAinf Remark 6.1.7 (Fontaine’s map θ and Ainf ). Fix a map A→ B in CA. With a bit more care in an-
alyzing deformation theory via the cotangent complex, one can show the following lifting feature:
if C ′ → C is surjective with nilpotent kernel, then every A-algebra map B → C lifts unique to an
A-algebra map B → C ′. In particular, given a p-adically complete Zp-algebra C, a perfect ring
R, and a map R → C/p, we obtain unique lifts W (R) → C/pn for all n, and thus a unique map
W (R)→ C. In the perfectoid theory, this observation shows:

Proposition 6.1.8 (The kernel of θ). Given a perfectoid field K, the canonical map θ : K◦[ →
K◦/p lifts to a unique map θ : Ainf (K

◦[) := W (K◦[) → K◦. The kernel of θ is a principal ideal
generated by a nonzerodivisor. In fact, for K having characteristic 0, one may choose ξ ∈ ker(θ)
to be any element such that ξ generates the kernel of K◦[ → K◦/p; when K has characteristic p,
we have ker(θ) = (p).

Proof. The first part follows from deformation theory. For the second part, the characteristic p
case is clear (as θ coincides with the structure map W (K◦[) → K◦[ = K◦). In characteristic 0,
choose ξ = pu − [t], where t ∈ K◦[ is a pseudouniformizer with t] = p · u0 for a unit u0 ∈ K◦∗
(possible by Lemma 3.2.2), and the element u ∈ W (K◦[) is some unit lifting u0 along θ (possible
by surjectivity of θ), and [t] is the Teichmuller lift of t. Now claim follows by observing that the
inclusion (ξ) ⊂ ker(θ) of p-adically complete flat W (K◦[) is bijective after reduction modulo p,
and must thus be bijective by Nakayama.

From the proposition, we obtain a pushout square

Ainf (K
◦) θ //

��

K◦

��
K◦[ // K◦/p.

(6.1) eq:AinfDef

In characteristic p, the right vertical map and the bottom horizontal map are isomorphisms, while
the remaining two maps coincide with reduction modulo p. In characteristic 0, all maps are quo-
tients by nonzerodivisors along which the source ring is complete. In particular, in both cases, all
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rings involved can be viewed as pro-infinitesimal thickenings of K◦/p. This perspective shall be
useful later in providing an alternate description of the tilting correspondence.

6.2 Perfectoid algebras
Fix a perfectoid field K with tilt K[. Let t ∈ K[ be a pseudouniformizer such that π := t]

satisfies |p| ≤ |π| < 1. Then K◦/π has characteristic p, and we have a distinguished collection
π

1

pk = (t
1

pk )] of p-power roots of π. All occurrences of almost mathematics in this section are with
respect to the ideal K◦◦ in the ring K◦. The main players in the theory are the following algebras:

def:PerfectoidAlg Definition 6.2.1 (Three flavours of perfectoid rings). Fix K, π as above.

1. A Banach K-algebra R is perfectoid if R◦ ⊂ R is bounded, and the Frobenius map R◦/π →
R◦/π is surjective. With continuous morphisms as morphisms, this gives the category PerfK
of perfectoid K-algebras.

2. A K◦a-algebra A is perfectoid if:

• A is t-adically complete and flat over K◦.

• The mapK◦/π → A/π is relatively perfect, i.e., the Frobenius induces an isomorphism
A/π

1
p ' A/π.

With the evident notion of morphisms, this gives the category PerfK◦a of perfectoid K◦a-
algebras.

3. A K◦a/π-algebra A is perfectoid if:

• A is flat over K◦/π.

• The map K◦/π → A is relatively perfect, i.e., the Frobenius induces an isomorphism
A/π

1
p ' A.

With the evident notion of morphisms, this gives the category PerfK◦a/π of perfectoidK◦a/π-
algebras.

Remark 6.2.2 (“Strict” integral perfectoid algebras). Perfectoid K◦a-algebras, as defined above,
live in the almost category. Alternately, one may also consider “strict” perfectoid K◦-algebras:
these are K◦-algebras A satisfying the two conditions appearing above (in ModK◦ and not just
ModaK◦) with A ' A∗. Unraveling the proof of the equivalence PerfK ' PerfK◦a in the proof
of Theorem 6.2.5, one may check that the category of such “strict” perfectoid K◦-algebras is
equivalent to PerfK◦a . We prefer working with the latter as the condition A ' A∗ is somewhat
subtle: the functor (−)∗ has non-trivial right derived functors (see Exercise 4.2.3). In particular,
this condition does not work well with reduction modulo π.
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rmk:PerfectoidFaithfullyFlat Remark 6.2.3 (Faithful flatness of nonzero perfectoids). Nonzero flatK◦a/π-algebrasA are auto-
matically faithfully flat, and similarly over K◦a for t-adically complete flat algebras. In particular,
any nonzero object in PerfK◦a or PerfK◦a/π is automatically faithfully flat over the corresponding
base. To see the first assertion, assume that A is a nonzero flat K◦a/π-algebra. If the structure
map K◦/π → A is not faithfully flat, then there exists some ideal I ⊂ K◦/π such that K◦/I is
not zero, but A/I ' 0. As we are working in the almost category, the first condition forces I to
be strictly contained inside K◦◦. Thus, there exists some $ ∈ K◦◦ − I , so I ⊂ ($) by valuation
considerations. Our assumption A/I ' 0 implies that A/$ ' 0 as well. But |$n| < |π| for
n � 0, so K◦/π is filtered by finitely many copies of K◦/$. As K◦/$ ⊗ A ' 0, it follows
that A = K◦/π ⊗ A ' 0, which is a contradiction. The case of nonzero flat t-adically complete
K◦a-algebra A is proven similarly, once one observes that A/$ ' 0 for a pseudouniformizer $
implies A ' 0 by completeness.

Example 6.2.4. We give some examples of perfectoid algebras.

1. If K has characteristic p, then a K-Banach algebra R is perfectoid if and only if it is uniform
and perfect. In fact, the uniformity is implied by perfectness, see Lemma 7.1.6. Likewise, a
π-adically complete and π-torsionfree K◦a-algebra is perfectoid if and only if it is perfect.

2. Set A to be the π-adic completion of Anc := K◦[x
1
p∞
1 , ..., x

1
p∞
n ]. Then Aa is a perfectoid

K◦a-algebra. Endowing R = A[ 1
π
] with the K-Banach algebra structure coming from Ex-

ample 5.2.3, we get a perfectoid K-algebra: by it Lemma 5.1.3, as Anc is totally integrally
closed in Anc[ 1

π
], we learn that R◦ = A, so everything follows.

One of the first miraculous results about these objects is that the definitions above capture the
same properties. More precisely, the resulting categories are naturally identified:

thm:Tilting0toMixed Theorem 6.2.5 (Tilting from characteristic 0 to mixed characteristic). There are canonical equiv-
alences

PerfK ' PerfK◦a ' PerfK◦a/π.

The functors implementing the first equivalence are R 7→ R◦a and A 7→ A∗[
1
t
], as in Proposi-

tion 5.2.5. The second equivalence is given by reduction modulo π, i.e., A 7→ A/π.

Proof of the equivalence PerfK ' PerfK◦a . We first check that givenR ∈ PerfK , the K◦a-algebra
A = R◦a is perfectoid. By Proposition 5.2.5 and the easy direction of Lemma 4.4.1 (3), we already
know that A := R◦a is t-adically complete and flat over K◦. Moreover, the perfectoidness of R
ensures that the Frobenius A/π → A/π is surjective. To understand the kernel, as almostification
is exact, it is enough to show that R◦/π → R◦/π has kernel (π

1
p ). For this, fix some α ∈ R◦ such

that αp ∈ πR◦. Then π−
1
p · α ∈ R has its p-th power in R◦, and thus must itself lie in R◦ by the

definition of powerboundedness. It follows that α ∈ π
1
pR◦, as wanted. Thus, we have constructed

a functor PerfK → PerfK◦a .
Next, we check that given A ∈ PerfK◦a , the ring A∗ is t-adically complete, t-torsionfree, p-

root closed in A∗[ 1
π
], and has a surjective Frobenius modulo π; this will construct a left-inverse to
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the functor from the previous paragraph by Proposition 5.2.6 (2). The completeness results from
Lemma 4.4.1 (3), while the t-torsionfreeness is clear.
For p-root closedness: observe that A∗/π

1
p ⊂ (A/π

1
p )∗

Frob−−→ (A/π)∗ is injective, and thus so is
A∗/π

1
p

Frob−−→ A∗/π. Thus, if y ∈ A∗ with yp ∈ πA∗, then y ∈ π
1
pA∗. Now fix some x ∈ A∗[ 1

π
]

with xp ∈ A∗. Then we can write y = π
k
px ∈ A∗ for a positive integer k ≥ 1; we shall check

that it is always possible to lower k by 1, which proves that x ∈ A∗ by induction. Taking powers
gives yp = πkxp ∈ πkA∗. As k ≥ 1, we have yp ∈ πA∗, and thus y ∈ π

1
pA∗ by the injectivity of

Frobenius. Thus, π
k−1
p x = y

π
1
p
∈ A∗, which proves the assertion about lowering k.

For surjectivity of Frobenius on A∗/π: as almost surjectivity is clear, it is enough to show sur-
jectivity of Frobenius on A∗/K◦◦A∗. Take some x ∈ A∗. Choose some c < 1. Then almost
surjectivity implies that πcx = yp mod πA∗ for some y ∈ A∗. But then z := y

π
c
p
∈ A∗[ 1

π
] satisfies

zp ∈ A∗ (as c < 1), and thus z ∈ A∗ by the previous paragraph. We conclude that y ∈ π
c
pA∗.

Dividing the previous equality by πc (which is allowed as A∗ is π-torsionfree), we get x = zp

mod π1−cA∗. As c < 1, this shows x = zp mod K◦◦A∗, as wanted.
Finally, to check that this construction also provides a right inverse, we must show the following:

given A ∈ PerfK◦a , we have A ' R◦a for R being the K-Banach algebra associated to A∗. But
Proposition 5.2.5 shows that A∗ ' R◦, so the claim follows by almostification.

Proof of the equivalence PerfK◦a ' PerfK◦a/π. There is an obvious functor PerfK◦a → PerfK◦a/π
given by reduction modulo π. To construct the inverse, we recall some deformation theory.
Write Cn for the category of flatK◦/πn-algebrasBn with such that the relative FrobeniusK◦/π →
Bn/π is an isomorphism. By deformation theory (see Theorem 6.1.3 and Proposition 6.1.4), we
have Cn+1 ' Cn via the reduction map. Moreover, by taking inverse limits, these categories are
also identified with C, the category of t-adically complete and flat K◦-algebras B such that the
relative Frobenius for K◦/π → B is an isomorphism. Write B 7→ B̃ for the inverse equivalence
C1 ' C.
Now sayA ∈ PerfK◦a/π. We shall show thatA deforms uniquely to a perfectoidK◦a-algebra. For

this, we may assume A is nonzero, and thus faithfully flat over K◦a/π by Remark 6.2.3. Using the
functor (−)!! from Remark 4.2.8, we have A!! ∈ C1: the functor (−)!! preserves faithful flatness,
pushout diagrams (or all colimits), and carries Frobenius to Frobenius (in characteristic p). We have
the corresponding lift Ã!! ∈ C to K◦. Write Ã := Ã!!

a
for the corresponding almost algebra. Then

Ã!! is K◦-flat and t-adically complete, so the same holds true for Ã (as almostification preserves
limits, colimits and flatness). Moreover, we have Ã/π = Ã!!

a
/π ' (Ã!!/π)a ' Aa!! ' A. Thus,

the construction A 7→ Ã sending A to the almostification of the unique lift to C of A!! provides a
right-inverse to the canonical projection PerfK◦a → PerfK◦a/π.
It remains to check that the functor in the previous paragraph also gives a left-inverse. Fix some
A ∈ PerfK◦a . We want to show that A ' (̃A/π). We may assume A 6= 0, and thus A is faithfully
flat by Remark 6.2.3. By the preservation of colimits and faithful flatness under (−)!!, the ring A!!

is a faithfully flat K◦-algebra with K◦/π → A!!/π ' (A/π)!! relatively perfect. By Lemma 4.4.1,
the ring A∗ is complete, and hence so is A!!: the canonical map A!! → A∗ is injective with almost
zero cokernel, so we can apply Lemma 4.4.2 to conclude that A!! is complete. Thus A!! ∈ C. The
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corresponding object of C1 is given by A!!/π ' (A/π)!! as (−)!! commutes with colimits. The
construction in the previous paragraph then shows that Ã/π is the almostification of the unique lift
to C of (A/π)!!, and thus Ã/π ' Aa!! ' A, as wanted.

Putting everything together, we get the tilting and untilting functors:

cor:TiltingPerfAlgCriterion Corollary 6.2.6 (Tilting from characteristic 0 to characteristic p). We have a chain of equivalences

PerfK ' PerfK◦a ' PerfK◦a/π ' PerfK◦[a/t ' PerfK◦[a ' PerfK[ .

Under this equivalence R ∈ PerfK corresponds to the unique S ∈ PerfK[ such that we have an
identification R◦a/π ' S◦a/t living over the identification K◦/π ' K[◦/t. In this case, we call
S := R[ the tilt of R, and R := S] untilt of S.

Proof. This follows from Theorem 6.2.5 by observing that K◦/π ' K[◦/t.

Unraveling the proof of the previous theorem, we get an explicit formula for the functor PerfK →
PerfK[ via Fontaine’s functor from Definition 2.0.1.

thm:TiltingFormula Theorem 6.2.7 (Tilting via Fontaine’s functors). Let R ∈ PerfK .

1. The tilt R[ is naturally isomorphic to R◦[[1
t
].

2. The multiplicative identification R◦[ ' limx 7→xp R
◦ of Lemma 2.0.6 extends to a multiplica-

tive bijection R[ ' limx 7→xp R. Write ] : R[ → R for the resulting map.

3. We have R[◦ = R◦[ under the identification in (1).

Proof. For (1), set an to be the composite map K[◦/tp
n φ−n

' K[◦/t ' K◦/π → R◦/π, where he
last map is the structure map. This fits into a commutative diagram

K[◦/tp
n

'
φ−n //

std ''

K[◦/t ' K◦/π //

φn

��

R◦/π

φn

��
K[◦/t ' K◦/π // R◦/π.

The square on the right is a pushout square as R is perfectoid. The horizontal arrow on the bottom
is a0, while the one on top is an. It follows that an is flat and relatively perfect, and that it is
the unique flat and relatively perfect lift of a0 along K[◦/tp

n → K[◦/t (by Theorem 6.1.3). In
particular, an+1 is the unique lift of an along K[◦/tp

n+1 → K[◦/tp
n . Taking inverse limits over n,

we see that the structure map K[◦ ' K◦[ → R◦[, which is just the map lim an, is (the necessarily
unique) flat and relatively perfect lift of a0 to a t-adically complete and t-torsionfree K[◦-algebra.
The characterization of the correspondence in Corollary 6.2.6 then implies that R◦[a ' R[◦a, and
thus R[ = R◦[[1

t
].
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For (2), as t] = π, the identification R◦[ ' limx 7→xp R
◦ induces, after inverting t, a multiplicative

map

R[ ' ( lim
x 7→xp

R◦)[
1

t
]→ lim

x 7→xp
(R◦[

1

π
]) ' lim

x 7→xp
R.

We must check that this map is bijective. Injectivity is clear as t is a nonzerodivisor on either side.
For surjectivity, given (fn) ∈ limx 7→xp R, we want to find some c ≥ 0 such that π

c
pn fn ∈ R◦ for

all n. But R◦ ⊂ R◦[ 1
π
] is p-root-closed, and we have fpn+1 = fn for all n. So any c ≥ 0 such that

πcf0 ∈ R◦ solves the problem.
For the last assertion, we must check that R◦[ ⊂ R◦[[1

t
] = R[ is totally integrally closed. Fix

some f ∈ R[ such that tcfN ∈ R◦[. Applying ], we learn that f ] ∈ R satisfies πc(f ])N ∈ R◦. This
means f ] is powerbounded, so f ] ∈ R◦. As R◦ ⊂ R is p-root closed, all pn-th roots of f ] also lie
in R]. But then the sequence (fn) ∈ limx 7→xp R corresponding to f under ] lies in limx 7→xp R

◦, so
f ∈ R◦, as wanted.

Remark 6.2.8 (Untilting via Ainf ). Remark 6.1.7 can be used to give an alternate perspective on
the tilting corresondence, and explicit description of the untilting functor, Theorem 6.2.7. Re-
mark 6.1.7 gave us the pushout square

Ainf (K
◦) θ //

��

K◦

��
K◦[ // K◦[/t ' K◦/π,

where all rings could be viewed as pro-infinitesimal thickenings of K◦/π. In particular, by Propo-
sition 6.1.5, any relatively perfect (or, equivalentlly, perfect) K◦[-algebra A has unique lift W (A)
along Ainf (K◦)→ K◦[, and the base change W (A)⊗Ainf (K◦) K

◦ provides a K◦-algebra that lifts
A ⊗K◦[ K◦/π by the above diagram. It follows from this observation and Corollary 6.2.6 that if
S ∈ PerfK[ , then its untilt S] ∈ PerfK is given by

S] :=
(
W (S◦)⊗Ainf (K◦) K

◦)[ 1

π
].

rmk:LimitsColimitsPerfectoid Remark 6.2.9 (Limits and colimits). Any of the equivalent categories in Corollary 6.2.6 has all
limits and colimits. It is enough to show this for PerfK◦[a . This is clear for limits: the propertes
of being t-adically complete, t-torsionfree, and perfect all pass through limits. For colimits, given
a diagram {Ai} in PerfK◦[a , the colimit A in computed by simply t-adically completing the per-
fection of the colimit of the Ai’s in the category of all K◦[a-algebras. This will give a perfect
t-adically complete ring; on any such ring, the t-power torsion is almost zero (by the argument of
Proposition 4.3.4), so we also get flatness. Likewise, one checks that filtered colimits in PerfK◦a
are computed by simply π-adically completing the underlying filtered colimit of K◦a-algebras.

We can now formulate the almost purity theorem:

thm:APT Theorem 6.2.10 (Almost purity theorem). Fix a perfectoid K-algebra R with tilt S.

1. Almost purity in characteristic p: Inverting t gives an equivalence S◦afet ' Sfet.
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2. Almost purity in characteristic 0: Inverting p gives an equivalence R◦afet ' Rfet.

3. Tilting and untilting functors induce equivalences R◦afet ' S◦afet and Rfet ' Sfet.

We do not prove the full statement at the moment. Instead, we shall construct construct fully
faithful functors

S[fet
a←− S◦aafet

b−→ (S◦a/t)afet ' (R◦a/π)afet
c←− R◦aafet

d−→ Rfet,

and show that all but (d) are equivalences. We also prove (d) is an equivalence when R is a
perfectoid field; the general case of (d) shall be reduced to the field case by localizing on the
perfectoid space attached to a perfectoid algebra.

Construction of functors. In Theorem 4.3.6, we have already seen that Sfet ' S◦afet by passing to
powerbounded elements and inverting t respectively. This gives the equivalence (a).
To construct the equivalences (b) and (c), note that tilting and untilting give equivalences

PerfR◦a ' PerfR◦a/π ' PerfS◦a/t ' PerfS◦a

by passing to comma categories along the analogous equivalences for K from Corollary 6.2.6.
Now if T ∈ R◦aafet, then T is itself a perfectoid K◦a-algebra: the t-adic completeness and flatness
of R◦a passes to almost finite projective modules over it, and the weakly étale map R◦a → T ◦a

is relatively perfect modulo π by the almost analog of Lemma 4.3.8, so K◦a/π → T/π is also
relatively perfect. Applying the same reasoning to S◦a, S◦a/t and R◦a/t, we get the fully faithful
functors b and c. Moreover, these are equivalences by deformation theory: this is the almost analog
of the deformation invariance of the category of finite étale maps, and is proven in [GR, Theorem
5.3.27].
The functor (d) is given A 7→ A∗[

1
π
], with the Banach algebra structure as prescribed in Exam-

ple 5.2.3: as any A ∈ R◦aafet is a perfectoid K◦a-algebra (see previous paragraph), this recipe turns
A∗[

1
π
] into a perfectoid R-algebra with the powerbounded ring being A∗ by Theorem 6.2.5. The

resulting functor d is clearly faithful. For fullness, we shall recover A∗ from A∗[
1
π
] as the total

integral closure Atic of R◦ in A∗[ 1
π
]; this implies the fullness as the formation of the total integral

closure of R◦ in an R-algebra T is functorial in the R-algebra T (without any topology). For the
claim, as A∗ is the powerbounded subring of the uniform Banach K-algebra A∗[ 1

π
], we know that

A∗ is an R◦-algebra that is totally integrally closed in A∗[ 1
π
] by Proposition 5.2.5, and hence con-

tains Atic. Conversely, fix some f ∈ A∗. As A is almost finitely generated over R◦, the set π · fN

lies in a finitely generated R◦-submodule of A∗. But this means that f lies in the total integral
closure of R◦ in A∗, so f ∈ Atic.

Proof of almost purity over a field. We now specialize to the case R = K is a perfectoid field of
characteristic 0. By the previous arguments, it suffices to show that the untilting functor ] : K[

fet →
Kfet is an equivalence. This functor is fully faithful (as this is true on all perfectoid algebras),
preserves degrees (by construction), and preserves automorphism groups (by full faithfulness). In
particular, it preserves Galois extensions. By Galois theory, this reasoning shows the following:
for any Galois extension L/K[, we have a bijective correspondence between K-subfields of L]
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and K[-subfields of L. In particular, any subfield of such an L] is obtained by untilting. It thus

suffices to show that every finite extension of K embeds into some L]. For this, let M = K̂[ be
a completed algebraic closure of K[, so M is an algebraically closed perfectoid field. Its untilt

M ] is then algebraically closed by Proposition 3.2.10. Now K̂[ is the filtered colimit in perfectoid
K[-algebras of all finite Galois extensions L/K[ contained in M . By tilting and Remark 6.2.9, it
follows that M ] is the filtered colimit in uniform Banach K-algebras of finite Galois extensions of
the form L]/K for a finite Galois extension L/K[. Write N ⊂ M ] for the subfield obtained by
taking the filtered colimit (as abstract rings) of all the L]’s. Then N is algebraic over K (clear),
and N ⊂ M is dense (by construction of the colimit, the valuation ring M ],◦ is the completion of
filtered colimit of the valuation rings L],◦). By Krasner’s lemma and the algebraic closedness of
M , we learn that N is also algebraically closed. In particular, every finite Galois extension of K
embeds into N , and hence into some L], as wanted.

ex:UntiltExplicit Example 6.2.11 (Explicitly untilting “perfectly finitely presented” quotients). Fix a perfectoidK-
algebra R with tilt R[. Let P = R◦, and P [ = R[◦, so P [ is also the tilt of P in the sense of
Definition 2.0.1 via Theorem 6.2.7 (3). Now fix finitely many elements f1, ..., fr ∈ P [. Each
fi ∈ P [ gives rise to a perfect element f ]i ∈ P . Set

A] :=
(
P/(
(
f ]1
) 1
p∞ , ...,

(
f ]r
) 1
p∞ )
)̂

and A :=
(
P [/(f

1
p∞

1 , ..., f
1
p∞
r )

)̂
,

where the completions are π-adic and t-adic respectively. We shall check that these are both
perfectoid and related under tilting. More precisely:

Proposition 6.2.12. With the notation as above, we have:

1. The K[◦a-algebra Aa is a perfectoid K[◦a-algebra.

2. The K◦a-algebra A]a is a perfectoid K◦a-algebra that tilts to Aa.

Proof. For (1), it is enough to check thatA is perfect, t-adically complete, and almost t-torsionfree.
The perfectness and completeness are clear (as the completion of a perfect ring is perfect). Also, A
is almost t-torsionfree by perfectness via the standard argument (see the proof of Proposition 4.3.4).
This gives (1).
To proceed further, we give a different description of A. Let

Km := Kos(P [; f
1
pm

1 , ...., f
1
pm

r ) := ⊗ri=1Kos(P [, f
1
pm

i ) := ⊗ri=1

(
P [ f

1
pm

i−−−→ P [
)

be the displayed Koszul complex, normalized so that the lowest (homological) degree term sits in

degree 0. As f
1

pm+1

i | f
1
pm

i , there are obvious transition maps Km → Km+1 inducing the identity
on the degree 0 terms, and we set K∞ := colimKm to be the direct limit. This is a complex of flat
P [-modules, and can also be described

K∞ = ⊗ri=1 colim
m

(
P [ f

1
pm

i−−−→ P [
)
.
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When r = 1, the calculation in Example 4.1.3 shows that K∞ is discrete, i.e., H i(K∞) = 0 for i 6=
0; using induction, one can then show the same for any r, though we do not do so here1. Moreover,

H0(K∞) is the perfect P [-algebra P [/(f
1
p∞

1 , ..., f
1
p∞
r ) (by construction), and hence its π-torsion

is almost zero. Set K̂∞ to be the t-adic completion of K∞ (either at the level of complexes,
or equivalently in the derived sense). Passing to the almost category, we get an almost quasi-
isomorphism

K̂∞
a' A and thus K̂∞/t

a' A/t; (6.2) eq:ExplicitUntiltKoszul

here we use that derived t-completions commute with almostification, and that the derived t-
completion of an almost t-torsionfree module is almost isomorphic to its classical t-adic com-
pletion.
We now prove (2). Let

Mm := Kos(P ; (f ]1)
1
pm , ...., (f ]r)

1
pm ) = ⊗ri=1Kos(P, (f ]i )

1
pm )

be the analog over P of the Koszul complexes used above. Again, we have obvious transition maps
Mm →Mm+1. Set M∞ = colimmMm to be the direct limit, and let M̂∞ be its π-adic completion.
As the identification P/π ' P [/t carries f ]i to fi, we have an obvious quasi-isomorphism

M̂∞/π ' K̂∞/t. (6.3) eq:ExplicitUntiltKoszul2

Using (6.2), this implies that M̂∞/π is almost discrete, i.e., H i(M̂∞/π)
a' 0 for i 6= 0. The same

then holds true for M̂∞/πn as well. Thus, we get an almost quasi-isomorphism

M̂∞ := R lim
n
M∞/π

n a' R lim
n
P/(πn,

(
f ]1
) 1
p∞ , ...,

(
f ]r
) 1
p∞ ) =: A], (6.4) eq:ExplicitUntiltKoszul3

where the second almost quasi-isomorphism arises by observing that M∞/πn is almost discrete
and explicitly calculating H0(M∞/π

n). This formula shows that(
A]

π−→ A]
)
' A] ⊗LK◦ K◦/π

a' M̂∞/π

is almost discrete, and thus A] is almost π-torsionfree. Thus, A] is a π-adically complete and
almost π-torsionfree K◦-algebra. Equations (6.2), (6.3), (6.4) give an identification

A]/π
a' A/t.

This shows that K◦/π → A]/π is relatively perfect in the almost sense, thus proving that A] is a
perfectoid K◦a-algebra; secondly, this formula then shows that A] is related to A via tilting, thus
proving (2).

1In more fancy language, the perfection of any simplicial commutative Fp-algebra, or even any E∞-Fp-algebra, is
discrete (see [BS, §11]). In particular, given a diagramB ← A→ C of perfect Fp-algebras, we have TorAi (B,C) = 0
for i > 0. This recovers the case at hand as K∞ is the perfection of K0, which is the simplicial commutative P [-
algebra obtained by freely setting fi = 0 for i = 1, ...r.
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We shall later need the following criterion for detecting when a perfectoid K-algebra is a perfec-
toid field.

lem:UntiltPerfField Lemma 6.2.13. A perfectoid K-algebra R is a perfectoid field if and only if R[ is a perfectoid
field.

Proof. It is clear that if R is a perfectoid field, so is R[. For the converse, write | · | for the norm
on K. Consider the spectral norm on R defined as follows:

||f ||R = inf{|t| | t ∈ K∗, f ∈ tR◦}.

For any uniform Banach K-algebra R, this is a submultiplicative continuous map R → R≥0 that
defines the topology onR, i.e., a neighbourhood basis of 0 is given by sets of the form ||·||−1

R ([0, ε))
for ε ∈ R≥0. Thus, we must check that if R[ is a perfectoid field, then the following hold:

1. || · ||R gives a NA valuation on R, i.e., || · ||R is multiplicative.

2. R is a field.

Indeed, (1) and (2) immediately show that R is a NA field for its given topology, as wanted. To
prove these, we observe that since R[ is a perfectoid field, its NA valuation is necessarily given by

its spectral norm || · ||R[ . The latter coincides with the map R[ ]−→ R
||·||R−−→ R≥0: for an element

f ∈ R[, we have f ∈ R[◦ exactly when f ] ∈ R◦.
We now show (1). Say f, g ∈ R. As || · || is commutes with scalar multiplication and extends the

norm on K, we may rescale to assume that f, g ∈ R◦ − π
1
pR◦. Choose a, b ∈ R[◦ such that both

a] − f and b] − g lie in πR◦; this is possible as R[◦ ' R◦[ surjects onto R◦/π (see Theorem 6.2.7
(3)). As R[ is a perfectoid field and ] is multiplicative, using our hypothesis that f, g /∈ π

1
pR◦, we

have a, b /∈ t
1
pR[◦, so ab /∈ tR[◦, and thus fg − (ab)] ∈ πR◦ with fg /∈ πR◦. In particular, f , g,

and fg are all nonzero modulo πR◦. Now, as f /∈ πR◦, for any c < 1 in the value group of K, one
has f ∈ πcR◦ exactly when a] ∈ πcR◦; the latter happens exactly when a ∈ tcR◦[. Thus, we learn
that ||f ||R = ||a||R[ . Similarly, we learn that ||g||R = ||b|R[ and ||fg||R = ||ab||R[ . The claim now
follows from the multiplicativity of || · ||R[ .
For (2), fix some f ∈ R − {0}. We may scale f to assume f ∈ R◦ − π

1
pR◦. Choose a ∈ R[

such that f = a] + πg with a ∈ R[ − {0} and g ∈ R◦. As R[ is a field, there is some b ∈ R[ with
ab = 1. Our hypothesis f /∈ πR◦ implies that ||f ||R = ||a||R[ . Now we have

||π||R < ||π
1
p ||R ≤ ||f ||R = ||a||R[ ≤ 1.

Multiplying by bg shows that ||πb]g||R < 1. One then checks that the following formula gives an
inverse to f

b] · 1

a] + πg
:= b] · 1

1 + πb]g
:= b] ·

( ∞∑
i=0

(−1)i(πb]g)i
)
,

as wanted.
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Chapter 7

Adic spaces

In this chapter, we pause the development of the perfectoid theory to introduce the adic spectrum as
defined by Huber [Hu1]. The input here (defined in §7.2) is a pair (A,A+) whereA is a special type
of topological ring called a Tate ring (defined in §7.1), andA+ ⊂ A is an open and integrally closed
subring; the hypotheses ensure that Spec(A)→ Spec(A+) is an open immersion with complement
defined by the radical A◦◦ ⊂ A+ of a principal ideal, and the main goal is to study a space that
can be thought of as “a punctured tubular neighbourhood” of the Zariski closed set Spec(A+/A◦◦)
inside Spec(A+). More precisely, the output is a spectral space X := Spa(A,A+) equipped with a
distinguished basis of quasi-compact open subsets U ⊂ X called rational sets (defined and studied
in §7.3 and §7.4), as well as a presheaf OX on X (defined in §7.5).
With the exception of recourse to some basic facts about spectral spaces, we have attempted to

keep the exposition essentially self-contained, relying only on standard commutative algebra facts
about valuation rings in lieu of the somewhat more advanced and subtle constructions with value
groups employed by Huber.

7.1 Tate rings
sec:TateRings

We shall restrict attention to the following class of topological rings:

Definition 7.1.1. A topological ringA is called Tate if there exists an open subringA0 such that the
induced topology on A0 is t-adic for some t ∈ A0 that becomes a unit in A; any such A0 is called a
ring of definition, the element t is called a pseudouniformizer, and the pair (A, t) is called a couple
of definition. A morphism of Tate rings is just a continuous morphism of topological rings.

Example 7.1.2. Let K be a NA field, and let R be a K-Banach algebra. Then R is Tate: a couple
of definition is given by (R≤1, t), where t ∈ K is a pseudouniformizer.

Remark 7.1.3. Somewhat more generally, a topological ring A is called Huber if there exists an
open subring A0 such that the induced topology on A0 is I-adic for some finitely generated ideal
I . A Huber ring A is Tate if and only if there exists a unit t ∈ A such that tn → 0 as n → ∞.
It follows that given a continuous morphism of Huber rings A → B, if A is Tate, so is B. As
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we shall restrict attention to perfectoid geometry over a perfectoid field, this forces all rings under
consideration to be Tate. Thus, we do not develop the theory in the more general context of Huber
rings in these notes.

Fix a Tate ring A. We enumerate some basic properties and structures for such a ring; the proof
of any unproven assertion is straightforward from the definitions, and left to the reader.

1. Algebraic description ofA. For any couple of definition (A0, t), we haveA = A0[1
t
]. Indeed,

the ideals (tnA0) of A0 give a basis of open neighbourhoods of the induced topology on A0,
and thus also for A as A0 ⊂ A is open. It follows that for any f ∈ A, by continuity of left
multiplication by f , we must have tnf ∈ A0 for n � 0, and thus f ∈ A0[1

t
]. In particular,

given any pair (B, f) comprising a commutative ring B0 with an element f ∈ B0, we get a
Tate ring B0[ 1

f
] with couple of definition (B0/(f-torsion), f).

2. Bounded sets. A subset S ⊂ A is bounded if for some couple of definition (A0, t), we have
S ⊂ t−nA0 for some n ≥ 0. Bounded subsets have easily verified stability properties: finite
unions of bounded subsets are bounded, and the A0-submodule of A generated by a bounded
subset is bounded. It is also easy to see that any ring of definition of bounded1, so one may
replace “some” with “any” in the previous definition. Moreover, given a couple of definition
(A0, t), any open bounded subgroup B ⊂ A satisfies tnA0 ⊂ B ⊂ t−nM for some n ≥ 0. It
follows that if B is an open bounded ring, then B is a ring of definition; conversely, any ring
of definition is open and bounded. Using these properties, one checks that the collection of
all rings of definition of A is filtered.

3. Powerbounded elements. An element f ∈ A is powerbounded if fN is bounded, i.e., given
a couple of definition (A0, t), we have tcfN ⊂ A0 for some c ≥ 0. The collection A◦,
called the ring of powerbounded elements, of all such elements is then an A0-subalgebra of
A. As each ring of definition is bounded, it follows that A◦ contains all rings of definition
of A. Conversely, for any f ∈ A◦ and couple of definition (A0, t), the subring A0[f ] ⊂ A is
immediately seen to be open (obvious) and bounded (as the A0-submodule of A generated
by a bounded set is bounded), and is thus also a ring of definition. It follows that A◦ is the
filtered direct limit of all rings of definition (or, equivalently, open bounded subrings) of A.
Using this description, one checks that A◦ is integrally closed in A: if f ∈ A is integral
over A◦, then f must be integral over some ring of definition A0 of A, whence the subring
A0[f ] ⊂ A is bounded (being a finitely generatedA0-submodule ofA), and thusA0[f ] ⊂ A◦,
so f ∈ A◦. We shall say that A is uniform if A◦ is bounded.

4. Topologically nilpotent elements. An element f ∈ A◦◦ is topologically nilpotent if fn → 0,
i.e., for any couple of definition (A0, t) and any n ≥ 0, we have fm ∈ tnA0 for m � 0.

1Given couples of definition (A0, t0) and (A1, t1), we know that t`1A1 ⊂ A0, and thus A1 ⊂ t−`1 A0, for `� 0. As
multiplication by t1 is a homeomorphism that preserves the notion of being a neighbourhood basis 0, this proves that
A1 is bounded with respect to A0; by symmetry, the converse is also true, so the notion of boundedness is independent
of the couple of definition.
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Given a couple of definition (A0, t), the pseudouniformizer t is clearly a topologically nilpo-
tent unit of A. Conversely, any t ∈ A that is a topologically nilpotent unit is a pseudouni-
formizer2. We remark that any open and integrally closed subringB ⊂ A◦ must containA◦◦;
this gives a bijective correspondence between open and integrally closed subrings of A◦ and
integrally closed subrings of A◦/A◦◦.

5. Completion. We say that A is complete if A is complete in its topology; equivalently, some
(or, equivalently, any) ring of definition A0 of A is required to be complete in the t-adic
topology, where t ∈ A0 is a pseudouniformizer. The inclusion of complete Tate rings inside
all Tate rings has a left adjoint A 7→ Â, called the completion of A. Explicitly, if (A0, t) is a
couple of definition of A, then we set Â0 := limA0/t

nA0 to be the t-adic completion of A0,
and Â = Â0[1

t
], viewed as a topological ring by declaring tnÂ0 to be a neighbourhood basis

of 0. One checks that Â is a complete3 Tate ring that coincides with limnA/t
nA0 as a group,

and also coincides with the completion of A in the sense of Cauchy sequences.

6. Compatibility of rings of definition under morphisms. Let φ : A → B be a continuous
map of Tate rings. For any pseudouniformizer t ∈ A, the element φ(t) ∈ B is also a
pseudouniformizer: the condition of a being topologically nilpotent unit can be transported
across ring homomorphisms. Moreover, we can also choose compatible rings of definition
in either order. Fix rings of definition A0 ⊂ A and B0 ⊂ B and a pseudouniformizer t ∈ A0.
The preimage φ−1(B0) is an open subring of A, so A′0 = A0∩φ−1(B0) is open and bounded
in A, and thus a ring of definition; this gives an induced map A′0 → B0 between rings of
definition. Conversely, we have tnA0 ⊂ A′0 for n � 0. Setting B′0 ⊂ B to be the subring
generated by φ(A0) and B0, we get φ(t)nB′0 ⊂ B0, so B′0 is open and bounded in B, and
thus a ring of definition; this gives us a map A0 → B′0 between rings of definition.

ex:BasicsTateRings Exercise 7.1.4. Let A be a Tate ring.

1. If A0 is a ring of definition, show that A◦ is the total integral closure of A0 in A.

2. If A is uniform, show that A◦ is totally integrally closed in A. Find an example where the
converse fails.

3. If A is complete and uniform, show A is reduced.

4. Find an example of a uniform Tate ring that is not reduced.

5. Find an example of a reduced complete Tate ring that is not uniform.
2If (A0, f) is a couple of definition, then tm ∈ fA0 for m � 0 by topological nilpotence. After replacing t with

tm (which does not change the property of being pseudouniformizer or a topologically nilpotent unit), we may assume
t ∈ fA0, so t is an element of A0 divisible by f . But t also becomes a unit in A = A0[

1
f ], so there exists some g ∈ A0

such that tg = fm for m� 0, so t divides fm. Thus, we have fmA0 ⊂ tA0 ⊂ fA0, so the t-adic topology coincides
with the f -adic topology on A0, and thus t is a pseudouniformizer.

3This relies on the following algebraic fact: ifR is a ring, I ⊂ R a finitely generated ideal, andM is anyR-module,
then setting M̂ := limM/InM to be the I-adic completion of M , we have M̂/InM̂ ' M/InM for all n. See [SP,
Tag 05GG] for a proof.
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Example 7.1.5. Let K be a NA field. Then any Banach K-algebra R is a a complete Tate ring.
Moreover, if K and R are perfectoid, then we have R◦◦ = K◦◦R◦: if α ∈ R is topologically
nilpotent, then αn ∈ tR◦ for a pseudouniformizer t, so we get the desired equality up to radicals.
For the rest, it is enough to show that K◦◦R◦ is radical. But, by perfectoidness, the quotient
R◦/K◦◦R◦ is a perfect k-algebra, where k = K◦/K◦◦ is the residue field of k, so the ideal K◦◦R◦

must be radical.

The next lemma provides a useful test for uniformity:

lem:PerfectImpliesUniform Lemma 7.1.6. Let A be a complete Tate ring of characteristic p that is perfect. Then A is uniform.

The statement of the above lemma was pointed out to us by Scholze, who learnt it from André.

Proof. Let (A0, t) be a ring of definition of A. Write An = A
1
pn

0 ⊂ A for the subring of A
generated by the pn-th roots of elements of A0, so the inclusion A0 → An is isomorphic to the
n-fold Frobenius A0 → A0. We have inclusions A0 ⊂ A1 ⊂ A2 ⊂ ..., and write A∞ = colimnAn,
so A∞ is the perfection of A0. We shall check t

1
pnA◦ ⊂ A∞ for any n ≥ 0, and tcA∞ ⊂ A0 for

some c ≥ 0. Together, these imply that A◦ is bounded, and thus A is uniform.
To see t

1
pnA◦ ⊂ A∞, fix some f ∈ A◦. Then tafN ∈ A0 ⊂ A∞ for some a ≥ 0. As A∞ ⊂ A is

closed under taking p-th roots, it follows that t
a
pn · f ∈ A∞ for all n ≥ 0, which easily gives the

desired claim.
To see tcA∞ ⊂ A0, we use the Banach open mapping theorem: the Frobenius map F : A→ A is

a continuous bijection of Banach spaces, and is thus open. In terms of the sequence Ai introduced
above, this means that tmA1 ⊂ A0 for some m ≥ 0. By Frobenius twisting, this means t

m
pnAn+1 ⊂

An. Thus, t
∑n
i=0

m

piAn+1 ⊂ A0 for all n. It is then clear that tcA∞ ∈ A0 for any c ≥ mp
p−1

, as wanted.

7.2 Affinoid Tate rings
sec:AffinoidTateRings

The basic input for defining adic spaces comprises the following data:

Definition 7.2.1. For a Tate ring A, a ring of integral elements of A is any open and integrally
closed subring of A◦. An affinoid (Tate) ring is a pair (A,A+) where A is a Tate ring, and A+ is
a ring of integral elements of A. A morphism (A,A+) → (B,B+) of affinoid algebras is just a
continuous map A→ B that carries A+ into B+.

We often chooseA+ = A◦ in applications. However, in setting up the theory, it is more convenient
to not impose this assumption. Algebraically, the difference between the two is roughly the same
as the difference between integral closures and total integral closures. Topologically, as we shall
see, the difference between A+ and A◦ is also closely linked to the presence of higher rank points
in the adic spectrum. For future reference, we list some properties of an affinoid Tate ring (A,A+):

1. We have A◦◦ ⊂ A+ as an ideal: any t ∈ A◦◦ has a power that lies in the open subring A+,
and hence t ∈ A+ by integral closedness, which gives the containment. As A◦◦ is an ideal
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in the larger ring A◦, it is automatically an ideal in A+. Note further that we have shown:
for any pseudouniformizer t ∈ A, we have tA◦ ⊂ A◦◦ ⊂ A+ ⊂ A◦, so A◦ is bounded if and
only if A+ is so.

2. The idealA◦◦ ⊂ A+ is the radical of the ideal generated by any pseudouniformizer (by using
topological nilpotence of elements ofA◦◦). In particular, the zero locus of pseudouniformizer
on Spec(A+) coincides with either Spec(A+)−Spec(A) or with Spec(A+/A◦◦), and is thus
intrinsic to the map A+ → A of abstract rings.

We shall be interested in affinoid Tate rings (A,A+) which are “local” along the closed set
Spec(A+/A◦◦). The notion of “locality”, which is formulated next algebraically in multiple in-
equivalent ways, is trying to capture the fact we are ultimately interested only in “small neighbour-
hoods” (or, better, “punctured small neighbourhoods”) of Spec(A+/A◦◦) inside Spec(A+).

def:AffinoidTateRingsLocal Definition 7.2.2. Fix an affinoid Tate ring (A,A+). This ring is called:

1. complete if A is so as a Tate ring.

2. henselian if the pair (A+, A◦◦) is henselian4, i.e., an étale map A+ → B admits a section
provided it does so modulo A◦◦.

3. Zariski if A◦◦ lies in the Jacobson radical of A+.

Note at the property of being either henselian or Zariski is intrinsic to the mapA+ → A of abstract
rings5. In fact, the entire discussion of this chapter, with the exception of anything involving
completions, can be formulated in terms of the map A+ → A of abstract rings. There are some
obvious relations between the thee notions above:

lem:AffinoidTateCompletion Lemma 7.2.3 (Equivalent descriptions of Zariski, henselian, and complete pairs). Fix an affinoid
Tate ring (A,A+) with a couple of definition (A0, t) with A0 ⊂ A+.

1. A+ is a filtered colimit of open bounded subrings of A.

2. (A,A+) is Zariski if and only if t lies in the Jacobson radical of A0

3. (A,A+) is henselian if and only if the pair (A0, tA0) is henselian.

4. (A,A+) is complete if and only if A0 is t-adically complete.

4More classically, a pair (R, I) comprising a ring R with an ideal I ⊂ R is henselian if for any finite R-algebra S,
the map S → S/IS induces a bijection on idempotents; we sometimes also say R is I-adically henselian in this case.
It is a non-trivial fact that this condition is equivalent to the one formulated above in Definition 7.2.2. A henselian local
ring is a local ring (R,m) which is henselian. Examples can be constructed using the following stability properties:
(a) if R is I-adically complete then R is I-adically henselian, and (b) if (R, I) is henselian and J ⊂ I is an ideal, then
(R/J, I/J) and (R, J) are both henselian. See [SP, Tag 09XD] for more.

5This statement is not true for completeness, and is the main reason to carry the topology around. For example,
set A0 = Zp[ε]/(ε

2), t = p, A = A0[
1
p ], and A+ to be the integral closure of A0 in A. Then (A,A+) is a complete

affinoid Tate ring with couple of definition (A0, t), but the ringA+ equals Zp ·1⊕Qp ·ε ⊂ A, and is thus not t-adically
complete.
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5. If (A,A+) is complete, then it is henselian.

6. If (A,A+) is henselian, then it is Zariski.

Proof. 1. We already know that A◦ = colimiAi is a filtered colimit of open bounded subrings
Ai ⊂ A. Intersecting with A+ ⊂ A◦ shows that A+ = colimiA

′
i is a filtered colimit of the

A′is; now each A′i is open (as Ai and A+ are open) and bounded (as it is contained in Ai,
which is bounded), so the claim follows.

2. Assume t belongs to the Jacobson radical of A0, so each maximal ideal of A0 contains t.
Say A0 ⊂ B0 is an inclusion of rings of definition. We claim that t also lies in the Jacobson
radical of B0. This claim implies that t (and hence A◦◦) lies in the Jacobson radical of A+ by
(1) as the property that “t lies in the Jacobson radical” passes through a filtered colimit. To
prove the claim, fix a maximal ideal m of B0 with residue field k = B0/m. We must show
that t ∈ m. If not, then t must map to a unit of k. Choose some n ≥ 0 such that tnB0 ⊂ A0,
and choose some b ∈ B that maps to t−n−1 in k. Then the element a = tnb lies in A0, and
maps to t−1 ∈ k. But then the compositeA0 → B0 → k must also be surjective: any element
of the latter is the image of some b ∈ B0, and hence also the image of an · (tnb) ∈ A0. Thus,
we have constructed a maximal ideal of A0 that does not contain t, which is a contradiction.

Conversely, if t (and henceA◦◦) lies in the Jacobson radical ofA+, every point of Spec(A) ⊂
Spec(A+) specializes into a point of Spec(A+/tA+). As A0[1

t
] = A = A+[1

t
], it follows

that every point of Spec(A) ⊂ Spec(A0) also specializes into a point of Spec(A0/tA0), so t
lies in the Jacobson radical of A0.

3. Say (A0, t) is henselian, and A0 ⊂ B0 is an inclusion of rings of definition. By (2), t lies in
the Jacobson radical of B0. The cokernel B0/A0 is killed by tn for some n by boundedness.
Hence, tnB0 ⊂ A0, and so I := tn+1B0 ⊂ tA0. Now observe that I is an ideal of bothA0 and
B0, and sits in the Jacobson radical of either ring. Moreover, we have tn+1A0 ⊂ I ⊂ tA0. In
particular, the pair (A0, I) is henselian. As this property only depends on the ideal I viewed
as a non-unital ring (see [GR, Remark 5.1.9 (ii)]), it follows that (B0, I) is also henselian,
and hence (B0, tB0) is henselian. WritingA+ as a filtered colimit of all suchB0’s then shows
that (A+, tA+) is henselian, and hence also (A+, A◦◦) is henselian.

Conversely, assume that (A+, A◦◦) is henselian. SetA1 = A0+A◦◦ ⊂ A+ to be the subgroup
of elements of the form a+ ε with a ∈ A0 and ε ∈ A◦◦. As A0 ·A◦◦ ⊂ A+ ·A◦◦ = A◦◦, one
checks: (a) A1 is a subring of A+, and (b) A◦◦ ⊂ A1 is an ideal. Moreover, A◦◦ =

√
tA1 as

ideals in A1: if f ∈ A◦◦, then fn ∈ tA0 ⊂ tA1 for n � 0 by topological nilpotence. The
proof of the second half of (2) shows that t (and hence A◦◦) lies in the Jacobson radical of
A1. We then conclude that (A1, A

◦◦) is also henselian: the ideal A◦◦ is a common ideal in
both A1 and A+, is contained in the Jacobson radical of both rings, and the pair (A+, A◦◦) is
henselian.

Next, we claim that the canonical map φ : A0 → A1 is integral, and that both φ[1
t
] and φ/t are

universal homeomorphisms on spectra; this implies Spec(φ) is a universal homeomorphism
(as it is universally specializing by integrality, and universally bijective by the assertion about
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topological spaces). For integrality, if f = a + ε ∈ A1 with a ∈ A0 and ε ∈ A◦◦, then there
exists someN ≥ 0 such that b := εN ∈ A0 by topological nilpotence, so f satisfies the monic
polynomial (X − a)N − b ∈ A0[X]. For the rest, it is clear that φ[1

t
] is an isomorphism, so

it is enough to check that φ : A0/
√
tA0 → A1/

√
tA1 is a homeomorphism on spectra. But

A1 = A0 + A◦◦ and A◦◦ =
√
tA1 as ideals in A1. It is then easy to check that φ is actually

an isomorphism of rings.

Summarizing, the map A0 → A1 is a universal homeomorphism on spectra, and the pair
(A1, tA1) is henselian. By the topological invariance of the étale site and the characterization
of henselianness in terms of étale maps, it follows that (A0, tA0) is also henselian.

4. Clear from the definition.

5. As filtered colimits of henselian rings are henselian, this follows from (1) as open bounded
subrings of A containing A0 are t-adically complete and hence t-adically henselian.

6. Left to the reader.

In particular, the property of being Zariski for an affinoid Tate ring (A,A+) is the mildest of the
three properties introduced above, and only depends on the map A+ → A of abstract rings. Thus,
for maximal generality and technical ease, in the sequel, we shall try to use this property as a
hypothesis when necessary (see Proposition 7.3.10 for an example); the reader should feel free to
substitute one of the others, such as completeness, at first pass. The most important example for
our purposes shall be:

Example 7.2.4. Let K be a perfectoid field, and let R be a perfectoid K-algebra. Then (R,R◦) is
a complete affinoid Tate ring, and it admits a natural structure map from (K,K◦). More generally,
let R+ ⊂ R◦/R◦◦ be any integrally closed K◦/K◦◦-algebra. Then its preimage R+ ⊂ R◦ is a ring
of integral elements, and the result (R,R+) is a complete affinoid Tate ring.

We remark that there is a good notion of completion for affinoid Tate algebras.

lem:ConstructCompletion Lemma 7.2.5 (Completion, henselization, Zariski localization). The inclusion of complete affinoid
Tate rings into all affinoid Tate rings has a left-adjoint (A,A+) 7→ (Â, Â+); we call (Â, Â+) the
completion of (A,A+). A similar statement holds true for “complete” replaced by “henselian”
or “Zariski”, and we denote the result as (A,A+)hens := (Ahens, A

+
hens) and (A,A+)Zar :=

(AZar, A
+
Zar). Moreover, these are related by canonical maps

(A,A+)
a−→ (A,A+)Zar

b−→ (A,A+)hens
c−→ (Â, Â+)

with a being an isomormphism on Zariski localizaton, a, b being isomorphisms on henselizations,
and a, b, c being isomorphisms on completions.

The construction, together with Lemma 7.2.3, shows that the assocations (A,A+) 7→ (A,A+)hens
and (A,A+) 7→ (A,A+)zar factor through the functor that ignores topology on either side, i.e.,
(A,A+)hens as an abstract pair of rings can be calculated from (A,A+) as an abstract pair, and
likewise for (A,A+)zar; this is not true for the completion.
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Proof. For completion: choose a couple of definition (A0, t) of A. Then the t-adic completion Â
is a ring of definition for the completion Â of the Tate ring A. Set Â+ to be the integral closure of
the image of Â0 ⊗A0 A

+ → Â. Then Â+ contains Â0, and is thus an open and integrally closed
subring of Â. Moreover, note that the image of A◦ ⊗A0 Â0 → Â is contained in Â◦. Hence, each
element of Â+ is integral over Â◦. As the latter is integrally closed, we then have Â+ ⊂ Â◦. Thus,
(Â, Â+) is a complete affinoid Tate ring. We leave it to the reader to check the universal property.
For henselization (resp. Zariski localization), one simply replaces Â0 with the henselization (resp.

Zariski localization) of A0 along tA0 in the construction above; to see this satisfies the desired
properties, one uses Lemma 7.2.3.
The last part follows from general nonsense about adjoint functors.

The next exercise explains why the category of uniform affinoid Tate rings can be described purely
in terms of commutative algebra (i.e., without any topology on the rings); this description will be
used in the sequel to invoke certain results or constructions in commutative algebra.

ex:Uniformization Exercise 7.2.6 (Describing uniform Tate rings algebraically). Write Tate for the category of affi-
noid Tate rings, and wirte Tateu ⊂ Tate for the full subcategory of uniform ones, i.e., those
(A,A+) where A is uniform.

1. Show that (A,A+) ∈ Tate is uniform if and only if A+ is a ring of definition.

2. Show that the inclusion i : Tateu ↪→ Tate has a left adjoint L such that L(A,A+), called
the uniformization of (A,A+), is just (A,A+) as an abstract ring, but the topology is de-
termined by making (A+, t) a couple of definition for any pseudouniformizer t. Thus,
we may regard Tateu as a localization of Tate. Explicitly, the functor L inverts all maps
(A,A+)→ (B,B+) that give bijections A+ ' B+ of underlying (abstract) rings.

3. Write Tatealg for the category of pairs (R, I) where R is a commutative ring, I ⊂ R is
the radical of an ideal generated by a nonzerodivisor, and R is integrally closed in the ring
R[f−1] where f ∈ I is a generator (up to radicals); a map (R, I)→ (S, J) in this category is
an adic map, i.e., a map f : R→ S such that

√
f(I)S = J . Show that (A,A+) 7→ (A+, A◦◦)

gives a functor Tate→ Tatealg.

4. Given (R, I) ∈ Tatealg with a generator (up to radicals) f ∈ I , we may construct an affinoid
Tate ring (R[ 1

f
], R) with couple of definition (R, f). Show that this gives a well-defined

functor Tatealg → Tateu.

5. Show that the functors in (3) restricts to an equivalence Tateu ' Tatealg with inverse the
functor from (4).

6. Show that Tateu admits pushouts and filtered colimits.

7. Fix a uniform affinoid Tate ring (A,A+) ∈ Tateu and a pseudouniformizer t ∈ A+. Then
show that the completion ̂(A,A+) of the underlying affinoid Tate ring (A,A+) is computed
as (Â+[1

t
], Â+), where Â+ is the t-adic completion of A+ and the couple of definition is

(Â+, t). In particular, this completion is also uniform.
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7.3 Affinoid adic spaces: definition and basic properties
sec:AdicSpectrumDef

Our goal is to attach a space Spa(A,A+) to an affinoid Tate ring (A,A+). To a first approximation,
this space parametrizes a point of Spec(A) equipped with a totally ordered set of specializations in
Spec(A+) − Spec(A). More precisely, one works with valuations realizing this picture. For this,
recall that a valuation on a a ringA is given by a map x : A→ Γ∪{0}, where Γ is a totally ordered
abelian group written multiplicatively with an identity element 1 ∈ Γ, and x is a multiplicative map
that carries 0 and 1 to 0 and 1 respectively, and satisfies the NA inequality. Any such x determines
a prime ideal px := x−1(0) called the support of x as well as a valuation ring Rx ⊂ κ(px). Two
valuations are equivalent exactly when they have identical supports and valuation rings. We shall
construct the space Spa(A,A+) as a suitable subspace of the space of all valuations on A:

def:AdicSpectrum Definition 7.3.1 (The adic spectrum). Let (A,A+) be an affinoid Tate ring. The adic spectrum
Spa(A,A+) is defined as the set of equivalence classes of valuations x : A→ Γ∪{0} (for varying
Γ) such that

1. x(f) ≤ 1 for f ∈ A+.

2. x is continuous with respect to the order topology on the target, i.e. x−1(Γ<γ ∪ {0}) is open
for all γ ∈ Γ.

Given a valuation x as above and f ∈ A, we often write x(f) as |f(x)| instead. Given f, g ∈ A,
we obtain subsets

Spa(A,A+)
(f
g

)
:= {x ∈ Spa(A,A+) | |f(x)| ≤ |g(x)| 6= 0}.

We endow Spa(A,A+) with the coarsest topology where all such sets are open.

It is easy to see that (A,A+) 7→ Spa(A,A+) gives a contravariant functor from affinoid Tate
rings to topological spaces: we simply precompose valuations with the map of underlying rings
to pull them back. It is also clear that if A+ ⊂ A+′ is an inclusion of rings of integral elements,
then the induced map Spa(A,A+′)→ Spa(A,A+) is injective; in particular, Spa(A,A◦) sits inside
Spa(A,A+) for any choice ofA+. We remark next that the adic spectrum is essentially an algebraic
object:

Remark 7.3.2 (The adic spectrum does not depend on the topology). The space Spa(A,A+) only
depends on the map A+ → A of abstract rings, and not on the topology of A. More formally, the
functor (A,A+) 7→ Spa(A,A+) factors through the uniformization functor from Exercise 7.2.6.
To see this: as the opens defining the topology obviously only depend on A, it suffices to show
that the two conditions on the valuation x appearing in Definition 7.3.1 can be formulated alge-
braically. The ideal A◦◦ ⊂ A+ can be recovered as the radical ideal defining complement of the
open immersion Spec(A) ⊂ Spec(A+); any t ∈ A+ such that

√
(t) = A◦◦ is a pseudouniformizer.

It now suffices to observe that a given valuation x : A → Γ ∪ {0} lies in Spa(A,A+) exactly6

when x(A+) ≤ 1, and x(tn)→ 0 for one (or, equivalently, any) pseudouniformizer t.
6Indeed, if x is continuous, then certainly x(tn) → 0 as tnA0 is a neighbourhood basis of 0 for a couple of

definition (A0, t). Conversely, if (A0, t) is a couple of definition and x is a valuation on A with x(A+) ≤ 1, then
tA0 ⊂ A◦◦ ⊂ A+ so x(tA0) ≤ 1, so x(tnA0) ≤ x(tn−1), and hence x(tnA0)→ 0 if x(tn)→ 0, giving continuity.
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A basic piece of structure used to study Spa(A,A+) is the kernel map:

rmk:KernelMapSpa Remark 7.3.3 (The kernel map). Given a point x ∈ Spa(A,A+), taking the support px := ker(x) ⊂
A gives a map

ker : Spa(A,A+)→ Spec(A).

In fact, this map is continuous: given f ∈ A, the preimage ofD(f) ⊂ Spec(A) is Spa(A,A+)
(
f
f

)
.

We shall call inverse images of open subsets of Spec(A) along ker the Zariski open subsets of
Spa(A,A+).

We want to give a purely ring-theoretic desription of the adic spectrum. We already know that
any valuation x on A is completely determined by its support px together with the valuation ring
Rx ⊂ κ(px). These must satisfy some additional conditions when x ∈ Spa(A,A+). To formulate
these conditions algebraically, we need the following definition, encoding essential features of the
valuation rings of the form Rx for x ∈ Spa(A,A+).

Definition 7.3.4 (Microbial valuation rings). Let V be a valuation ring. We say that f ∈ V is a
pseudouniformizer if f is nonzero and contained in a height 1 prime. If a pseudouniformizer exists
(or, equivalently, if V has a height 1 prime), we say that V is microbial

Using the fact that any radical ideal in a valuation ring is prime7, one checks that the height
1 prime of a microbial valuation ring V can be computed as

√
(f) for any pseudouniformizer

f . Any valuation ring of finite Krull dimension is automatically microbial, so one has to work
hard to find a non-example (but they do exist). There are several equivalent characterizations of
microbiality that will be useful, and are recorded in the next exercise.

Exercise 7.3.5 (Characterizations of microbial valuation rings). Let V be a nonzero valuation ring.
Prove that the following are equivalent:

1. V is microbial.

2. There exists some 0 6= f ∈ V such that, for any 0 6= g ∈ V , we have |fn| < |g| for n � 0,
i.e., f is topologically nilpotent in the valuation topology.

3. V is f -adically separated for some nonzero element f (which then necessarily is a pseu-
douniformizer).

4. There exists some non-unit f ∈ V such that Frac(V ) = V [ 1
f
].

5. (Frac(V ), V ) is an affinoid Tate ring for the valuation topology on Frac(V ).

6. Frac(V ) is a Tate ring for the valuation topology.

7Indeed, as all ideals in a valuation ring V are totally ordered, a radical ideal can be written as the intersection
I := ∩sps of primes indexed by a totally ordered set S such that ps ⊂ pt for s ≤ t in S. Now given f, g ∈ V with
fg ∈ I , consider the subsets Sf , Sg ⊂ S defined by Sf := {s ∈ S | f ∈ ps} and likewise for Sg . We want to show
that Sf = S or Sg = S. We have Sf ∪ Sg = S by hypothesis. Also, both Sf and Sg are closed under taking larger
elements of S. It is then formal that Sf = S or Sg = S.
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7. Frac(V ) is a NA field in the valuation topology.

The following observation will be very useful later in converting an arbitrary valuation ring into
a microbial one.

lem:ValuationCompletionMicrobial Lemma 7.3.6 (Constructing microbial valuation rings). If V is a valuation ring and f ∈ V is a
nonzero nonunit, then the f -adically separated quotient V := V/∩nfnV and its f -adic completion
V̂ are both microbial valuation rings with pseudouniformizer f , and the natural map V → V̂ is a
fathfully flat extension of microbial valuation rings that preserves pseudouniformizers.

Proof. We first check that if a valuation ring W is g-adically separated for a nonzero element
g ∈ W , then W is microbial with pseudouniformizer g: the separatedness ensures that g is not a
unit, and that for any 0 6= h ∈ W , we have h /∈ (gn) for n � 0, so gn ∈ (h) for n � 0, so
|gn| < |h| for n� 0.
Next, we check that V is a valuation ring. For this, as V → V is surjective, it suffices to check

that I = ∩nfnV is a radical (and hence prime) ideal. If g ∈ V with gk ∈ I for some k ≥ 0, then
gk ∈ fknV for any n, so g

fn
∈ Frac(V ) has its k-th power in V , and must thus lie in V as V is

normal. This gives g ∈ fnV for all n, so g ∈ I , proving V is a valuation ring. One can also check
that the f -adic completion V̂ is a valuation ring (but we leave this to the reader).
Applying this to V and V̂ proves the first half of the lemma. The faithful flatness of V → V̂ is

the consequence of the general fact that any any injective local map S → T of valuation rings is
faithfully flat: injectivity ensures flatness via torsionfreeness so Spec(T ) → Spec(S) has image
closed under generalization, while locality ensures that Spec(T )→ Spec(S) hits the closed point,
and hence is surjective by the generalizing property.

Using this, we show:

prop:AdicSpectrumValuationRings Proposition 7.3.7 (Adic spectrum via valuation rings). Fix an affinoid Tate ring (A,A+). There is
a natural bijection between Spa(A,A+) and the set S of equivalence classes of maps φ : A+ → V
where V is a microbial valuation ring and φ carries pseudouniformizers to pseudouniformizers;
here the equivalence relation is generated by requiring that if ψ : V → W is a faithfully flat
extension of microbial valuation rings that preserves pseudouniformizers, then φ : A+ → V and
ψ ◦ φ : A+ → W are equivalent.

We make two observations about the conclusion of this proposition.

• As any two pseudouniformizers define the same closed set (namely, the complement of
Spec(A) in Spec(A+)), a map φ : A+ → V with V a valuation ring gives an element of
the set S if and only if φ(t) is a pseudouniformizer for a single pseudouniformizer t ∈ A+.

• Using Lemma 7.3.6 and replacing the rings V appearing above with their φ(t)-adic comple-
tions, one can restrict to valuation rings V which are φ(t)-adically complete in the proposi-
tion.
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Proof. Fix a pseudouniformizer t ∈ A+. Given a point x ∈ Spa(A,A+), we have its support
px ⊂ A as well as the induced valuation ring Rx ⊂ κ(px). Condition (1) in Definition 7.3.1
ensures that we have a map φx : A+ → Rx, while condition (2) ensures that the image φx(t) is a
pseudouniformizer. Thus, the map φx gives an element of the set S, and so we have constructed a
map Spa(A,A+)→ S.
Conversely, fix a map φ : A+ → V representing an element of S. Thus, |φ(f)| ≤ 1 for f ∈ A+,

and φ(t) is a pseudouniformizer, so φ(t) 6= 0 and that for any g ∈ V , we have |φ(t)n| < g for
n � 0. Let p denote the kernel of φ, so φ defines a valuation xφ on κ(p) satisfying the two
conditions in the previous sentence; explicitly, for f, g ∈ A+, we have |f(xφ)| ≤ |g(xφ)| if and
only if φ(g) | φ(f). Thus, xφ gives a point of Spa(A,A+). It is easy to see that φ and φ ◦ ψ define
the same valuation for any faithfully flat map ψ : V → W of valuation rings. Thus, we obtain a
well-defined map S → Spa(A,A+).
We leave it to the reader to check that these constructions give mutually inverse bijections.

As an upshot, each point x ∈ Spa(A,A+) determines (and is determined by) the map (A,A+)→
(κ(px), Rx) of affinoid Tate rings.

Remark 7.3.8 (Affinoid fields). An affinoid Tate ring (K,K+) is called an affinoid field if K is
a NA field (for its topology) and K+ ⊂ K is an open valuation ring. In this case, the ring K◦ is
a rank 1 valuation ring, and the space Spa(K,K+) is a totally ordered set (see Proposition 7.3.10
and Remark 7.3.11 below). The discussion above shows that for any affinoid Tate ring (A,A+)
and a point x ∈ Spa(A,A+), the affinoid Tate (A,A+)-algebra (κ(px), Rx) is an affinoid field.
Using this, one may also formulate Proposition 7.3.7 as describing the set Spa(A,A+) in terms of
equivalence classes of maps (A,A+)→ (K,K+) to affinoid fields.

Remark 7.3.9 (Visual desription of points). Proposition 7.3.7 gives us a visual description of
points of Spa(A,A+). Given a mapA+ → V as in Proposition 7.3.7, the induced map Spec(V )→
Spec(A+) carries the generic point into Spec(A) = Spec(A+)− Spec(A/t), while all other points
are carried into Spec(A+/t) = Spec(A+) − Spec(A). As any such V has a height 1 prime, this
gives a point of Spec(A) ⊂ Spec(A+) specializing into a point of Spec(A/t) ⊂ Spec(A+) together
with a totally ordered set of specializations of the latter. (Draw picture.)

We record some of the basic properties of the adic spectrum.

prop:TateAffinoidBasics Proposition 7.3.10. Let (A,A+) be an affinoid Tate ring.

1. The canonical map (A,A+)→ (Â, Â+) induces a homeomorphism Spa(A,A+) ' Spa(Â, Â+).

2. Spa(A,A+) = ∅ if and only if AZar (or Ahens or Â) vanishes.

3. We have A+ = {f ∈ A | |f(x)| ≤ 1 for all x ∈ Spa(A,A+)}.

4. If x  y is a specialization in Spa(A,A+), then the supports coincide (i.e., px = py =: p).
Moreover, we have a containment Ry ⊂ Rx of the corresponding valuation rings of κ(p), so
Rx is a localization of Ry.
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5. Fix y ∈ Spa(A,A+). A prime ideal q ⊂ Ry contains a pseudouniformizer exactly when
q 6= 0. In this case, the valuation attached to Ry,q ⊂ κ(py) gives a point x ∈ Spa(A,A+)
specializing to y.

6. Assume (A,A+) is Zariski. Then f ∈ A is a unit if and only if |f(x)| 6= 0 for each x ∈
Spa(A,A+).

Proof. Fix a couple of definition (A0, t) with A0 ⊂ A+.

1. By functoriality, we have a continuous map Spa(Â, Â+) → Spa(A,A+). We shall use the
description of points in terms of valuation rings given at the end of Remark 7.3.3.

We first check surjectivity. A point x ∈ Spa(A,A+) determines a map φ : A+ → V ,
where V is a microbial valuation ring with pseudouniformizer such that V is φ(t)-adically
complete. Then (Frac(V ), V ) is a complete Tate ring for the valuation topology (which
coincides with the φ(t)-adic topology on V ). Thus, the map (A,A+) → (Frac(V ), V )

extends uniquely to a map (Â, Â+)→ (Frac(V ), V ). The resulting map Â+ → V then gives
a point of Spa(Â, Â+) lifting x, proving surjectivity.

Injectivity follows from the density of A inside Â: the maps Â+ → V that occur in char-
acterization of Spa(Â, Â+) given in Proposition 7.3.7 are determined by the induced map
Â→ V [1

t
] = Frac(V ).

For homeomorphy: fix f, g ∈ Â, and consider the subset Spa(Â, Â+)
(
f
g

)
. As t is a pseu-

douniformizer, we can write

Spa(Â, Â+)
(f
g

)
= ∪nSpa(Â, Â+)

(f, tn
g

)
;

here we use that |g(x)| 6= 0 for any x in the left side, and that |tn(x)| → 0 for any x. Each of
the sets appearing on the right is open (as it is an intersection of two opens), so it is enough to
show that each of sets appearing on the right can be defined using functions that come from
A. By scaling with powers of t, we may assume f, g, t ∈ Â0. We shall check the following
stronger statement: for fixed n and any N > n, every f ′ ∈ f + tN Â0 and g′ ∈ g + tN Â0

satisy

Spa(Â, Â+)
(f, tn

g

)
= Spa(Â, Â+)

(f ′, tn
g′

)
. (7.1) eq:AdicSpectrumCompletionRational

Note that this implies the desired claim because A0/t
N ' Â0/t

N , so some such f ′ and g′

come from A0. To see this equality, fix some x in the left hand side, so |f(x)| ≤ |g(x)| and
|tn(x)| ≤ |g(x)|. For any h ∈ A0 and N ≥ n, we then have

|(f + tNh)(x)| ≤ max(|f(x)|, |tN(x)|) ≤ |g(x)|.

Now note that |g(x)| ≥ |tn(x)| > |tN(x)| for N > n as 0 6= |t(x)| < 1. By the strict NA
inequality, for any k ∈ A0, we then get

|(g + tNk)(x)| = |g(x)|.
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Thus, we learn that for any h, k ∈ A0 and N > n, we have

|(f + tNh)(x)| ≤ |(g + tNk)(x)| and |tn(x)| ≤ |(g + tNk)(x)|.

This gives the containment ⊂ in the equality (7.1) claimed above. The reverse inequality is
proven similarly.

2. If AZar = 0, then Ahens = Â = 0 by Lemma 7.2.5, and thus Spa(A,A+) = ∅ by (1).
Conversely, it is enough to show that if Â 6= 0, then Spa(A,A+) 6= 0. By (1), we may thus
assume that (A,A+) is a complete affinoid Tate ring with A 6= 0. We shall construct a point
of Spa(A,A+). We first claim that t is not a unit of A+: if it were, then t would not lie in
the Jacobson radical of A+ (as A+ 6= 0), which contradicts the fact that (A,A+) is Zariski.
We can thus choose a maximal ideal m ⊂ A+ containing t. Via the dense open immersion
Spec(Am) = Spec(A+

m[1
t
]) ⊂ Spec(Am), we can choose a prime p of Am specializing to

m. By working with the domain Ā := A+/(p ∩ A+) ⊂ A/p, we can choose a valuation
ring V ⊂ κ(p) containing Ā such that the induced map Spec(V ) → Spec(Ā) ⊂ Spec(A+)
sends the generic point to p and the special point to m. In particular, t is nonzero in V .
Write W for the t-adic completion of V , so W is a microbial valuation ring with pseudouni-
formizer t by Lemma 7.3.6. The resulting map A+ → W gives a point of Spa(A,A+) via
Proposition 7.3.7, as wanted.

3. The containment ⊂ is clear from the definition. For ⊃, fix some f ∈ A such that |f(x)| ≤ 1
for each x ∈ Spa(A,A+). We must show that f ∈ A+. Consider the subring A+[f−1] ⊂
A[f−1]. Note that if f−1 ∈ A[f−1] is a unit, then f is integral over A+, and hence in
A+: writing f as a polynomial in f−1 and clearing denominators gives the required monic
equation that f satisfies. We may thus assume towards contradiction that the element f−1 ∈
A+[f−1] is not a unit. Then we can choose some maximal ideal m ⊂ A+[f−1] that contains
f−1. Let p be a minimal prime of A+[f−1] contained in m. We may then choose a valuation
ring V and a map A+[f−1] → V such that the generic point of Spec(V ) is carried to p,
while the special point is carried to m. This gives a valuation x on A+ by the composition
A+ → A+[f−1]→ V .

We first check that the image of t in V is nonzero. By the injectivity of A+[f−1] → A[f−1]
(obtained from injectivity of A+ → A by inverting f ), the open immersion Spec(A[f−1])→
Spec(A+[f−1]) is dense, and hence hits all generic points. In particular, the prime p lies in
Spec(A[f−1])→ Spec(A+[f−1]), so t ∈ A+ maps to a non-zero element of V (as it maps to
a unit in A and hence in Frac(V )).

Next, we check that t maps into the maximal ideal of V . We have tnf ∈ A+ for n � 0
as t is topologically nilpotent and A+ ⊂ A is open. As x carries A+ into V , it follows that
|tn(x)f(x)| ≤ 1. But x also carries f−1 into the maximal ideal of V by construction, i.e.,
|f−1(x)| < 1. These conditions force |t(x)| < 1, i.e., t maps into the maximal ideal of V .

By replacing V with its t-adic completion, we may assume that V is microbial with pseu-
douniformizer t. The resulting map A+ → A+[f−1] → V then gives a point of x ∈
Spa(A,A+). After inverting t, we get A → A[f−1] → Frac(V ), inducing the valuation
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x on A. Then we have |f−1(x)| < 1 (by construction) and |f(x)| ≤ 1 as f ∈ A+ maps into
V . As |f(x)| · |f−1(x)| = 1, this is impossible, so we have a contradiction.

4. For px ⊂ py: given f ∈ px, we have x /∈ Spa(A,A+)
(
f
f

)
. The specialization hypothesis

ensures y /∈ Spa(A,A+)
(
f
f

)
, so |f(y)| = 0, and thus f ∈ py.

For py ⊂ px: if f ∈ py, then y ∈ Spa(A,A+)
(
f
tn

)
for all n ≥ 0. The specialization

hypothesis ensures that x ∈ Spa(A,A+)
(
f
tn

)
as well, so |f(x)| = 0.

As the supports are the same, we can view both Ry and Rx as valuation rings with the same
fraction field κ(p). To see Ry ⊂ Rx, fix some f ∈ Ry ⊂ κ(p). We can write f = g

h
for

g, h ∈ A with h /∈ p. As f ∈ Ry, we have y ∈ Spa(A,A+)
(
g
h

)
. But then the same holds

true for x by the specialization hypothesis, so we learn that f ∈ Rx. The fact that Ry → Rx

is a localization is then a general fact: any injective map S ⊂ T of valuation rings with
the same fracton field must be a localization: it factors as S a−→ Sq

b−→ T where q ⊂ S is
the prime corresponding to the image of the closed point Spec(T ), the map a is the obvious
localization, and b is a faithfully flat extension of valuation rings with the same fraction field,
and thus an isomorphism.

5. As Ry is microbial, it admits a (unique) height 1 prime q0, characterized as the radical of the
ideal generated by any pseudouniformizer. Thus, a prime q ⊂ Ry is nonzero exactly when
q ⊃ q0, which gives the first assertion. For such a prime q, the valuation ring Ry,q ⊂ κ(py)
gives a point x ∈ Spa(A,A+) with Rx = Ry,q by Proposition 7.3.7. The inclusion Ry ⊂ Rx

can be used to show that x y, as in the proof of (4).

6. One direction is clear, so assume |f(x)| 6= 0 for all x ∈ Spa(A,A+). We must show that f
is invertible in every residue field of A. Although this can be deduced from (2), we give a
direct argument. Fix a pseudouniformizer t ∈ A+. As (A,A+) is Zariski, the element t lies
in the Jacobson radical of A+. In particular, every point of Spec(A) ⊂ Spec(A+) specializes
into a point of Spec(A+/t) ⊂ Spec(A+). Then, for every prime ideal p ⊂ A, we can choose
a valuation ring V and a map φ : A+ → V such that Spec(φ) carries the generic point of
Spec(V ) to p, while the special point goes to a point in Spec(A+/t). As t ∈ κ(p) is a unit,
Lemma 7.3.6 shows that the φ(t)-adic completion V̂ of V is a microbial valuation ring with
pseudouniformizer φ(t). By Proposition 7.3.7, this defines a point x ∈ Spa(A,A+) with
support q being a specialization of p (corresponding to the image of the prime ∩nφ(t)nV ∈
Spec(V )) The hypothesis |f(x)| 6= 0 then forces f to be invertible in κ(q), and hence also
in κ(p). As this is true for all p ∈ Spec(A), it follows that f is a unit.

rmk:GeneralizationStructure Remark 7.3.11 (Structure of generalizations). Proposition 7.3.10 (4) and (5) ensure that all gener-
alizations in Spa(A,A+) are easily classified: given y ∈ Spa(A,A+), the set of all generalizations
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of y is in bijection Spec(Ry/t) as a poset, and is thus totally ordered. Moreover, as Ry is micro-
bial, the scheme Spec(Ry/t) has a unique generic point y1 (corresponding to the height 1 prime of
Ry). The corresponding generalization y1  y is the unique rank 1 generalization of X . The map
y → y1 thus defines a retraction of Spa(A,A+) onto its subset Spa(A,A+)gen of generic points.
We also remark that the inclusion Spa(A,A◦) ⊂ Spa(A,A+) is closed under generalization (which
is clear from the structure of generalizatons) and we have Spa(A,A◦)gen = Spa(A,A+)gen: this
amounts to the observation that for any x ∈ Spa(A,A+), the map A → κ(px) carries A◦ into
κ(x)◦ = Rx1 , where κ(x) is given the valuation topology attached to x, and x1 is the unique
rank 1 generalization of x. In particular, each point of Spa(A,A+) generalizes to a point of
Spa(A,A◦) ⊂ Spa(A,A+), so the difference between the two is indeed a “higher rank” phe-
nomenon.

7.4 Spectrality of affinoid adic spaces
sec:AdicSpectrumSpectral

Let (A,A+) be an affinoid Tate ring. We shall prove the following theorem:

thm:AdicSpectrumSpectral Theorem 7.4.1 (Adic spectra are spectral). The adic spectrum Spa(A,A+) is a spectral space.
Moreover, a basis B of quasi-compact opens is given by “rational subsets”, i.e., subsets of the
form

Spa(A,A+)
(f1, ..., fn

g

)
:= {x ∈ Spa(A,A+) | |fi(x)| ≤ |g(x)| for all i}

where fi ∈ A generate the unit ideal in A, and g ∈ A. The construction (A,A+) 7→ Spa(A,A+)
naturally defines a functor from affinoid Tate rings to spectral spaces, i.e., pulling back valuations
along a map of affinoid Tate rings gives rise to a spectral map on adic spectra.

Remark 7.4.2 (Compatibility with Definition 7.3.1). For any x ∈ Spa(A,A+)
(
f1,...,fn

g

)
(with

notation as in Theorem 7.4.1), we must have |g(x)| 6= 0: if |g(x)| = 0, then |fi(x)| = 0 for all i by
definition of the set, so fi ∈ px, whence 1 ∈ (fi) ⊂ px by assumption on the fi’s, which forces the
abusrd equality 1 = |1| = 0. Thus, the notation introduced in Theorem 7.4.1 is compatible with
the one in Definition 7.3.1.

rmk:ModifyPresentationsAdicSpectrum Remark 7.4.3 (Modifying presentations). Fix a pseudouniformizer t ∈ A. As t is a unit with
|t(x)| 6= 0 for any x ∈ Spa(A,A+), we are free to scale the parameters fi and g appearing
in Theorem 7.4.1 by powers of t. In particular, we can choose the functions fi, g appearing in
Theorem 7.4.1 to lie inside A+ (or any ring of definition); the condition that the fi’s generate a
unit ideal of A then amounts to the condition that the fi’s generate an open ideal of A+, i.e., they
contain the pseudouniformizer tN for N � 0. Moreover, in this case, we remark that

Spa(A,A+)
(f1, ..., fn

g

)
= Spa(A,A+)

(f1, ..., fn, t
N

g

)
.

Indeed, ⊃ is clear, while ⊂ follows from the observation that tN =
∑

i aifi with ai ∈ A+, so

|tN(x)| ≤ max(|ai(x)| · |fi(x)|) ≤ max(|fi(x)|) ≤ |g(x)|,
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where the second inequality uses |ai(x)| ≤ 1 as ai ∈ A+ and x ∈ Spa(A,A+). Thus, after possibly
modifying our original choice of the fi’s, we may assume that fn is a pseudouniformizer.

rmk:RationalSubsetIntersect Remark 7.4.4 (Stability under intersections). The collection B appearing in Theorem 7.4.1 is ac-
tually stable under intersections. Fix two opensB1 := Spa(A,A+)

(
f1,...,fn

g

)
andB2 := Spa(A,A+)

(
a1,...,an

b

)
as in Theorem 7.4.1. We clearly have

Spa(A,A+)
(f1, ..., fn

g

)
= Spa(A,A+)

(f1, ..., fn, g

g

)
,

and similarly

Spa(A,A+)
(a1, ..., am

b

)
= Spa(A,A+)

(a1, ..., am, b

b

)
.

But then we can write

Spa(A,A+)
(f1, ..., fn, g

g

)
∩ Spa(A,A+)

(a1, ..., am, b

b

)
= Spa(A,A+)

( T
gb

)
,

where T is the finite set of products of elements appearing in the numerator on the left, i.e., we set

T := {fiaj, fib, ajg, gb}.

The verification of the preceding equality is left to the reader, and relies crucially on the fact
that |g(x)| 6= 0 for x ∈ B1, |b(x)| 6= 0 for x ∈ B2, and they are both nonzero for any x ∈
Spa(A,A+)

(
T
gb

)
.

warning:nonqcopens Warning 7.4.5 (Defining opens are not quasi-compact). Theorem 7.4.1 does not assert that the sets
Spa(A,A+)

(
f
g

)
appearing in Definition 7.3.1 are quasi-compact. In fact, after fixing a pseudouni-

formizer t, we can write

Spa(A,A+)
(f
g

)
:= ∪nSpa(A,A+)

(f, tn
g

)
,

as |g(x)| 6= 0 implies that |g(x)| > |tn(x)| for n � 0. This expresses the open set on the
left as a (typically infinite) union of the opens on the right. In particular, Zariski open subsets
(corresponding to the condition f = g) are typically not quasi-compact. Note also that each set
appearing on the right is quasi-compact by Theorem 7.4.1. This is the main reason the basis for
the topology provided in Theorem 7.4.1 is more useful than open sets used to define the topology.
For future reference, we remark that the displayed formula above shows that the topology on
Spa(A,A+) from Definition 7.3.1 coincides with the one generated by using the sets appearing in
Theorem 7.4.1 as a sub-base.

Remark 7.4.6 (Adic spaces do not look like classical schemes). Theorem 7.4.1 ensures that the
topological space Spa(A,A+) is homeomorphic to the spectrum of a ring, and is thus a familiar
object from algebraic geometry. However, we caution the reader against placing much faith in the
resulting intuition: the spectral spaces arising from adic spectra are quite different from the spectral
spaces arising in classical algebraic geometry. Here are two (related) aspects in which they differ
significantly:
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1. As explained in Remark 7.3.11, the set of generalizations of any y ∈ Spa(A,A+) is to-
tally ordered. This structure is essentially never found in the spectral spaces coming from
algebraic varieties over a field: there are multiple (in fact, infinitely many) non-comparable
irreducible algebraic sets containing a given closed point on any variety of dimension > 1,
so the set of generalizations of any such point is never totally ordered.

2. In Proposition 7.4.13, we shall show that the quotient of X := Spa(A,A+) by the equiv-
alence relation generated by specialization gives a compact Hausdorff space X . When A
arises from a NA Banach algebra, the space X is closely linked to the Berkovich space
associated to A, and is a very interesting invariant of A. In contrast, doing the analogous
construction when X := Spec(R) for a noetherian ring R simply collapses X to its finite set
of connected components, viewed as a discrete topological space.

We now prove Theorem 7.4.1. The first step of the proof is to show that the valuation spectrum
of any ring A is spectral; we recall briefly how this is shown, as the method will be crucial to the
proof of Theorem 7.4.1 as well.

thm:ValuationSpectrumSpectral Theorem 7.4.7 (Valuation spectrum is spectral). Let A be a ring. The valuation spectrum Spv(A)
is the set of equivalence classes of valuations on A, topologized using the sub-base B of open sets
of the form

Spv(A)
(f
g

)
= {x ∈ Spv(A) | |f(x)| ≤ |g(x)| 6= 0}

for varying f, g ∈ A. The resulting space Spv(A) is spectral, and each B ∈ B is a quasi-compact
open subset.

As explained in Warning 7.4.5, it follows that for an affinoid Tate ring (A,A+), the defining
continuous inclusion Spa(A,A+)→ Spv(A) is not spectral in general.

Proof. One checks that each valuation x on Spv(A) determines and is determined by a binary
relation |x on A via a |x b if and only if |a(x)| ≤ |b(x)|. Sending x to the subset of A × A
determined by this relation gives an injection j : Spv(A) → P(A × A). An elementary argument
shows that the image can be described as all relations satisfying the following for all a, b, c ∈ A:

1. a | b or b | a

2. If a | b and b | c then a | c.

3. If a | b and a | c then a | b+ c.

4. If a | b then ac | bc.

5. If ac | bc and 0 - c then a | b.

6. 0 - 1.
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Note that P(A× A) := Map(A× A, {0, 1}) = {0, 1}A×A is naturally a profinite set. One checks
that each of the conditions above describes a closed subset8 of P(A × A), so the image of j is
closed. As the target is a quasi-compact, endowing Spv(A) with the subspace topology via j gives
a quasi-compact space; call this space Spv(A)cons.
Now consider the topology Spv(A) from the theorem, i.e., the one generated by the sub-base B.

We claim this topology is T0. Indeed, if x, y ∈ Spv(A) have different supports, then a separating
open set can be pulled back from Spec(A). If the supports are the same prime p but x 6= y, then
there exist elements a, b ∈ A, not both in p, such that |a(x)| ≤ |b(x)| but |a(y)| > |b(y)|. If
|b(x)| = 0, then b ∈ p, and the first inequality would force a ∈ p, which is not allowed. Thus,
|b(x)| 6= 0, so the open Spv(A)

(
a
b

)
contains x but not y.

Finally, we remark that each B ∈ B is clopen in Spv(A)cons: we have Spv(A)
(
f
g

)
= π−1

f,g(1) ∩
π−1
g,0(0) in the notation of the footnote.
Combining the assertions in the previous three paragraphs, we may apply Theorem 7.4.8 to X =

Spv(A)cons using the basis B to prove the theorem.

We used the following criterion for spectrality:

thm:HochsterSpectralityCriterion Theorem 7.4.8 (Hochster’s criterion for spectrality). LetX be a quasi-compact topological space.
Let B be a collection of clopen subsets B ⊂ X . Assume that the topology Σ generated by using
B as a sub-base is T0. Then (X,Σ) is a spectral space, and each B ∈ B is a quasi-compact open
subset of (X,Σ).

We can now prove that the adic spectrum is spectral.

Proof of Theorem 7.4.1. Fix a pseudouniformizer t ∈ A; all constructions will be independent of
this choice. We proceed in a series of steps.

1. Strategy of the proof: Let B be the collection of subsets B ⊂ Spa(A,A+) appearing in the
statement of the theorem, i.e., B = Spa(A,A+)

(
f1,...,fn

g

)
for fi, g ∈ A+ with tN ∈ (fi) for

some N > 0 (see Remark 7.4.3 to see why we can impose these additional restrictions on
the fi’s and g). Let Σ be the topology on Spa(A,A+) generated by using B as a sub-base; by
the last statement of Warning 7.4.5, this coincides with defining topology on Spa(A,A+), so
it suffices to show that (Spa(A,A+),Σ) is spectral with each B ∈ B being a quasi-compact
open. Note that since Spv(A) is T0, the same is true for the subspace (Spa(A,A+),Σ).
By Hochster’s criterion, it suffices to construct another topology Σquot on Spa(A,A+) such
that (Spa(A,A+),Σquot) is quasi-compact with each B ∈ B being clopen in Σquot. We
shall do so by realizing (Spa(A,A+),Σquot) as the quotient topology for a surjective map
r : X → Spa(A,A+) with X ⊂ Spv(A)cons a closed subset.

8We give one example. For f, g ∈ A, write πf,g : P(A × A) → A × A the projection onto the (f, g)-component
of {0, 1}A×A, so π−1f,g(1) is the clopen subset of relations | with f | g. Then the relations satisfying (4) are given by(
π−1a,b(1) ∩ π

−1
ac,bc(1)

)
∪ π−1a,b(0). Fox fixed a, b, c, this set is clopen. Thus, intersecting over all choices of a, b, c ∈ A

gives a closed set.
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2. Construction of an auxiliary profinite set X: Write X ⊂ Spv(A) for the subset spanned
by those valuations x where |f(x)| ≤ 1 for each f ∈ A+, and 0 6= |t(x)| 6= 1. Using the
embedding j from the proof of Theorem 7.4.7, we get an embedding i : X ↪→ P(A × A).
One then checks9 that X is a closed subset of P(A×A). Thus, X is naturally a profinite set.

3. The key step: relating X to Spa(A,A+). We clearly have Spa(A,A+) ⊂ X as subsets
of Spv(A), but we shall go in the other direction. By definition of X , for any x ∈ X ,
the valuation ring Rx naturally receives a map from A+ with the image of t ∈ Rx being a
nonzero nonunit. Then Spa(A,A+) is given by exactly those x ∈ X where t actually gives a
pseudouniformizer in Rx. For any x ∈ X , we may consider the t-adically separated quotient
Rx := Rx/ ∩n tnRx of Rx. This is a microbial valuation ring with pseudouniformizer t by
Lemma 7.3.6, so the resulting map A+ → Rx → Rx gives a point r(x) ∈ Spa(A,A+).
This defines a set-theoretic map r : X → Spa(A,A+). As Rx is already microbial with
pseudouniformizer t when x ∈ Spa(A,A+), the map r is a section to the obvious inclusion
Spa(A,A+) ⊂ X . Write Σquot for the quotient topology on Spa(A,A+) induced by the
surjective map r, so (Spa(A,A+),Σquot) is quasi-compact.

4. Behaviour of the map r on the sub-base B: Now consider some B ∈ B, i.e., B :=

Spa(A,A+)
(
f1,...,fn

g

)
for fi, g ∈ A+ with tN ∈ (fi) for some N > 0. We claim that

r−1(Spa(A,A+)
(f1, ..., fn

g

)
) = X ∩ ∩ni=1Spv(A)

(fi
g

)
,

and thus each of these sets is a clopen subset ofX (as the basic opens Spv(A)
(
fi
g

)
are clopen

in Spv(A)). To verify ⊃: if x lies in the right hand side, then we have |fi(x)| ≤ |g(x)| 6= 0
for al i. By considering the composite A+ → Rx → Rx as in the previous paragraph, this
clearly implies |fi(r(x))| ≤ |g(r(x))| for all i. Thus, x lies in the left hand side. For ⊂:
if x lies in the left hand side, we have |fi(r(x))| ≤ |g(r(x))| for all i. Consider the map
A→ Rx → Rx defining rx as above. As tN ∈

∑
i fiA

+ and t is a pseudouniformizer in Rx,
it follows that at least one |fi(r(x))| is nonzero, and thus |g(r(x))| 6= 0, and so |g(x)| 6= 0

as well. As Rx → Rx is a surjection of valuation rings, the divisibility g | fi in R̂x forces
the same divisibility in Rx: if not, we must have fi | g for some i in Rx, but then fi | g and
g | fi in Rx, so fi/g is a unit in Rx, and hence also in Rx, so we get the desired divisibility
anyways. So |fi(x)| ≤ |g(x)| 6= 0 for all i, and hence x gives a point on the right.

5. Putting everything together: We have already checked that (Spa(A,A+),Σ) is T0, and that
(Spa(A,A+),Σquot) is quasi-compact. Moreover, we also saw that any B ∈ B is clopen
in (Spa(A,A+),Σquot): its preimage under r was shown to be clopen in X . Theorem 7.4.8
then proves the theorem as Σ is generated by B as a sub-base.

9In addition to the intersection of clopens used to define Spv(A), we must intersect with the following additional
closed sets: the intersection ∩f∈A+π−1f,1(1) to capture |f(x)| ≤ 1 for f ∈ A+, the clopen π−1t,0 (0) to capture |t(x)| > 0,
and the clopen π−11,t (0) to capture 1 > |t(x)|.
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We give two sample applications of the spectrality of the adic spectrum. First, using quasi-
compactness, we can detect topological nilpotence of elements of A by their behaviour on points,
analogous to Proposition 7.3.10 (3):

Corollary 7.4.9 (Detecting nilpotence locally). Fix an affinoid Tate ring (A,A+), and an element
f ∈ A. Let X := Spa(A,A+). Then f ∈ A◦◦ if and only if |f(x)|n → 0 for all x ∈ X .

Proof. Fix a pseudouniformizer t ∈ A. If f is topologically nilpotent, then fN ∈ tA+ for N � 0.
But then |f(x)|N ≤ |t(x)| for all x ∈ X , so |f(x)|n → 0 as |t(x)|n → 0. Conversely, assume that
|f(x)|n → 0. Then we have

X = ∪nX
(fn
t

)
by hypothesis. As X is quasi-compact, this means X = X

(
fn

t

)
for some n. But then |f(x)|n ≤

|t(x)| for all x ∈ X , so the element fn

t
∈ A lies in A+. This implies fn ∈ tA+. Writing A+ as

a filtered colimit of open bounded subrings containing t, we learn that fn ∈ tA0 for some open
bounded subring A0 ⊂ A. This immediately implies fn ∈ A◦◦ and thus f ∈ A◦◦.

Colimits in the category of Tate rings are somewhat subtle, due to topological issues. For example,
given a filtered directed system {Ai} of Tate rings, there is no obvious topology on the colimit
colimiAi that makes it into a Tate ring (as there might not be compatible rings of definition in the
system). This creates some problems in discussing inverse systems of adic specta. However, if
one restricts to the uniform setting, there is a canonical choice of ring of definition (namely, the
powerbounded elements), so the previous problem disappears:

cor:LimitsUniformAffinoids Corollary 7.4.10 (Directed limits of uniform affinoids). Let (Ai, A
+
i ) be a filtered system of uni-

form affinoid Tate rings. Then

1. The direct limit (A,A+) of (Ai, A
+
i ) exists in the category of all uniform affinoid Tate rings.

Moreover, the A+ is identified as the colimiA
+
i , computed in the category of abstract rings.

2. The natural map gives a homeomorphism Spa(A,A+) ' lim Spa(Ai, A
+
i ). Moreover, each

rational subset of Spa(A,A+) is pulled back from a rational subset of some Spa(Ai, A
+
i ).

Part (1) was already asserted earlier in Exercise 7.2.6.

Proof. The proof of (2) shall use the construction of (1).

1. We may assume the index set has some minimal element i0. Choose a pseudouniformizer
t ∈ A+

i0
. By uniformity, each A+

i ⊂ Ai is a ring of definition with pseudouniformizer t.
Set A = colimiAi, viewed as a Tate ring with couple of definition (colimiA

+
i , t), and let

A+ = colimiA
+
i ⊂ A. We claim that (A,A+) is a uniform affinoid Tate ring, and is the

colimit of (Ai, A
+
i ) in uniform affinoid Tate rings. In fact, the first assertion is clear from the

definition as the ring of integral elements is the ring of definition.
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For the assertion about colimits: say fi : (Ai, A
+
i ) → (B,B+) is a compatible system of

maps with (B,B+) being a uniform affinoid Tate ring. We must factor the fi’s through a
unique map f : (A,A+)→ (B,B+) of affinoid Tate rings. At the level of (non-topological)
rings, we clearly get an induced map f : A → B that carries A+ into B+. As (B,B+) is
uniform, we may use B+ as a ring of definition for f . But we clearly that f−1(tnB+) ⊃
tnA+, so f is continuous. Thus, f defines a continuous map (A,A+)→ (B,B+) of affinoid
Tate rings. The uniqueness is clear.

2. Given a point x ∈ Spa(A,A+), we obtain a valuation ring Rx ⊂ κ(px). Then (κ(px), Rx) is
a uniform affinoid Tate ring for the valuation topology on κ(px), and the point x determines
(and is determined by) the map (A,A+) → (κ(px), Rx) of affinoid Tate rings. The point x
also determines points xi ∈ Spa(Ai, A

+
i ) together with the corresponding maps (Ai, A

+
i )→

(κ(pxi), Rxi). Unraveling definitions shows that (κ(px), Rx) = colimi(κ(pxi), Rxi) (where
the colimit is computed in uniform affinoid Tate rings, as in (1)). It is now easy to see that
Spa(A,A+) → limi Spa(Ai, A

+
i ) is a continuous bijection. For the rest, we simply observe

that A = colimiAi as rings, so the defining open subsets Spa(A,A+)
(
f
g

)
for f, g ∈ A arise

via pullback from some Spa(Ai, A
+
i ).

The following exercise shall be useful later in studying perfectoid algebras in terms of finitely
presented ones:

ex:PerfectionAdicSpectrum Exercise 7.4.11 (Adic spectrum under perfection). Let (A,A+) be an affinoid Tate ring of charac-
teristic p.

1. Show that the Frobenius map on underlying rings gives a map (A,A+) → (A,A+) of affi-
noid Tate rings that induces a homeomorphism on adic spectra that preserves rational subsets.

2. Assume (A,A+) is uniform. Show that there is an initial object (Aperf , A
+
perf ) amongst all

uniform affinoid Tate (A,A+)-algebras (B,B+) such that B is perfect. Moreover, check
that Aperf is the perfection of A in the algebraic sense, and likewise for A+.

3. With notation as in (2), show that the canonical map Spa(Aperf , A
+
perf ) → Spa(A,A+) is a

homeomorphism preserving rational subsets.

The next remark gives an alternative to the support map as a method of probing the topology of
the adic spectrum using spectra of commutative rings.

rmk:AdicSpectrumSpecialization Remark 7.4.12 (The specialization map). Let (A,A+) be an affinoid Tate ring. We have seen in
Warning 7.4.5 that the kernel map ker : Spa(A,A+) → Spec(A) is continuous, but not spectral,
i.e., the preimage of quasi-compact open subsets of Spec(A) under ker need not be quasi-compact.
In this remark, we explain why there is another natural continuous map

sp : Spa(A,A+)→ Spec(A+/A◦◦),
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called the reduction or specialization map, which is spectral. To explain this, note first that
Spec(A+)−Spec(A) = Spec(A+/A◦◦) as subsets of Spec(A+). Now given a point x ∈ Spa(A,A+)
corresponding to the map φx : A+ → Rx as in Proposition 7.3.7, we set sp(x) to be the image in
Spec(A+) of the closed point of Spec(Rx); as φ carries pseudouniformizers to pseudouniformiz-
ers, it is clear that sp(x) lies in Spec(A+) − Spec(A) = Spec(A+/A◦◦). For continuity and
spectrality, fix some f ∈ A+/A◦◦ defining an open set D(f) ⊂ Spec(A+/A◦◦). Representing f
by some f ∈ A+, the preimage sp−1(D(f)) consists of exactly those x ∈ Spa(A,A+) for which
φx(f) ∈ Rx is a unit, i.e., it is exactly those x for which |f(x)| = 1. As |f(x)| ≤ 1 for all x, we
have shown

sp−1(D(f)) = Spa(A,A+)
( 1

f

)
= {x ∈ Spa(A,A+) | |f(x)| = 1}.

As the right side above is a rational subset, this proves both continuity and spectrality.

We briefly comment on the Hausdorffness of the space obtained collapsing specializations on X;
this is closely related to the Hausdorffness of of Berkovich spaces; this discussion is not relevant
to the sequel.

prop:MaximalHdfQuotient Proposition 7.4.13 (Maximal Hausdorff quotient). LetX := Spa(A,A+) for an affinoid Tate ring
(A,A+), and let X be the quotient of X by the equivalence relation generated by specializations,
endowed with the quotient topology. Then X is Hausdorff, and is the maximal Hausdorff quotient
of X .

Note that by Remark 7.3.11, the subspaceX1 of generic points ofX (corresponding to rank 1 val-
uations) maps bijectively toX; the subspace topology onX1, however, is distinct from the quotient
topology on X . The proof of this proposition relies exclusively on the structure of generalizations
from Remark 7.3.11 and the fact that X is spectral.

Proof. If we prove that X is Hausdorff, it automatically follows that X → X is the maximal
Hausdorff quotient ofX: any map f : X → Y with Y Hausdorff has to identify points related by a
specialization in X (as points on X in distinct fibers of f must have disjoint open neighbourhoods
by Hausdorffness of Y ), and thus factors through X .
To show X is Hausdorff, fix x, y ∈ X with distinct images in X , so x and y are not related by

specializations in X . By passing to the maximal rank 1 generalization as in Remark 7.3.11, we
may assume x and y are both generic. As the closure {x} is the set of specializations of x (as X is
spectral), we have {x} ∩ {y} = ∅ by hypothesis on x and y. Unraveling definitions, we must find
disjoint open neighbourhoods of x and y that are stable under specializations. Let Vy = X − {x},
so Vy is an open neighbourhood of {y}. Let Wy ⊂ Vy be a quasi-compact open containing {y}
(which is possible because {y} is spectral and thus quasi-compact), and let Tx = X −Wy be the
complementary constructible closed subset, so {x} ∈ Tx. Then Ux := Int(Tx) does not contain y.
Moreover, applying (1) in the next lemma twice and using that x has no non-trivial generalizations,
we learn that Ux is an open neighbourhood of x stable under specializations. The quasi-compact
open neighbourhood Wy of {y} also contains a smaller open neighbourhood Uy of y that is closed
under specializations by (2) in the next lemma. These open neighbourhoods Ux and Uy provide the
desired disconnection.
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Lemma 7.4.14. Let X := Spa(A,A+).

1. Let T ⊂ X be a constructible closed set. Then the interior Int(T ) is exactly those t ∈ T
such that all generalizations of t in X are also contained in T . Moreover, this set is closed
under specializations in X .

2. Let y ∈ X be a generic point. Then for any quasi-compact open neighbourhood W of the
closure {y}, we can find a smaller open neighbourhood W ′ of {y} such that W ′ is closed
under specializations in X .

Proof. For (1): the first part is a general fact about spectral spaces, topologically dual to the char-
acterization of the closure of a quasi-compact open subset of a spectral space as the set of special-
izations of points in the open. To show that Int(T ) is closed under specializations in X , fix some
t ∈ Int(T ). Any specialization s of t in X must lie in T as T ⊂ X is closed. We must show that
each generalization u of s lies in T . But the set of generalizations of s forms a totally ordered set
by Remark 7.3.11. So either u is a specialization of t or u is a generalization of t; in the former
case, we have u ∈ {t} ⊂ T , and in the latter case we have u ∈ Int(T ) ⊂ T by the characterization
of points in Int(T ) as t ∈ Int(T ). In either case, we get u ∈ T , as wanted.
For (2): the closure {y} (or any closed set of a spectral space) can be written as ∩iZi where
Zi runs through all constructible closed subsets of X containing y. Then Zi ⊂ W for large i
by quasi-compactness. But Int(Zi) is closed under specializations by (1), and contains {y} by
the characterization of interiors mentioned previous paragraph as y is generic. So we may use
W ′ = Int(Zi).

7.5 The structure presheaf and adic spaces
sec:AdicSpectrumPresheaf

We shall attach a natural structure presheaf to an affinoid adic space; this presheaf is not always a
sheaf. The values of this presheaf on rational open subsets are described next.

thm:RationalOpenPresheaf Theorem 7.5.1 (Functions on rational subsets). Let (A,A+) be an affinoid Tate ring. Let U ⊂
X := Spa(A,A+) be a rational subset. Then there exists a unique complete affinoid Tate (A,A+)-
algebra (OX(U),O+

X(U)) satisfying:

1. The map Spa(OX(U),O+
X(U))→ Spa(A,A+) has image contained in U .

2. (OX(U),O+
X(U)) is universal with the property in (1) amongst all complete affinoid Tate

(A,A+)-algebras.

Moreover, in this case, the canonical map Spa(OX(U),O+
X(U))→ U is a homeomorphism identi-

fying rational subsets of the source with rational subsets of X contained in U .
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Proof. Choose a couple of definition (A0, t). We can write U = Spa(A,A+)
(
f1,...,fn

g

)
for fi, g ∈

A0 with tN ∈ (fi) ⊂ A0 for some N ≥ 0. Let B0 be the subring of A[1
g
] generated by the image

of A0[fi
g

], and set B = A[1
g
]. Note that B = B0[1

t
]: we clearly that B0[1

t
] = A0[fi

g
, 1
t
] ⊂ A[1

g
], and,

since the ideal (fi) ⊂ A0 contains a power of t, we can write 1
g

= 1
tN
· (
∑

i ai
fi
g

) with ai ∈ A0.
Thus,B can be viewed as a TateA-algebra with couple of definition (B0, t). LetB+ be the integral
closure of the subring ofB generated byA+[fi

g
]. Then (B,B+) is an affinoid Tate (A,A+)-algebra.

We set (OX(U),O+
X(U)) to be its completion.

By construction, the image of Spa(OX(U),O+
X(U)) → Spa(A,A+) is contained in U : for any

x on the the left hand side, we must have |g(x)| 6= 0 as g is a unit in OX(U) and |fi(x)
g(x)
| ≤ 1 as

fi
g
∈ O+

X(U).
Let (C,C+) be any complete affinoid Tate (A,A+)-algebra such that the induced map Spa(C,C+)→

Spa(A,A+) has image contained in U . For any x ∈ Spa(C,C+), we have |fi(x)| ≤ |g(x)| 6= 0
by hypothesis. Proposition 7.3.10 (6) shows that the image of g in C is a unit, so fi

g
∈ C must lie

in C+ by Proposition 7.3.10 (3). As C+ ⊂ C◦, and because C◦ is the direct limit of all rings of
definition of C, we can then choose a ring of definition C0 ⊂ C that contains the image of A0 as
well as the elements fi

g
∈ C. This gives a map B0 → C0 that produces a map B → C of Tate

A-algebras. Passing to t-adic completions defines a map OX(U) → C of Tate A-algebras. As
fi
g
∈ C+ and C+ ⊂ C is integrally closed, the mapB → C carriesB+ into C+, and hence the map

OX(U) → C carries O+
X(U) into C+, thus giving the desired map (OX(U),O+

X(U)) → (C,C+)
of complete affinoid Tate (A,A+)-algebras.
For the last assertion, by Proposition 7.3.10 (1), it suffices to show that Spa(B,B+) → U is a

homoemorphism preserving rational subsets. The injectivity is clear as A → B is a localization;
the surjectivity can be shown directly using the valuative description of points given in Proposi-
tion 7.3.7 and the universal property proven above. Continuity is clear, so we have a bijective
continuous map

Y := Spa(B,B+)
Ψ→ U

of spectral spaces. It suffices to show Ψ carries rational subsets of Y into rational subsets of X
contained in U . Consider a rational subset V of Y . We can write V = Y

(
b1,...,bn

c

)
for some

bi ∈ B0 generating an ideal that contains tm for some m ≥ 0, and c ∈ B0. As g is a unit on B,
we have |g(y)| 6= 0 for any y ∈ Y . So we are free to scale our parameters defining V by a power
of g; note that the property tm ∈ (bi) ⊂ B0 for some m ≥ 0 is equivalent to the property that
1 = (bi) ⊂ B = B0[1

t
], and (as g ∈ B is a unit) is thus preserved when we scale the bi’s by a

power of g. In particular, as B0 ⊂ A0[1
g
], we may thus assume that bi and c lift to some b̃i and c̃ in

A0. We claim that

Ψ(Y
(b1, ..., bn

c

)
) = U ∩X

( b̃i, tk
c

)
for some k � 0; this suffices to prove the theorem by Remark 7.4.4. We clearly have ⊃ for any
k ≥ 0 by simply using the valuative description of points from Proposition 7.3.7. For ⊂, we need
to check that there exists some k ≥ 0 such that |tk(y)| ≤ |c(y)| for all y ∈ V := Y

(
b1,...,bn

c

)
. As
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|c(y)| 6= 0 for all y ∈ V and t is a pseudouniformizer, we get

V = ∪kY
(b1, ..., bn, t

k

c

)
.

As V is quasi-compact by Theorem 7.4.1, we get V = Y
(
b1,...,bn,tk

c

)
for some k � 0, proving the

claim.

rmk:AdicPresheafZariskiLocal Remark 7.5.2 (Relaxing completeness). The proof of Theorem 7.5.1 goes through if we relax the
condition of being “complete” in (2) with the conditon of being “Zariski” or “henselian”. Indeed,
in the proof above, the completeness was invoked via Proposition 7.3.10 (6), but the latter holds
as long as (C,C+) is Zariski. Thus, we learn that for any rational open U , there exists a universal
Zariski affinoid (A,A+)-algebra (OX,zar(U),OX,zar(U)) with the image of Spa(OX,zar(U),O+

X,zar(U))→
Spa(A,A+) lying inU ; similarly, there exists a universal henselian (A,A+)-algebra (OX,hens(U),O+

X,hens(U))

with the image of Spa(OX,hens(U),O+
X,hens(U))→ Spa(A,A+) lying in U .

The values of Huber’s presheaf behave well under base change:

cor:BaseChangeHuberPresheaf Corollary 7.5.3. Let (A,A+) → (B,B+) be a map of complete affinoid Tate rings, and let f :
X := Spa(B,B+) → Y := Spa(A,A+) be the induced map on adic spectra. Let U ⊂ Y be a
rational subset, and let V := f−1(U) be the corresponding rational subset ofX . Then the diagram

(A,A+) //

��

(B,B+)

��
(OY (U),O+

Y (U)) // (OX(V ),O+
X(V ))

is a pushout of complete affinoid Tate rings.

Proof. This follows immediately from the universal property in Theorem 7.5.1.

The stalks for the structure presheaf (to be defined) are:

def:StalksStructurePresheaf Definition 7.5.4 (Stalks). Let (A,A+) be an affinoid Tate ring, and let x ∈ X := Spa(A,A+) be a
point. We define the stalks

O+
X,x := colim

x∈U
O+
X(U) and OX,x := colim

x∈U
OX(U)

where both colimits run through rational open subsets U ⊂ X containing x. Note that the colimits
above are computed in the category of rings (i.e., we ignore the topology on OX(U) and O+

X(U)).

As the Tate rings OX(U) attached to the rational open sets U ⊂ X were defined to be complete,
the stalks defined above only depend on the completion of (A,A+).

prop:AdicSpaceStalks Proposition 7.5.5 (The local rings of adic spectra). Let (A,A+) be an affinoid Tate ring, and let
x ∈ X := Spa(A,A+) be a point. Fix also a pseudouniformizer t ∈ A+.
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1. The valuation f 7→ |f(x)| extends to the stalk OX,x. We then have O+
X,x = {f ∈ OX,x |

|f(x)| ≤ 1}.

2. The stalk OX,x is local with maximal ideal given by the support mx := {f ∈ OX,x | |f(x)| =
0}.

3. The stalk O+
X,x is local with maximal ideal {f ∈ OX,x | |f(x)| < 1}. In particular, the set

mx from (2) is an ideal in both OX,x and O+
X,x.

4. Write k(x) for the residue field of OX,x, and let k(x)+ ⊂ k(x) be the image of O+
X,x. The

valuation on OX,x endows k(x) with the structure of a valued field, and the corresponding
valuation ring is k(x)+. Thus, (k(x), k(x)+) is an affinoid field under (A,A+). Moreover,
we have a natural map Rx → k(x)+ which is an isomorphism after t-adic completion.

5. The ring O+
X,x is t-adically henselian and O+

X,x → k(x)+ induces an isomorphism on t-adic
completion.

6. The pairs (O+
X,x,mx) and (OX,x,mx) are henselian.

Proof. Write U for the collection of all rational open subsets U ⊂ X containing x.

1. Consider the t-adic completion R̂x of the valuation ring Rx ⊂ κ(px) attached to x. Then
R̂x is a microbial valuation ring with fraction field κ̂(px), so (κ̂(px), R̂x) is an affinoid Tate
(A,A+)-algebra corresponding to x under the valuative description of Proposition 7.3.7.
Using the universal property from Theorem 7.5.1, there is a unique map (OX(U),O+

X(U))→
(κ̂(px), R̂x) of affinoid Tate (A,A+)-algebras for each U ∈ U. By passage to the limit, this
defines maps OX,x → κ̂(px) and O+

X,x → R̂x. The first map induces the desired valuation on
OX,x, whence the second map gives the containment ⊂ in the desired equality O+

X,x = {f ∈
OX,x | |f(x)| ≤ 1}. For ⊃, if f ∈ OX,x with |f(x)| ≤ 1, then we can represent it by some

f ∈ OX(U) with |f(x)| ≤ 1. But then x ∈ V := U
(
f,1
1

)
⊂ U , so f ∈ O+

X(V ), and thus

f ∈ O+
X,x.

2. It suffices to check that any g ∈ OX,x outside mx is invertible in OX,x. Given such a g, we
have |g(x)| 6= 0, so |g(x)| ≥ tn for n � 0. By shrinking X if necessary, we may assume
g ∈ A is globally defined. But then U := X

(
tn

g

)
∈ U, and g is invertible in OX(U), and

thus also in OX,x.

3. It suffices to check that any g ∈ O+
X,x outside the ideal I := {f ∈ OX,x | |f(x)| < 1} is

invertible. By shrinking X if necessary, we may assume g ∈ A+ is globally defined. We
then have |g(x)| ≤ 1 as g is integral, and thus |g(x)| = 1 as g lies outside I . But then
x ∈ U := X

(
1
g

)
. It is easy to see that g ∈ O+

X(U) is invertible, and thus g is invertible.
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4. It is clear that the valuation on OX,x induces a valuation on k(x), and that the valuation
ring V contains k(x)+. Conversely, given any f̄ ∈ V represented by some f ∈ OX,x, we
have |f(x)| ≤ 1, so f ∈ O+

X,x by (1), and hence f̄ ∈ k(x)+; thus the valuation ring is
exactly k(x)+. For the last part, it is clear that 0 < |t(x)| < 1, so we must show that t is
topologically nilpotent in k(x)+. This immediately reduces to the corresponding statement
for (OX(U),O+

X(U)), where it is clear.

The last part follows from the construction of the valuation in (1).

5. For the first part: as direct limits of henselian rings are henselian, it suffices to show that for
each U ∈ U, the ring O+

X(U) is t-adically henselian, which follows from Lemma 7.2.3 (5).
For the second part, observe that the support ideal mx ⊂ OX,x is uniquely t-divisible (as it
is an ideal in a ring where t is a unit) and is contained in O+

X,x by (3). The quotient O+
X,x/J

identifies with k(x)+, so Ô+
X,x ' k̂(x)+.

6. The claim for (O+
X,x,mx) follows from (5) as mx = t · mx ⊂ tO+

X,x by (1) and (2). For
OX,x, recall the following fact: given a pair (R, I) comprising of a ring R with an ideal
I with I contained in the Jacobson radical of R, the pair (R, I) is henselian if and only if
the pair (Z ⊕ I, I) is henselian (see [GR, Remark 5.1.9 (iii)]). Thus, the property of a pair
(R, I) being henselian only depends on the ideal I viewed as a non-unital ring. In particular,
(OX,x,mx) is henselian as (O+

X,x,mx) is so. In the interest of completeness, we also give a
more direct argument.

Fix a finite OX,x-algebra R, and write R := R ⊗OX,x k(x). We must show that R → R is
a bijection on idempotents. Write R+ for the integral closure of O+

X,x inside R, and write
R+ := R ⊗O+

X,x
k(x)+ for the base change to the valuation ring. Then R+ is an integral

O+
X,x-algebra, so R+ → R+ is a bijection on idempotents as O+

X,x is henselian along mx.
Moreover, as R+ is the integral closure of O+

X,x in R, the map R+ → R is a bijection on
idempotents (as idempotents are integral over Z). We thus have the following diagram

R+ a //

b
��

R+

c
��

R
d // R

where the horizontal maps are surjective, the vertical maps invert t, and both a and b are
bijection on idempotents. We shall show that the map c realizes R+ as an integrally closed
subring of R; this will show that c, and hence d, is a bijection on idempotents, as wanted.
To see this claim, consider the following commutative diagram of short exact sequences
resulting from the analysis in (1) and (2):

1 // mx
// O+

X,x

��

// k(x)+ //

��

1

1 // mx
// OX,x

// k(x) // 1.
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Tensoring over O+
X,x with R+, we get

mx ⊗O+
X,x

R+ e // R+

��

// R+ //

��

0

mx ⊗O+
X,x

R+ f // R // R // 0.

The middle vertical map is injective. A diagram chase then shows that ker(e) ' ker(f) is
an ideal in both R+ and R. Calling this common ideal I , we get a diagram of short exact
sequences

1 // I // R+

��

// R+ //

��

0

1 // I // R // R // 0.

In particular, R+ → R is injective by the snake lemma. It remains to show integral closed-
ness. Pick some f ∈ R that is integral over R+. Then we have an equation in R of the
form

f
n

=
n−1∑
i=0

aif
i
,

where ai ∈ R+. Writing f and ai for lifts of f and ai to R, this becomes an equation of the
form

fn + δ =
n−1∑
i=0

aif
i,

where δ ∈ I = ker(R → R) ⊂ R. But I ⊂ R+, so we can rename a0 to a0 − δ ∈ R+

to learn that f is integral over R+, and hence in R+ by definition of R+. This shows that
f ∈ R+, as wanted.

Remark 7.5.6 (Relaxing completeness). The conclusions of Proposition 7.5.5 are also valid if we
replace the presheaf OX with its henselian version OX,hens (but note that parts (5) and (6) will fail
for the Zariski version).

rmk:CompletedResidueField Remark 7.5.7 (Completed residue field). The NA field k(x) from Proposition 7.5.5 is called the
residue field of X at x; we write k̂(x) for its completion in the valuation topology, and call it the
completed residue field. Thus, attached to x ∈ Spa(A,A+), we have three NA fields κ(px) ⊂
k(x) ⊂ k̂(x) with identical completion. In practice, it is often convenient to use k̂(x) instead of
k(x) or κ(px) while making arguments, for the following reasons:

1. k̂(x) is a complete NA field, unlike k(x) or κ(px).
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2. k̂(x) can be calculated directly from the ring A as the completion of κ(px) for valuation
topology defined by x. In contrast, calculating k(x) involves contemplating OX(U) for
rational open subsets U ⊂ X containing x.

3. k̂(x) is manifestly independent of the choice of X: replacing X by a rational open subset
U ⊂ X does not change k(x) as the latter only depends on the local ring OX,x. In contrast,
the field κ(px) depends on the ring A appearing in the definition of X , and can change when
we shrink X around x.

Likewise, we have a complete microbial valuation ring k̂(x)+ ⊂ k̂(x) obtained as the t-adic com-
pletion of k(x)+. This gives a complete affinoid field (k̂(x), k̂(x)+) attached to x, and this often
plays the role in adic geometry of the residue field in classical scheme theory.

Proposition 7.5.5 (5) is surprising from an algebro-geometric perspective. As the next corollary
explains, this essentially leads to the conclusion that Zariski closed subsets of adic spaces are
limits of open ones; this assertion is perhaps even more jarring from a naive algebro-geometric
perspective, but becomes much more intuitive upon observing that an analogous statement holds
true in complex analytic geometry as well:

cor:AdicSpaceClosedImmersion Corollary 7.5.8 (Zariski closed subsets). Let (A,A+) be an affinoid Tate ring. Let I ⊂ A be an
ideal, and t ∈ A+ a pseudouniformizer.

1. The category of affinoid Tate (A,A+)-algebras (R,R+) such that IR = 0 has an initial
object (A/I,A/I+) with underlying ring A/I , and A/I+ being the integral closure of the
image A+ in A/I .

2. The natural map i : Z := Spa(A/I,A/I+) → X := Spa(A,A+) is a closed immersion
of topological spaces whose image is exactly those valuations on A that contain I in their
support. Moreover, i(Z) is an intersection of quasi-compact open subsets of X . From now
on, we identify Z with its image i(Z) in X .

3. For any z ∈ Z ⊂ X , the natural yields an isomorphism Ô+
X,z ' Ô+

Z,z of t-adic completions.

4. Say I = (f1, ..., fr) is finitely generated, and U ⊂ X is an open set containing Z. Then U
contains the rational open set X

(
f1,...,fr,tN

tN

)
for N � 0.

5. Let Â/I+ be the t-adic completion of the ring from (1), where t ∈ A+ is a pseudouniformizer.
For each rational U ⊂ X that contains Z, we have a map O+

X(U) → Â/I+. The induced
map

colim
Z⊂U rational

O+
X(U)→ Â/I+

identifies the target with the t-adic completion of the source.
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Proof. 1. Fix a couple of definition (A0, t) of A with A0 ⊂ A+. Set I0 = A0 ∩ I ⊂ A0. Then
A/I = A0/I0[1

t
], so we can endowA/I with the structure of a Tate ring by setting (A0/I0, t)

to be a couple of definition. The integral closure A/I+ ⊂ A/I of the image of A+ → A/I
is open (it contains A0/I0) and integrally closed (by construction), so we have an affinoid
Tate ring (A/I,A/I+). The natural map (A,A+) → (A/I,A/I+) is also continuous: the
preimage of tnA0/I0 ⊂ A/I contains tnA0. Thus, (A/I,A/I+) is an affinoid Tate (A,A+)-
algebra. For the universal property, let f : (A,A+) → (R,R+) be a map of affinoid Tate
rings with f(I) = 0. Then the underlying map A → R clearly factors over A → A/I . The
resulting map A/I → R carries the image A+ → A/I into R+, and hence also carries A/I+

into R+. This gives a map of abstract pairs f : (A/I,A/I+) → (B,B+). Using a ring
of definition for B that contains f(A0), one easily checks that f is a map of affinoid Tate
(A,A+)-algebras. The uniqueness of f is clear.

2. It is immediate from the definitions that i is injective, and its image is exactly those x ∈
Spa(A,A+) such that I lies in the support px. Thus, i(Z) is the preimage of Spec(A/I) ⊂
Spec(A) under the support map, and is thus closed. Fix a pseudouniformizer t ∈ A. For
each f ∈ I , we have the containment

i(Z) ⊂
⋂
n

X
(f, tn
tn

)
as |f(x)| = 0 if x ∈ i(Z). Varying f , this gives

i(Z) ⊂
⋂
f∈I

⋂
n

X
(f, tn
tn

)
.

It is enough to show this is an equality. But if x lies on the right hand side, then |f(x)| ≤
|tn(x)| for all f ∈ I and n ≥ 0, so |f(x)| = 0 as t is a pseudouniformizer; it follows that
x ∈ i(Z), as wanted.

3. This follows by combining Proposition 7.5.5 (5), the last assertion in Proposition 7.5.5 (4),
and the observation that z defines the same pair (κ(pz), Rz), independent of whether we view
z as a valuation on A or on A/IA.

4. By the proof of (3), we have Z =
⋂
N UN , where UN := X

(
f1,...,fr,tN

tN

)
. But if

⋂
N UN ⊂ U ,

then UN ⊂ U for N � 0: in Xcons, the sets X − UN are open (even clopen), while X − U
is closed (and hence compact).

5. WriteR+
Z := ̂colimZ⊂U O+

X(U), and letRZ = R+
Z [1

t
]. We may view (RZ , R

+
Z ) and (Â/I+[1

t
], Â/I+)

as complete uniform affinoid Tate (A,A+)-algebras. We claim that both these (A,A+)-
algebras corepresent the same functor on the category of complete uniform affinoid Tate
(A,A+)-algebras (B,B+). To see this, fix one such (B,B+). Then, by the universal prop-
erty in (1) and the t-adic completeness of B+ (ensured by uniformity), the structure map
(A,A+) → (B,B+) factors (uniquely) over (A,A+) → (Â/I+[1

t
], Â/I+) exactly when
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IB = 0. If we write J = I ∩ A+ ⊂ A+, then I = JA, so the previous condition is also
equivalent to requiring that JB+ = 0. As B+ is t-adically complete (by uniformity and
completeness), this happens if and only if for each f ∈ J and n ≥ 0, we have tn | f in B+.
But, again thanks to the completeness of B+, the latter condition is equivalent to requiring
the structure map factor uniquely over (A,A+) → (RZ , R

+
Z ) by the description of the basis

of rational open neighbourhoods of Z in X given in the proof of (2) (and the observation
that we may replace I with J in the intersection arising in (2)).

Remark 7.5.9 (Prime ideals in the stalk). For X := Spa(A,A+) and x ∈ X , write mx := {f ∈
OX,x | |f(x)| = 0} for the maximal ideal of OX,x. Then have the following commutative diagram

1 // mx
// O+

X,x

��

// k(x)+ //

��

0

1 // mx
// OX,x

// k(x) // 0

of short exact sequences. In particular, geometrically, we get a pushout diagram of schemes

Spec(k(x)) //

��

Spec(OX,x)

��
Spec(k(x)+) // Spec(O+

X,x)

where the horizontal maps are closed immersions while the vertical maps are open immersions.
Thus, topologically, Spec(O+

X,x) is obtained from the local scheme Spec(OX,x) by formally adjoin-
ing the totally ordered set Spec(k(x)+/t) as the poset of non-trivial specializations of the closed
point of Spec(OX,x).

Remark 7.5.10 (Finite étale covers via residue fields). Proposition 7.5.5 (5) and (6) are surprising
from a scheme-theoretic perspective: the local rings of schemes are usually neither henselian,
nor identified with their residue fields upon completion. These features imply that passage to the
residue field is much milder operation in the context of adic spaces than in the case of schemes;
for example, we have

colim
x∈U

Ufet ' (OX,x)fet ' k(x)fet,

where the colimit runs through rational open subsets containing x, the first equivalence is for-
mal once the appropriate notions have been defined, while the second arises from the henselian
property. In particular, this shall allow us to prove properties about the étale topology of X by
reduction to the case of a field. Ultimately, a similar reduction shall be used to deduce the almost
purity theorem for general perfectoid algebras to the case of perfectoid fields.

The assignment U 7→ OX(U) from Theorem 7.5.1 gives a presheaf on the category of rational
open subsets of X . As the collection of all rational opens forms a basis, this presheaf extends
formally to all open subsets as follows:
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Definition 7.5.11 (Structure presheaf). Fix an affinoid Tate ring (A,A+), and letX := Spa(A,A+)
be its adic spectrum. We define the strucrure presheaf OX on X by setting

OX(W ) = lim
U⊂W

OX(U),

where the limit runs over all rational open subsets U of X contained in W . We define the integral
structure presheaf O+

X on X by a similar procedure. Note that both these presheaves are naturally
valued in topological rings.

It is an easy exercise to see that both presheaves above agree with the ones coming from The-
orem 7.5.1 when evaluated on rational open subsets. As rational open subsets form a basis, it
follows that the stalks of the presheaves OX and O+

X as defined above coincide with those from
Definition 7.5.4. In particular, for any open W ⊂ X and x ∈ W , we get a valuation f 7→ |f(x)|
on OX(W ). Using this, one checks that

O+
X(W ) = {f ∈ OX(W ) | |f(x)| ≤ 1 for all x ∈ Spa(A,A+)}. (7.2) eq:IntegralSheafFromRational

This formula tells us that O+
X is completely determined by OX given the valuations on the stalks.

Conversely, the knowledge of O+
X ⊂ OX is enough to reconstruct the valuation on the stalks. In

particular, one readily checks that if OX is a sheaf, then the same is true for O+
X . It is an unfortunate

fact of life that OX is not a sheaf in general10. Of course, we could just pass to the sheafification;
however, we would then lose the universal property from Theorem 7.5.1, so we avoid doing so.
Instead, we name those affinoid Tate rings where OX is already a sheaf:

Definition 7.5.12 (Sheafy Tate rings). An affinoid Tate ring (A,A+) is sheafy if the structure
presheaf OX on X := Spa(A,A+) is a sheaf; in this case, (7.2) implies that O+

X is also a sheaf.

Such objects naturally live in the following category:

Definition 7.5.13 (Huber’s category V). The category V has as objects triples (X,OX , {vx}x∈X)
where X is a topological space, OX is a sheaf of topological rings such that (X,OX) is a locally
ringed space (ignoring the topology on sections of OX), and vx is a continuous valuation on the
stalk OX,x for each x ∈ X . The morphisms are evidently defined.

Note that limits in topological rings are computed as limits of the underlying set; in particular,
given a presheaf OX of topological rings11. For any affinoid Tate ring (A,A+), we have constructed
an triple (X := Spa(A,A+),OX , {vx}x∈X) as above, except that OX need not be a sheaf; we call
this triple an affinoid pre-adic space. If (A,A+) is sheafy, this triple is an object of V, and we call
it an affinoid adic space. More general objects are constructed by glueing:

Definition 7.5.14 (Adic space). An adic space is an object of V that is locally isomorphic to an
affinoid adic space, i.e., is locally of the form Spa(A,A+) for a sheafy affinoid Tate ring (A,A+).

10The structure presheaf is a sheaf in most examples that come up in nature. In particular, it is a sheaf in the
following cases: (a) there exists a noetherian ring of definition A0 ⊂ A, (b) the Tate ring A is stably uniform, i.e., the
Tate ring OX(U) is uniform for all rational opens U , and (c) the ring A is perfectoid. We shall restrict attention to (c)
in these notes.

11Recall that the underlying set of a limit of topological rings is the limit of the underlying abstract rings. Thus, a
sheaf of topological rings also gives a sheaf of abstract rings.
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Chapter 8

The adic spectrum via algebraic geometry

sec:AdicSpectrumRaynaud
Let (A,A+) be an affinoid Tate ring. In this chapter, we describe the adic spectrum Spa(A,A+)
as an inverse limit certain modifications of Spec(A+), and then use this to show that the henselian
variant of Huber’s presheaf is always a sheaf; this material is closely related to Raynaud’s approach
to rigid geometry. It is not relevant to the sequel.

8.1 Topological spaces
Fix an affinoid Tate ring (A,A+). The key player is the following category of “integral models” of
Spec(A).

cons:AdicSpaceInverseLimit Construction 8.1.1 (The inverse limit of all models). Let I be the category of all proper1 maps of
schemes such that f is an isomorphism over Spec(A) ⊂ Spec(A+). By taking fiber products, it
is easy to see that I is cofiltered, so {Xi} is a cofiltered diagram of spectral spaces indexed by I .
For each such fi, write Xi ⊂ Xi for the Zariski closed set defined by preimage of the complement
Spec(A+) − Spec(A); this is also simply the closed set of Xi defined as the vanishing locus of
any pseudouniformizer in A+. Again, as i varies, we obtain a cofiltered system {Xi} of spectral
spaces; the natural maps Xi → Xi are constructible closed subsets pulled back from Spec(A+).
We define

X := lim
i
Xi and X = lim

i
X.

Note that both X and X are spectral spaces by [SP, Tag 0A2Z]. Moreover, the closed subset
X ⊂ X is constructible and pulled back from Spec(A+).

The main result of this section is:

thm:CompAdicRaynaud Theorem 8.1.2 (The adic spectrum as an inverse limit of all models). There is a natural homeo-
morphism

Φ : Spa(A,A+)
'−→ X

1Recall that a proper map of schemes can be defined as a finite type map that satisfies the valuative criterion for
properness. In particular, we do not impose a finite presentation constraint, so any closed immersion is proper.
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given by: for x ∈ Spa(A,A+) and index i, the image of Φ(x) ∈ X under X ⊂ X → Xi is the
image of the closed point under the unique lift Spec(Rx) → Xi of the natural map Spec(Rx) →
Spec(A+) along fi : Xi → Spec(A+). Note that such a lift exists and is compatible as i varies by
the valuative criterion, so Φ is a well-defined map.

The rest of the section is devoted to the proof. We shall freely use the interpretation of points of
Spa(A,A+) provided in Proposition 7.3.7. For any x ∈ X and map fi : Xi → Spec(A+) in I ,
we write xi ∈ Xi for the image of x under fi. Fix a pseudouniformizer t ∈ A. If πi : X → Xi

denotes the natural map, then the space X has a natural sheaf OX = colimi π
−1
i OXi , and the pair

(X,OX) is the inverse limit of the schemes Xi in the category of locally ringed spaces. The next
proposition attaches valuation rings to points of X , and is the key construction of this section:

Proposition 8.1.3. For each x ∈ X ⊂ X , the t-adically separated quotient Sx := OX,x/∩n tnOX,x

is a microbial valuation ring with pseudouniformizer t.

Proof. We have OX,x = colimiOXi,xi . In particular, any section f ∈ OX,x can be represented by
a section of some OXi(Ui) where Ui ⊂ Xi is an affine open containing xi. In the following proof,
we shall implicitly use that Sx is nonzero. To see this, note that if Sx = 0, then 1 ∈ tOX,x, which
is impossible because OX,x is a filtered colimit of local rings OXi,xi (where xi ∈ Xi is the image
of x ∈ X) containing t in their maximal ideal (as x ∈ X ⊂ X).
We begin by observing that the sheaf OX , and hence the local ring OX,x, are t-torsionfree. Indeed,

the collection of all Xi ∈ I with OXi being t-torsionfree span a cofinal subcategory (as we can
simply kill the t-power torsion to get another object in I). As filtered colimits of t-torsionfree
modules are t-torsionfree, the claim follows.
Next, we show that for any f ∈ Sx, we either have f = 0 or f | tn for n large. Lift f to some
f ∈ OX,x. We shall check that either f | tn for some n ≥ 0 or tn | f for all n ≥ 0. Represent
f by some element f ∈ OXi(Ui) for some i ∈ I and an affine open Ui ⊂ Xi. Fix some n ≥ 0,
and consider the ideal J = (f, tn) ⊂ OXi(Ui). By [SP, Tag 01PF], we can extend this to a finte
type quasi-coherent ideal sheaf J ⊂ OXi . As tn ∈ J , we may also assume that tn ∈ J (by adding
it if necessary). Then J becomes invertible on inverting t, so the blowup of Xi at the ideal sheaf J
is an object of I , and thus gives a map Xj → Xi in I . The preimage Vj ⊂ Xj of Ui ⊂ Xi under
this blowup is exactly the blowup of OXi(Ui) at J . The point x defines a point xj ∈ Vj ⊂ Xj . The
point xj ∈ Vj lies in one of the two standard charts for the blowup. In particular, in the local ring
OXj ,xj (and hence also in OX,x), we have f | tn or tn | f , depending on the chart xj ends up inside.
In the former case, we are done. In the latter case, we increase n by 1 and repeat the argument to
get the desired conclusion.
Next, choose f, g ∈ Sx. We shall check that either f | g or g | f . We may assume both elements

are nonzero. Pick lifts f, g ∈ OX,x. As f 6= 0, we must have f | tn for some n ≥ 0 by the previous
paragraph, and similarly for g. Thus, the ideal (f, g) ⊂ OX,x contains tn for some n ≥ 0. By
approximation, we can choose some i ∈ I and an affine open Ui ⊂ Xi such that f and g come
from Ui, and that tn ∈ J = (f, g) ⊂ OXi(Ui). Repeating the argument in the previous paragraph
with blowups then gives us the desired claim.
Next, we check that Sx is a domain if it is nonzero. Pick nonzero elements f, g ∈ Sx with
fg = 0. We can represent them by f, g ∈ OX,x. As f and g are nonzero, we can choose non-
negative integers m and n such that f | tm and g | tn by the third paragraph. But then we also
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have f | tm and g | tn: the kernel of OX,x → Sx is t-divisible. On the other hand, as fg = 0, we
have fg ∈ ∩ktkOX,x. As tm+n ∈ (fg) ⊂ OX,x, we learn that tm+n ∈ ∩ktkOX,x for all k. As t is a
nonzerodivisor on OX,x, it follows that 1 ∈ ∩ktkOX,x, so Sx = 0, which is a contradiction.
Combining the assertions of the last two paragraphs shows that Sx is a valuation ring with t 6= 0

in Sx. The claim in the third paragraph shows that t is a pseudouniformizer on Sx, so we get the
proposition.

As a result, for each x ∈ X , we get a map Spec(Sx)→ Spec(OXi,xi)→ Spec(A+) which carries
the closed point of Spec(Sx) to the image of x under the canonical map X → Spec(A+). As Sx
is microbial with pseudouniformizer t, this gives a point Ψ(x) of the adic spectrum. We have thus
constructed maps

Φ : Spa(A,A+)→ X and Ψ : X → Spa(A,A+).

Our construction immediately shows (using the valuative criterion for properness) that Φ◦Ψ = id.
Conversely:

lem:AdicRaynaudMatchValRings Lemma 8.1.4. The composition Ψ◦Φ equals the identity. Moreover, for any x ∈ Spa(A,A+) with
image y = Φ(x) ∈ X , the maps A+ → Rx and A+ → Sy are isomorphic.

Proof. Pick a point x ∈ Spa(A,A+). This gives a map φx : Spec(Rx) → Spec(A+). The point
y = Φ(x) ∈ X is defined by lifting φx via the valuative criterion across each object fi : Xi →
Spec(A+) in I . In particular, if yi ∈ Xi denotes the image of y, then we have a compatible system
of local maps OXi,yi → Rx, and hence a local map OX,y → Rx. The target is t-adically separated,
so this defines a local map Sy → Rx of valuation rings. This map is also injective: the kernel is a
prime ideal, and would thus contain t by microbiality if it were nonzero, which is impossible. Thus,
Sy → Rx is a faithfully flat map of microbial valuation rings. But then the points of Spec(A+)
corresponding to the maps A+ → Sy and A+ → Rx must coincide, so we get the first part of the
lemma.
For the second part: consider the map

A
a−→ Frac(Sy)

b−→ Frac(Rx)

obtained by inverting t from the maps A+ → Sy → Rx considered in the previous paragraph. By
faithful flatness of Sy → Rx, the kernel of a and b ◦ a coincide, and they are both thus the prime
ideal px. As the targets of a and b ◦ a are both fields, this gives injective maps

κ(px)→ Frac(Sy)→ Frac(Rx)

of fields. But the composite is an isomorphism by definition of Rx as a valuation ring in κ(px).
It follows that Frac(Sy) = Frac(Rx), so the faithfully flat map Sy → Rx can be viewed as an
inclusion of valuation rings with the same fraction field. Any such map is an isomorphism, so we
are done.

It remains to prove Φ and Ψ match up the topologies.

88



lem:AdicRaynaudRationalBlowup Lemma 8.1.5. The map Ψ is continuous and spectral.

Proof. Fix f1, ..., fn, g ∈ A+ such that tN ∈ (f1, .., fn) for some N > 0. Consider the rational
open set U = Spa(A,A+)

(
f1,...,fn

g

)
. We shall identify Ψ−1(U) explicitly as a quasi-compact open

in X . For this, consider the ideal J = (g, f1, ..., fn) ∈ A+. This ideal contains tN , so the blowup
Y := BlJ(Spec(A+)) → Spec(A+) is an object in I . By construction of the blowup, our choice
of generators for J gives a closed immersion i : Y ↪→ Pn

A+ of A+-schemes via by x0 7→ g and
xi 7→ fi for i 6= 0; here the xi’s are the standard homogeneous co-ordinates on Pn

A+ . Let V ⊂ Y
be the preimage of the standard affine open An

A+ ⊂ Pn defined the complement of the hyperplane
x0 6= 0; thus, g | fi in OY (V ). Write W ⊂ X for the preimage of V under X → X → Y . We
claim that W = Ψ−1(U), which would prove both continuity and spectrality.
The containment ⊂ is clear: for any x ∈ X lying over V , we have g | fi in OY (V ), hence also in
OX,x and Sx as x lies over V , so the point Ψ(x) ∈ Spa(A,A+) corresponding to the mapA+ → Sx
must lie in U .
For ⊃, fix a point x ∈ X with Ψ(x) ∈ U . Thus, in the valuation ring Sx, we have g | fi for all i.

We must check that the image y of x under X → Y lies in the open set V . Composing with i, we
get a map k : Spec(Sx) → Pn

A+ determined by the same formula as i: the co-ordinate functions
xi pull back to fi for i 6= 0 and g for i = 0. More canonically, using the universal property
of blowups, we see that the line k∗OPn

A+
(1) is the ideal (g, f1, ..., fn) with the displayed sections

being the generators. As g | fi, the map k is equivalent (as a point of Pn(Sx)) to the map defined
by the line bundle underlying the ideal sheaf (1, f1

g
, ..., fn

g
) with the displayed sections being the

generators. But this point clearly lies in the distinguished An
A+ ⊂ Pn

A+ considered above to define
V , so the claim follows.

Thus, we have constructed a continuous spectral bijection Ψ : X → Spa(A,A+).

Lemma 8.1.6. The map Ψ is generalizing, i.e., given y ∈ X , each generalization of x = Ψ(y) lifts
to a generalization of x.

Proof. The spectral space of generalizations of x in Spa(A,A+) is homeomorphic to Spec(Rx/t)
by Remark 7.3.11. By the second half of Lemma 8.1.4 (and chasing the maps Φ and Ψ), it suffices
to check that the set of generalizations of y ∈ X is bijection with Spec(Sy/t) as a poset. If we set
yi ∈ Xi to be the image of y, then the set of generalizations of y ∈ X is the inverse limit over i
of the sets of generalizations of yi in Xi, i.e., it’s the inverse limit of spectral spaces Spec(OXi,yi

),
where Xi is viewed as as a scheme by setting t = 0 in Xi. This inverse limit coincides with
lim Spec(OXi,yi/t) ' Spec(OX,y/t). But the map OX,y → Sy is an isomorphism modulo t (as the
kernel is t-divisible), so Spec(OX,y/t) ' Spec(Sy/t), so we are done.

We can now finish the proof of the theorem:

Proof of Theorem 8.1.2. We have already shown that Ψ is a continuous bijection between spectral
spaces that is generalizing. But any such map is a homeomorphism by [SP, Tag 09XU], so we are
done.
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Via the valuative intepretation, we obtain the following compatibility; this includes, in particular,
the compatibility of the construction (A,A+) 7→ X with Zariski localizations of A+.

cor:AdicSpectrumBaseChange Corollary 8.1.7. Let X0 → Spec(A+) be a map in I , i.e., a proper map that is an isomorphism
after inverting t. Let V0 = Spec(B0) ⊂ X0 be an affine open subset. Then the preimage of V0 in X
coincides with Y , the inverse limit of all proper maps Yi → Spec(B0) that are isomorphisms after
inverting t.

Proof. Let B+ be the integral closure of B0 in B0[1
t
], so (B,B+) gives a uniform affinoid Tate

ring. Note that the space Y defined above can also be defined by replace B0 with B+, so we may
assume B0 = B+. Moreover, the map A → B is a Zariski localization as V0 → Spec(A+) gives
an open immersion on inverting t. Using the identification of Theorem 8.1.2, we are reduced to
checking that the natural map i : Spa(B,B+) → Spa(A,A+) identifies with the left side with
the preimage of V0 under the specialization map spX0

: Spa(A,A+) → X0. As A → B is a
Zariski localization, the injectivity of i is clear. We are thus reduced to checking that an element
x ∈ Spa(A,A+) lies in Spa(B,B+) exactly when spX0

(x) ∈ V0. The containment ⊂ is clear.
Conversely, given x ∈ Spa(A,A+) with spX0

(x) ∈ V0, the induced map A+ → Rx factors over
A+ → OX0(V0) = B+ by the definition of the specialization map; this then gives the desired point
of Spa(B,B+).

Remark 8.1.8 (Replacing proper with projective). The proof of Theorem 8.1.2 also goes through
if we replace the word “proper” by “projective” in Construction 8.1.1. Indeed, the only properties
of proper maps used above are:

• Proper maps satisfy the valuative criterion for properness.

• The fiber product and compositions of proper maps is proper.

• Closed immersions and blowups are proper.

As all of these also hold for projective maps, the arguments go through.

8.2 Comparing sheaves
We show next that identification of Theorem 8.1.2 can also be used to compare the (henselian
version of the) structure presheaf on Spa(A,A+) with a natural structure sheaf on X , thus proving
that the former is a sheaf. For this, we need the following lemma allowing us calculate the effect
on global sections of pulling back along the maps X i ⊂ Xi and X ⊂ X appearing above.

lem:CohomologyPullbackZariski Lemma 8.2.1. Let R be a ring that is I-adically henselian for some ideal I . Let f : Z → Spec(R)
be a proper morphism, and let i : Z0 ↪→ Z be the closed immersion defined by I . Then, working
everywhere with étale sheaves, we have

H0(Z,OZ) ' H0(Z0, i
−1OZ)

via the restriction map.
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Proof. This follows from [SP, Tags 09ZF, 09ZG].

Now consider the tower {Xi ⊂ Xi} defining X ⊂ X in the limit. On each Xi, we have the struc-
ture sheaf OXi , which is an étale sheaf. Restricting this along the inclusion ki : Xi ↪→ X as étale
sheaves, we obtain an étale sheaf k−1

i OXi,et on Xi, viewed as a Zariski sheaf via pushforward from
the étale site to the Zariski site2. As i varies, these pullback to a filtered system {π−1

i k−1
i OXi,et} of

sheaves on X , where πi : X → Xi is the projection. Write F for the direct limit. This sheaf turns
out to equal the presheaf O+

Spa(A,A+),hens defined in Remark 7.5.2.

Proposition 8.2.2. Assume (A,A+) is a henselian affinoid Tate ring. For any rational set U ⊂
Spa(A,A+), we have a natural identification F(U) ' O+

Spa(A,A+),hens(U).

Proof. Fix a pseudouniformizer t ∈ A+. In the proof below, for anyA+-algebraR, we writeRhens

for the henselization of R along tR.

1. The structure of F. Fix a quasi-compact open V ⊂ X arising as the preimage of some affine
open V0 ⊂ X0. Write Vi ⊂ Xi for the preimage of V0 along any map Xi → X0 in I and
write Vi := Vi ∩Xi ⊂ Xi, so V = limVi. Then we can write

F(V ) = colim
i≥0

H0(Vi, k
−1
i OXi,et) ' colim

i≥0
OXi(Vi)⊗OX0

(V0) OX0(V0)hens.

Indeed, the first isomorphism is clear from generalities about cofiltered limits of spectral
spaces, while the second follows from flat base change for coherent cohomology and Lemma 8.2.1
applied to R = OX0(V0)hens and Z = Vi×V0 Spec(R) for each i ≥ 0. Commuting the tensor
product with a filtered colimit, we can write

F(V ) ' OX0(V0)hens ⊗OX0
(V0) colim

i≥0
OXi(Vi).

We claim that colimi≥0 OXi(Vi) is the integral closure of OX0(V0) in OX0(V0)[1
t
]. To see this,

observe that the former is an integral OX0(V0)-algebra (as each Vi → V0 is proper) that is
t-torsionfree (as the sheaf F is t-torsionfree) and contained in OX0(V0)[1

t
] (as Vi → V0 is an

isomorphism after inverting t). It remains to show that colimi≥0 OXi(Vi) is integrally closed
in OX0(V0)[1

t
]. This is clear when V0 = X0 = Spec(A+), and the general case is reduced to

this one by Corollary 8.1.7.

As the formation of integral closures commutes with étale localization, we learn that F(V )
is the integral closure of OX0(V0)hens in OX0(V0)hens[

1
t
]. In particular, this has the following

consequences:

• The pair (F(V )[1
t
],F(V )) is a henselian affinoid Tate (A,A+)-algebra with couple of

definition (F(V ), t).

2Even though OXi
is both a Zariski sheaf and an étale sheaf, the pullbacks in the two different topologies are

different, so k−1i OXi,et cannot be simply defined as the pullback of OXi
viewed as a Zariski sheaf.
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• The map (A,A+) → (F(V )[1
t
],F(V )) is an epimorphism in the category of henselian

affinoid Tate rings. Indeed, this map factors as

(A,A+)→ (OX0(V0)[
1

t
],OX0(V0))→ (OX0(V0)hens[

1

t
],OX0(V0)hens)→ (F(V )[

1

t
],F(V ))

The first map is an epimorphism in the category larger category of abstract pairs asA→
OX0(V0)[1

t
] is a localization: the map X0 → Spec(A+) is an isomorphism after invert-

ing t, so V0 → Spec(A+) is an affine open immersion after inverting p. The second map
is a henselization, and hence clearly an epimorphism with respect to henselian pairs.
The last map is an isomorphism on the rational rings (i.e., F(V )[1

t
] = OX0(V0)hens[

1
t
])

by the discussion above, and hence an epimorphism of abstract pairs.

We shall use the above two pieces of structure in two special cases next.

2. F applied to the whole space. Assume first that V0 = Spec(A+) so V = X . In this case, the
formula for F(−) in (1) shows that F(V ) = A+. Indeed, we may take V0 = X0 = Spec(A+),
so our formula tells us that F(V ) is the integral closure of A+

hens in A+
hens[

1
t
]. But (A,A+) is

a henselian affinoid Tate ring, so we immediately get that F(V ) = A+, as wanted.

3. F applied to a rational subset. Choose f1, ..., fn, g ∈ A+ such that tN ∈ (fi) ⊂ A+ for some
N ≥ 0 and U = Spa(A,A+)

(
f1,...,fn

g

)
. Let X0 → Spec(A+) be the blowup at the ideal

J = (g, f1, ..., fn). Write V0 ⊂ X0 for the standard chart where g | fi for all i. We have
seen in Lemma 8.1.5 that the identification Spa(A,A+) ' X carries U to the preimage V of
V0 under X ⊂ X → X0. Set C+ = F(V ) and C = C+[1

t
]. By (1), this yields a henselian

affinoid Tate (A,A+)-algebra (C,C+). The induced map Spa(C,C+) → Spa(A,A+) has
image contained in U simply because g | fi in C+. If we set

(B,B+) := (OSpa(A,A+),hens(U),O+
Spa(A,A+),hens(U)),

then the universal property gives us a map

Φ : (B,B+)→ (C,C+)

of henselian affinoid Tate (A,A+)-algebras. We will show this map is an isomorphism by
constructing the inverse.

4. Constructing maps out of F(V ). Say (R,R+) is any henselian affinoid Tate (A,A+). The
assocation (A,A+) 7→ (X,F) is functorial in the input pair (A,A+). When applied to
(R,R+), this produces a locally ringed space (Y ,G) equipped with a local map to (X,G).
The underlying map Y → X coincides with the canonical map Spa(R,R+)→ Spa(A,A+)
under the identification of Theorem 8.1.2. In particular, if the latter has image in the rational
open set U ⊂ Spa(A,A+) from (3), then passing to sections over U gives a map

Ψ : (C,C+)→ (G(Y )[
1

t
],G(Y )) ' (R,R+)

of henselian affinoid Tate (A,A+)-algebras, where the last isomorphism uses (2) above.
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5. Conclusion. By (3) and (4) applied to (R,R+) = (B,B+), we obtain maps

Φ : (B,B+)→ (C,C+) and Ψ : (C,C+)→ (B,B+)

of affinoid Tate (A,A+)-algebras. To check these are inverses to each other, it suffices
to observe that both (A,A+) → (B,B+) and (A,A+) → (C,C+) are epimorphisms of
henselian affinoid Tate rings. The map (A,A+) → (B,B+) is an epimorphism by the
universal property, while the map (A,A+)→ (C,C+) is an epimorphism by (1).

Corollary 8.2.3 (The henselian structure presheaf is a sheaf). Under the identification Spa(A,A+) '
X of Theorem 8.1.2, we have

O+
Spa(A,A+),hens ' F and OSpa(A,A+),hens ' F[

1

t
]

for any pseudouniformizer t ∈ A. In particular, both these presheaves are sheaves.

8.3 A fully faithful embedding of affinoid Tate rings into a ge-
ometric category

Finally, we have a suitable geometric category where the adic spectrum of any affinoid Tate ring
lives. Let Vmic denote the category3 of triples (X,OX , {vx}x∈X) where (X,OX) is a locally ringed
space, and vx is a microbial valuation on the stalks OX,x (i.e., the corresponding valuation ring
is microbial); the morphisms are given by maps of locally ringed spaces that are compatible with
the valuations, and such that the induced map on valuation rings at any point preserves pseu-
douniformizers. The association (A,A+) 7→ (Spa(A,A+),OSpa(A,A+),hens, {vx}) gives a functor
Spa(−) from affinoid Tate rings into Vmic.

Proposition 8.3.1. The functor Spa(−) is fully faithful on the full subcategory of uniform henselian
affinoid Tate rings.

Proof. Fix a henselian affinoid Tate ring (A,A+). For notational ease, write XA := Spa(A,A+),
FA = O+

Spa(A,A+),hens, and GA = OSpa(A,A+),hens. Using the valuations vx, we can functorially
recover the inclusion FA ⊂ GA from Spa(A,A+): we can obviously recover GA, and we have

FA(V ) = {f ∈ GA(V ) | |f(x)| ≤ 1 for all x ∈ XA}.

Moreover, we have also seen FA(XA) = A+ and GA = A as (A,A+) is henselian. Thus, we
recover the abstract pair (A,A+) from Spa(A,A+). By uniformity, this also recovers (A,A+) as

3This is similar to Huber’s category V with some differences: (a) we only work with sheaves of abstract rings
instead of topological rings, (b) we require the valuations at each point to be microbial, and (c) the continuity condition
on the morphisms in Huber’s category is replaced by the requirement that the maps on valuation rings preserves
pseudouniformizers.
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an affinoid Tate ring. Moreover, an element f ∈ A is a pseudouniformizer if and only if f is a unit
and f gives a pseudouniformizer in the valuation ring attached to the each stalk GA,x for x ∈ XA.
Now fix two uniform henselian affinoid Tate rings (A,A+) and (B,B+), and consider the maps

Φ : Hom((A,A+), (B,B+))
f 7→Spa(f)
−−−−−−→ Hom(Spa(B,B+), Spa(A,A+)).

and
Ψ : Hom(Spa(B,B+), Spa(A,A+))→ Hom((A,A+), (B,B+)),

where Ψ(φ) is the map (A,A+) → (B,B+) of abstract pairs induced via GA(XA) → GB(XB)
and FA(XA) → FB(XB) using the identifications in the previous paragraph. Note that Ψ(φ) is
indeed a continuous4 map of affinoid Tate rings: using uniformity, it suffices to observe that Ψ(φ) :
A → B preserves a ring of definition (namely, it carries A+ to B+) and pseudouniformizers (by
the characterization mentioned in the previous paragraph). It is then immediate from the definitin
that Ψ ◦ Φ is the identity.
To check Φ ◦Ψ is the identity, fix a map φ : Spa(B,B+)→ Spa(A,A+), and let φ] : (A,A+)→

(B,B+) be the induced map on affinoid Tate rings via Ψ. We must check that φ = Spa(f).
Fix a point x ∈ Spa(B,B+) with image φ(x) ∈ Spa(A,A+). We want to show that φ(x) is the

valuation on A induced by x by composition with φ]. But this is immediate from the compatibility
of φ with valuations (as in the definition of Vmic). In particular, φ is a spectral map, and φ−1 carries
rational open subsets to rational open subsets.
Now fix a rational open subset U ⊂ Spa(A,A+) with preimage φ−1. To finish proving φ =

Spa(f), we must check that the map of (abstract) pairs (GA(U),FA(U)) → (GB(V ),FB(V ))

induced by φ agrees with the map induced by Spa(φ]). But both these maps fit as the bottom
horizontal arrow into the commutative diagram

(A,A+)
φ] //

std
��

(B,B+)

std
��

(GA(U),FA(U)) // (GB(V ),FB(V )).

The vertical maps are epimorphisms of henselian pairs, so there is a unique choice for the bottom
horizontal arrow, so our claim follows.

4Given uniform affinoid Tate rings (R,R+) and (S, S+), a map R → S carrying R+ → S+ is not always
continuous; it is continuous exactly when it is strict, i.e., preserves pseudouniformizers.
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Chapter 9

Perfectoid spaces

We now return to the perfectoid theory. The first goal of this chapter is to attach an adic space
(called an affinoid perfectoid space) to each perfectoid algebra R; concretely, we shall check that
the affinoid Tate ring (R,R◦) is sheafy. In fact, whilst establishing this result, we shall simultane-
ously also prove that the higher cohomology of the structure sheaf is 0. With this result in place,
we introduce the notion of a perfectoid space over a perfectoid field, and explain why its invariant
under tilting. Finally, with an eye towards future applications, we spend some time on analyzing
Zariski closed subsets of an affinoid perfectoid space; surprisingly, these admit a natural structure
as an affinoid perfectoid space.

9.1 Perfectoid affinoid algebras
Fix a perfectoid field K, and write m ⊂ K◦ and m[ ⊂ K[◦ for the corresponding maximal ideals.
Choose a pseudouniformizer t ∈ K[ with |t|[ ≥ |p|, and let π = t]. We simply use the phrase
affinoid K-algebra to describe affinoid Tate (K,K◦)-algebras.

Definition 9.1.1. An affinoid K-algebra (R,R+) is a perfectoid affinoid K-algebra if R is perfec-
toid.

Note that mR◦ = R◦◦ ⊂ R+ ⊂ R◦, so the map R+ → R◦ is an almost isomorphism. Moreover,
as one easily checks from the definitions, a ring of integral elements R+ ⊂ R◦ determines and
is determined by specifying the integrally closed subring R+ := R+/mR◦ ⊂ R◦/mR◦; note that
an integrally closed subring of a perfect ring is perfect. As R◦/mR◦ ' R[◦/mR[◦, the tilting
correspondence implies:

prop:TiltPerfectoidAffinoid Proposition 9.1.2 (Tilting correspondence). The categories of perfectoid affinoid algebras overK
and K[ are equivalent to each other. Under this equivalence, (R,R+) corresponds to (R[, R[+) if
and only if R[ is the tilt of R and the isomorphism R◦/mR◦ ' R[◦/m[R◦ identifies R+/mR◦ with
R[+/m[R[+. Moreover, R+/p is semiperfect, and we have R[+ ' R+[ as subrings of R◦[ ' R[◦.

Proof. We already know the corresponding statement when R+ = R◦ from Theorem 6.2.5 and
Theorem 6.2.7 (3). The equivalence for perfectoid affinoid K-algebras then follows from the
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description of R+ in terms of R+ mentioned above. Explicitly, given a perfectoid affinoid K-
algebra (R,R+), the corresponding ring of integral elementsR[+ ⊂ R◦[ is defined via the pullback
square

R[+ //

��

R◦[

��
R+/mR◦ // R◦/mR◦

where the bottom horizontal and right vertical maps are the evident ones.
For the semiperfectness of R+/p, observe that the integrally closed subring R+/mR◦ of the per-

fect ring R◦/mR◦ is perfect. Now surjectivity of an almost surjective map of K◦-modules can be
detected after reducing modulo m, so the semiperfectness of R+/p follows from that of R◦/p and
R+/mR◦.
Finally, to check R+[ = R[+, it is enough to show that the square of natural maps

R+[ //

��

R◦[

��
R+/mR◦ // R◦/mR◦

is a pullback square. We leave it to the reader to deduce this using the perfectness ofR+/mR◦.

As a matter of notation, we denote the tilt of a perfectoid affinoidK-algebra (R,R+) by (R[, R[+).

rmk:TiltingPreservesAffinoidFields Remark 9.1.3 (Perfectoid affinoid fields). Say (R,R+) is a perfectoid affinoid K-algebra with R
being a perfectoid field. Then (R,R+) is an affinoid field exactly when R+ ⊂ R is an open
valuation ring. This happens exactly when the integrally closed subring R+/mR◦ ⊂ R◦/mR◦ is a
valuation ring; to see this, one uses that R+ ⊂ R◦ is the preimage of R+/mR◦ ⊂ R◦/mR◦, and
that a reduced ring V is a valuation ring if and only if for any a, b ∈ V , we have a | b or b | a.
In particular, the property of being an affinoid field is preserved under, and can be detected after,
tilting. For future reference, we shall refer to perfectoid affinoid K-algebras (R,R+) which are
affinoid fields as perfectoid affinoid fields.

The following exercise shall be used implicitly in the sequel.

Exercise 9.1.4. Fix a perfectoid field K as above.

1. Show that the category of perfectoid affinoid K-algebra admits all filtered colimits, and that
these are also filtered colimits in the larger category of complete uniform affinoid Tate rings.

2. Deduce from (1) and uniformity that the functor (R,R+) 7→ R+ from perfectoid affinoid
K-algebras to π-adically complete K◦-algebras preserves filtered colimits.
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9.2 Tilting rational subsets
We reintroduce standard notation that shall be followed throughout this chapter.

not:PerfectoidAffinoid Notation 9.2.1. Fix a perfectoid field K, and write m ⊂ K◦ and m[ ⊂ K[◦ for the corresponding
maximal ideals. Choose a pseudouniformizer t ∈ K[ with |t|[ ≥ |p|, and let π = t]. Fix a
perfectoid affinoid K-algebra (R,R+) with tilt (R[, R[+). Write X := Spa(R,R+) and X[ :=
Spa(R[, R[+) for the attached adic spectra.

With notation as above, recall from Remark 2.0.9 that we have a multiplicative map

] : R[ → R.

Using this map, we can identify the adic spectra in a satisfying fashion:

thm:PerfSpaceTiltAnalytic Theorem 9.2.2. Fix notation as above.

1. For any x : R→ Γ∪{0} in Spa(R,R+), the composition R[ ]−→ R
x−→ Γ∪{0} gives a point

x[ of Spa(R[, R[+). This construction gives a homeomorphism Spa(R,R+) ' Spa(R[, R[+)
preserving rational subsets. For a rational U ⊂ Spa(R,R+), write U [ ⊂ Spa(R[, R[+) for
its image, and call it the tilt of U .

2. For any rational open subset U ⊂ X with tilt U [ ⊂ X[, the complete affinoid TateK-algebra
(OX(U),OX[(U)) is perfectoid with tilt (OX[(U [),O+

X[(U
[)).

The rest of this section will be dedicated to the proof. We begin by observing that the argument in
Remark 3.2.5 applies mutatis mutandis to show that x 7→ x[ gives a well-defined set-theoretic map
X → X[. This map is also continuous: one readily checks that the preimage of X[

(
f1,...,fn

g

)
is

given byX
(
f]1 ,...,f

]
n

g]

)
; here we assume, as in Remark 7.4.3, that fn = tN is a pseudouniformizer (to

ensure that the f ]i generate a unit ideal of R). To proceed further, we begin by describing Huber’s
presheaf on the rational open subsets of X in characteristic p.

lem:PerfectoidHuberPresheafCharp Lemma 9.2.3 (Huber’s presheaf in characteristic p). Assume K has characteristic p. Let U =

X
(
f1,...,fn

g

)
be a rational subset of X defined by fi, g ∈ R+ with fn = πN . Then:

1. Let R+〈
(
fi
g

) 1
p∞ 〉 be the π-adic completion of the subring

R+[
(fi
g

) 1
p∞ ] ⊂ R[

1

g
].

Then R+〈
(
fi
g

) 1
p∞ 〉 is a perfectoid K◦a-algebra.

2. The canonical R+-algebra map

ψ : R+[X
1
p∞
i ]→ R+[

(fi
g

) 1
p∞ ] determined by X

1
pm

i 7→
(fi
g

) 1
pm

is surjective with kernel containing and almost equal to I = (∀m : g
1
pmX

1
pm

i − f
1
pm

i ).
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3. The Tate K-algebra OX(U) is a perfectoid K-algebra. Moreover, we have a natural almost

isomorphism R+〈
(
fi
g

) 1
p∞ 〉 a' OX(U)◦a of K◦a-algebras.

Proof. 1. The ring R+[
(
fi
g

) 1
p∞ ] is perfect and π-torsionfree by construction. Hence, its π-adic

completion is also perfect and π-torsionfree. This immediately implies that R+〈
(
fi
g

) 1
p∞ 〉

gives a perfectoid K◦a-algebra.

2. It is clear that ψ is surjective and I ⊂ ker(ψ). We also have R+[
(
fi
g

) 1
p∞ ][ 1

π
] = R[1

g
] as

fn = πN . It is then clear that I[ 1
π
] = ker(ψ[ 1

π
]). Now consider the map

ψ : P := R+[X
1
p∞
i ]/I → R+[

(fi
g

) 1
p∞ ]

induced by ψ. Using the definition of I , it is clear that I = I [p], so the ring P is perfect. In
particular, ψ is a surjective map between perfect K◦-algebras that is an isomorphism after
inverting π, so ker(ψ) is π∞-torsion. As the π∞-torsion in a perfect K◦-algebra is always
almost zero, the claim follows.

3. Consider the inclusions
R+[

fi
g

]
a
↪→ R+[

(fi
g

) 1
p∞ ]

b
↪→ R[

1

g
].

We claim that coker(a) is killed by πnN . Indeed, as fn = πN , we can write

πnN ·
n∏
i=1

(fi
g

) 1
pai =

n∏
i=1

πN ·
(fi
g

) 1
pai =

n∏
i=1

(
f

1
pai

i g
1− 1

pai
)fn
g
∈ R+[

fi
g

],

which proves πnN kills all generators of the R+-module coker(a), and hence also the coker-

nel. Passing to π-adic completions shows that the perfectoid K◦a-algebra R+〈
(
fi
g

) 1
p∞ 〉 and

the π-adically complete K◦-algebra R̂+[fi
g

] give the same Tate K-algebra on inverting π.
But the former construction clearly gives a perfectoid K-algebra, while the latter construc-
tion produces OX(U). This gives the first part. The second part then follows from the fact
that inverting π gives an equivalence PerfK◦a ' PerfK with inverse given by R 7→ R◦a.

Remark 9.2.4. Lemma 9.2.3 (3) is quite remarkable from the perspective of classical rigid geom-
etry. Indeed, in the latter theory, it is quite hard to describe the rings OX(U)◦ explicitly (or even
almost so, if working over a perfectoid field) due to various integral closures that intervene in the
definition. In contrast, in the perfectoid setting, Lemma 9.2.3 gives an explicit “generators and
relations” style description of OX(U)◦ that essentially says that these integral closures are (almost)
unnecessary, thanks to perfectness; more precisely, part (2) says that OX(U)◦ is almost computed
by formally adjoining to R+ the “obvious” functions that ought to be defined on U . The tilting
correspondence will then allow us to propogate this to a similar description in characteristic 0 as
well, see Lemma 9.2.5.
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Using the result above in characteristic p, we can now fully describe Huber’s presheaf on rational
open subsets of X that are pulled back from X[:

lem:HuberPresheafChar0 Lemma 9.2.5 (Huber’s presheaf in characteristic 0). Let U = X
(
f1,...,fn

g

)
be a rational subset of

X defined by fi, g ∈ R+ with fn = πN . Assume that fi = a]i and g = b] for a, b ∈ R[+, so f
1
pn

i

and g
1
pn makes sense for all n. Write U [ = X[

(
a1,...,an

b

)
for the corresponding rational subset of

X[, so U is the preimage of U [ under X 7→ X[.

1. Let R+〈
(
fi
g

) 1
p∞ 〉 be the π-adic completion of the subring

R+[
(fi
g

) 1
p∞ ] ⊂ R[

1

g
].

Then R+〈
(
fi
g

) 1
p∞ 〉 is a perfectoid K◦a-algebra.

2. The canonical R+-algebra map

ψ : R+[X
1
p∞
i ]→ R+[

(fi
g

) 1
p∞ ] determined by X

1
pm

i 7→
(fi
g

) 1
pm

is surjective with kernel containing and almost equal to I = (∀m : g
1
pmX

1
pm

i − f
1
pm

i ).

3. The Tate K-algebra OX(U) is a perfectoid K-algebra. Moreover, we have a natural almost

isomorphism R+〈
(
fi
g

) 1
p∞ 〉 a' OX(U)◦a of K◦a-algebras.

4. The perfectoid affinoidK-algebra (OX(U),O+
X(U)) tilts to the perfectoid affinoidK[-algebra

(OX[(U [),O+
X[(U

[)).

Proof. 1. Write P0 = R+[X
1
p∞
i ]/I , where I = (∀m : g

1
pmX

1
pm

i − f
1
pm

i ). The association

X
1
pm

i 7→
(
fi
g

) 1
pm determines an R+-algebra map

a0 : P0 → R+[
(fi
g

) 1
p∞ ].

By definition of Huber’s presheaf, there is an obvious R+-algebra map

b0 : R+[
(fi
g

) 1
p∞ ]→ O+

X(U).

Write (S, S+) for the untilt of the perfectoid (R[, R[+)-algebra (OX[(U [),O+
X[(U

[)), viewed
as an (R,R+)-algebra. As fi = a]i and g = b], the map Spa(S, S+) → X has image
contained in U : we have g | fi in S+ since b | ai in O+

X[(U
[). By the universal property of

Huber’s presheaf, we get an induced R+-algebra map

c : O+
X(U)→ S+.

99



Write d0 = c ◦ b0. Putting everything together, we get maps

P0
a0 //

��

R+[
(
fi
g

) 1
p∞ ]

d0 //

��

S+

P a // R+〈
(
fi
g

) 1
p∞ 〉 d // S+,

where the second row is obtained by π-adic completion from the first row (and makes sense
because S+ is π-adically complete). Now the map a0 is surjective, and hence a is also
surjective. The map d0 ◦ a0 modulo π is an almost isomorphism by Lemma 9.2.3 (2), and
hence the same holds true for d ◦ a modulo π as well. As the source of d ◦ a is π-adically
separated and the target is π-torsionfree, it follows1 that d◦a is an almost isomorphism. The
surjectivity of a then implies that both a and d are almost isomorphisms. In particular, both
P and R+〈

(
fi
g

) 1
p∞ 〉 give perfectoid K◦a-algebras.

For future reference, we remark that this argument proves that the perfectoid K-algebra
R+〈

(
fi
g

) 1
p∞ 〉[ 1

π
] identifies with S, the untilt of OX[(U [).

2. This was already proven in the proof of (1).

3. This is proven exactly as in Lemma 9.2.3 (3).

4. In course of proving (1), we have seen that the perfectoid K◦a-algebra R+〈
(
fi
g

) 1
p∞ 〉 tilts

to the perfectoid K[◦a-algebra OX[(U [)◦a. It now follows from (3) that the perfectoid K-
algebra OX(U) tilts to the perfectoid K[-algebra OX[(U [).

For the rest, observe that as in (1), we have a unique

µ : (OX(U),O+
X(U))→ (OX[(U [),O+

X[(U
[))] =: (S, S+)

of affinoid Tate (R,R+)-algebras as g | fi in O+
X[(U

[)] (as b | ai before tilting). As the
structure map from (R,R+) to either ring above is an epimorphism of complete affinoid
Tate rings (by Huber’s theorem for the source, and Huber’s theorem as well as tilting for the
target), it suffices to build a map of affinoid Tate (R,R+)-algebras in the other direction. For
this, we remark that the proof of (1) gives a map

(R+〈
(fi
g

) 1
p∞ 〉[ 1

π
], R+〈

(fi
g

) 1
p∞ 〉)→ (OX(U),O+

X(U))

1Say α : M → N is an almost surjective map of K◦-modules with M being π-adically separated and N being
π-torsionfree. Assume that α modulo π is an almost isomorphism. Then we claim that α is an almost isomorphism as
well. To see this, we may replace N with the image of α to assume that α is surjective. Now if L = ker(α), then the
π-torsionfreeness of N ensures that L/π is the kernel of α modulo π, and hence is almost zero. This implies that L is
almost π-divisible. On the other hand, L ⊂M , so L is π-adically separated. The combination of almost π-divisibility
and π-adic separatedness force L to be almost zero, as wanted.
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of affinoid Tate (R,R+)-algebras. Write (T, T+) for the tilt of (OX(U),O+
X(U)). Tilting the

preceding map shows b | ai in T+. Thus, the induced map Spa(T, T+) → Spa(R[, R[+) =
X[ has image contained U [. By Huber’s theorem, this gives a map

ν : (OX[(U [),O+
X[(U

[))→ (T, T+)

of affinoid Tate (R[, R[+)-algebras. Untilting ν then provides the desired inverse to µ.

We shall also need the following approximation lemma, which is crucial in many applications.
It roughly says we can approximate elements of a perfectoid K-algebra by perfect elements in
controlled fashion. In fact, we first prove this for perfectoid polynomial rings; the general case will
follow easily from this case.

lem:ApproximationLemma Lemma 9.2.6 (Approximation lemma). Assume R = K〈T
1
p∞

0 , ..., T
1
p∞
n 〉. Let f ∈ R◦ be homoge-

neous of degree d ∈ N[1
p
]. For any rational c ≥ 0 and any ε > 0, there exists some gc,ε ∈ R[◦

homogeneous of degree d such that

|(f − g]c,ε)(x)| ≤ |π|1−ε max(|f(x)|, |π|c)

for any x ∈ Spa(R,R◦).

Proof. Coming later

Using this lemma, we get an analogous approximation statement for any perfectoid ring:

lem:ApproximationLemmaPerfectoid Proposition 9.2.7. Fix notation as in Notation 9.2.1.

1. Given f ∈ R, a rational c ≥ 0, and an ε > 0, there exists some gc,ε ∈ R[ such that

|(f − g]c,ε)(x)| ≤ |π|1−ε max(|f(x)|, |π|c) (9.1) eq:ApproxEq

for all x ∈ X .

2. Given f, g ∈ R and an integer c ≥ 0, there exist a, b ∈ R[ such that

X
(f, πc

g

)
= X

(a], πc
b]

)
as subsets of X .

3. Every rational subset of X is the preimage of a rational subset of X[.

4. For each U ⊂ X rational, (OX(U),O+
X(U)) is a perfectoid affinoid (R,R+)-algebra.

5. For each x ∈ X , the NA field k̂(x) is perfectoid.

6. The map X → X[ is a homeomorphism preserving rational subsets.
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Proof. 1. It suffices to solve the problem for any f ∈ R+. Indeed, if this problem has been
solved, then given any f ∈ R and c ≥ 0, we can simply set gc = t−nhc+n, where n is chosen
so that πnf ∈ R+, and hc+n ∈ R[+ is chosen so that |πnf −h]c+n| < max(|πnf(x)|, |π|c+n).
Thus, we reduce to the case f ∈ R+.

Next, we may assume c is an integer. Indeed, this is simply because

max(|f(x)|, |π|d) ≤ max(|f(x)|, |π|c)

if c ≤ d.

Now assume f ∈ R+ and c ≥ 0 is an integer. Choose g0, ..., gc ∈ R[+ and fc+1 ∈ R+ such
that we have

f = g]0 + g]1π + ...+ g]cπ
c + fc+1π

c+1.

Write f0 =
∑c

i=0 g
]
iπ

i, so f = f0 + πc+1fc+1. Using the strict NA inequality, we see that
right side of (9.1) does not change under replacing f by f0; one then checks any choice gc
that solves (9.1) for f0 also solves it for f . Thus, we may assume f = f0 and fc+1 = 0. Now
consider the map

µ : P := K〈T
1
p∞

0 , ..., T
1
p∞
c 〉 → R

of perfectoid K-algebras carrying Ti to g]i ; this map satisfies µ(P ◦) ⊂ R+. By Lemma 9.2.6
applied to

∑c
i=0 Tiπ

i ∈ P ◦ with some ε < 1, there exists some h0 ∈ P ◦ such that h =
µ(h0) ∈ R+ satisfies

|(f − h])(x)| < max(|f(x)|, |π|c)

for all x ∈ Spa(R,R+), as wanted.

2. Using (1), we can choose a, b ∈ R[ such that

|(g − b])(x)| < max(|g(x)|, |π|c) (9.2) eq:ApproxEq1

and
max(|f(x)|, |π|c) = max(|a](x)|, |π|c). (9.3) eq:ApproxEq2

Now say x ∈ X
(
f,πc

g

)
. We shall check that x ∈ X

(
a],πc

b]

)
. As |π|c ≤ |g(x)|, (9.2) gives

|g(x)− b](x)| < |g(x)|. By the strict NA inequality, this can only happen if |b](x)| = |g(x)|,
so we get |π|c ≤ |b](x)|. Also, (9.3) immediately shows that for such x, we have either
|a](x)| ≤ |π|c or |a](x)| = |f(x)|; the former implies |a](x)| ≤ |π|c ≤ |g(x)| = |b](x)| by
the assumption on x and the previous deduction, while the latter implies |a](x)| = |f(x)| ≤
|g(x)| = |b](x)| by the assumption on x and the previous deduction. In either case, we get
the desired equality |a](x)| ≤ |b](x)|, proving x ∈ X

(
a],πc

b]

)
.

Conversely, say x ∈ X
(
a],πc

b]

)
. We shall check that x ∈ X

(
f,πc

g

)
. First, we check

|πc| ≤ |g(x)|. If this failed, then we would have |g(x)| > |π|c; by (9.2) and the strict NA
inequality, this would mean |g(x)| = |b](x)|, but the latter implies |g(x)| = |b](x)| ≤ |π|c
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by assumption on x, which is a contradiction. Thus, we must have |π|c ≤ |g(x)|. Next,
as in the previous paragraph, this implies that |g(x)| = |b](x)| for such x. It remains to
check that |f(x)| ≤ |g(x)|. If not, we must have |f(x)| > |g(x)| ≥ |π|c. By (9.3), this
implies that |f(x)| = |a](x)|, and thus |a](x)| > |g(x)| as well. But we just checked that
|g(x)| = |b](x)|, so we get |a](x)| > |b](x)|, which contradicts the assumption on x.

3. Let U = X
(
f1,...,fn

g

)
be a rational subset of X . We may assume after scaling that fi ∈ R+

and fn = πc for some integer c ≥ 1. We can then write U = ∩n−1
i=1 X

(
fi,π

c

g

)
. The claim now

follows by applying (2) (n− 1)-times.

4. This follows from Lemma 9.2.5.

5. The open valuation ring k̂(x)+ ⊂ k̂(x) is the π-adic completion of the direct limit of the
K◦-algebras O+

X(U) as U ranges through rational open subsets of X . By (4), this gives a
perfectoidK◦a-algebra (see Remark 6.2.9 for a description of filtered colimits in the world of
perfectoid K◦a-algebras); note that if K has characteristic p, then the instance of (4) being
invoked here does not require Lemma 9.2.6. Inverting π shows that k̂(x) is a perfectoid
K-algebra, as wanted.

6. We have already shown in (3) that ψ : X → X[ is a continuous map such that each ra-
tional subset of X is a pullback of a rational subset of X[; as X is T0, this formally gives
injectivity of ψ. It now suffices to prove surjectivity of ψ: using (3), this will imply that ψ
carries rational subsets to rational subsets, proving continuity for the inverse. For surjecitiv-
ity, pick x ∈ X[. This point defines a map (R[, R[+)→ (k̂(x), k̂(x)+) to the corresponding
perfectoid affinoid field by easier part of (5). By tilting and Lemma 6.2.13, this untilts to
a map (R,R+) → (L,L+) where (L,L+) is a perfectoid affinoid field (see Remark 9.1.3).
This corresponds to a point y ∈ Spa(R,R+). It is then easy to see that ψ(y) = x: the
valuation ψ(y) is defined by the map R[ ]−→ R → L, and the latter coincides with the map
R[ → k̂(x)

]−→ L defining x.

Remark 9.2.8 (A direct proof of the homeomorphy of X → X[). In the context of Proposi-
tion 9.2.7, it is possible to prove thatX → X[ is a homeomorphism by a relatively “soft” argument
that does not use the approximation lemma: one merely needs the surjectivity modulo π of the map
] : R+[ → R+. We briefly sketch how to do this in the following sequence of steps:

1. The argument given in Proposition 9.2.7 for surjectivity ofX → X[ does not use Lemma 9.2.6,
so we are allowed to use it. In particular, if a subset U ⊂ X is the preimage of some V ⊂ X[,
then V is uniquely determined as the image of U . In the special case where U ⊂ X and
V ⊂ X[ are known to be rational, we also know from Lemma 9.2.5 that (OX(U),O+

X(U))
tilts to (OX[(V ),O+

X[(V )). This fact will be used below to pass from X to U .
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2. For f ∈ R+, the rational set X
(
f
π

)
⊂ X is the preimage of the rational set X[

(
g
t

)
⊂ X[,

where g ∈ R+[ is any element with g] ≡ f mod πR+. Indeed, this amounts to showing:
given x ∈ X , we have |f(x)| ≤ |π(x)| if and only if |g](x)| ≤ |π(x)|, which follows from
the NA inequality.

3. For f ∈ R+ and n ≥ 1, the rational set Un := X
(
f
πn

)
⊂ X is the preimage of a rational

set Vn ⊂ X[. Using the containment Un+1 ⊂ Un, we prove this by induction on n. The case
n = 1 follows from (2). In general, we have Un+1 = Un

(
h
π

)
, where h = f

πn
∈ O+

X(Un). In
particular, we may apply (2) to Un to see that Un+1 ⊂ Un is the preimage of a rational set
Vn+1 ⊂ Vn. Using (1), it follows that Un+1 ⊂ X is also the preimage of Vn+1 ⊂ X[. As
rational subsets of rational subsets are rational, the claim follows.

4. For f ∈ R+ and ε ∈ N[1
p
] > 0, the rational set X

(
π1−ε

f

)
is the preimage of the rational set

X[
(
t1−ε

g

)
, where g ∈ R+[ is any element with g] ≡ f mod π. This follows by the same

argument as in (1).

5. Fix some c ∈ N[1
p
] with 0 < c < 1 (such as c = 1

p
). For f ∈ R+ and any integer n ≥ 1, the

rational set X
(
πnc

f

)
is the preimage of a quasi-compact open subset of X[. To see this, we

write

X
(πnc
f

)
=

n⋃
i=1

Ui

as a union of “annuli”, where

Ui := {x ∈ X | |πnc−(i−1)c| ≤ |f(x)| ≤ |πnc−ic|} ⊂ U ′i := {x ∈ X | |f(x)| ≤ |πnc−ic|}.

Then each Ui and U ′i are rational. Moreover, U ′i ⊂ X is the preimage of a rational subset
V ′i ⊂ X[ by (3). As in the proof of (3), it then suffices to check Ui ⊂ U ′i is the preimage of
a rational subset Vi ⊂ V ′i . But g := f

πnc−ic
∈ O+

X(U ′i), so we can also write

Ui = {x ∈ U ′i | |πc| ≤ |g(x)|}.

As c < 1, it follows from (3) that Ui ⊂ U ′i is the preimage of a rational subset of V ′i , as
wanted.

6. As in Proposition 9.2.7 (3), it is enough to show that rational subsets U ⊂ X of the form
U := X

(
f,πN

g

)
are preimages of quasi-compact open subsets of X[. The rational set U ′ :=

X
(
πN

g

)
is the preimage of a quasi-compact open V ′ inX[ by (5). If we write V ′ = ∪iV ′i with

V ′i rational, thenU ′ = ∪iU ′i withU ′i ⊂ X being the rational subset that is the preimage on V ′i .
Now we have a well-defined element h := fπN

g
∈ O+

X(U ′), and hence also corresponding

elements in each O+
X(U ′i). Applying (3), the rational sets Ui := U ′i

(
h
πN

)
⊂ U ′i are the
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preimages of rational subsets Vi ⊂ V ′i . As in (3), this shows that Ui ⊂ X is the preimage of
the rational set Vi ⊂ X[. It remains to observe that U = ∪iUi, which is clear.

Note that this argument does not prove that rational subsets are preimages of rational subsets in
the cases tackled in (5) or (6): one merely proves that they are preimages of quasi-compact opens.
I do not know if there is a way to prove the stronger statement without the approximation lemma.

9.3 Tate acyclicity and other sheaf-theoretic properties
Our main goal is to prove the following theorem, stating roughly that perfectoid affinoid algebras
behave like affine schemes in algebraic geometry:

thm:PerfSpaceSheaf Theorem 9.3.1 (Tate acyclicity for perfectoids). Fix a perfectoid fieldK, and a perfectoid affinoid
K-algebra (R,R+) with adic spectrum X := Spa(R,R+). Then:

1. (R,R+) is sheafy, i.e., OX and O+
X are sheaves.

2. We have O+
X(X) = R+, and H i(X,O+

X)
a' 0 for i > 0.

3. We have OX(X) = R, and H i(X,OX) = 0 for i > 0.

The strategy of the proof is to prove all three statements at once by showing that the Cech complex
attached to the values of O+

X on a cover of X by rational subsets is almost acyclic. Thanks to
Theorem 9.2.2, this statement can be checked after tilting to characteristic p. In this case, we reduce
by an analog of noetherian approximation (and the functoriality of perfections) to the classical form
of Tate’s acyclicity theorem in rigid geometry. To implement this approach, we first handle the
“finitely presented” case. Thus, for the rest of this section, let L is the perfectoid field ̂FpJtKperf [1

t
].

We shall be interested in the following class of rings:

Definition 9.3.2. An Fp[t]-algebra A+ is algebraically admissible2 if it is finitely presented, re-
duced, t-torsionfree, and integrally closed in A+[1

t
]. A perfectoid affinoid L-algebra (R,R+)

is p-finite if it is the completion of the perfection of a uniform affinoid Tate ring of the form
(A+[1

t
], A+), where A+ is algebraically admissible.

To prove Theorem 9.3.1 for p-finite perfectoid L-algebras, we shall use the the following result,
which more properly belongs to rigid geometry:

prop:TateAcyclicityFiniteType Proposition 9.3.3 (Tate acyclicity for classical affinoid algebras). Let A+ be an algebraically ad-
missible Fp[t]-algebra. Set A = A+[1

t
], so (A,A+) gives a uniform affinoid Tate ring. Let

X = Spa(A,A+).

2This is nonstandard terminology, and is meant to be reminiscent of the admissible algebras showing up in Ray-
naud’s approach to rigid geometry via formal schemes. Instead of introducing the latter, we have tried to work with
the simplest class of rings that suffices for the perfectoid applications. Corresponding to this choice, the notion of
p-finiteness introduced here is also more restrictive than the analogous notion from [Sc1].
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1. For any rational subset U ⊂ X , the affinoid Tate ring (OX(U),O+
X(U)) is also uniform.

Moreover, O+
X(U) is the t-adic completion of an algebraically admissible Fp[t]-algebra, and

O+
X(U) = OX(U)◦.

2. For any covering X = ∪iUi of X by rational subsets, each cohomology group of the Cech
complex

K :=

(
OX(X)◦ →

∏
i

OX(Ui)
◦ →

∏
i<j

OX(Ui ∩ Uj)◦...

)
is killed by tN for some N � 0.

3. The uniform affinoid ring (A,A+) is sheafy andH i(X,O+
X) is killed by t∞-torsion for i > 0.

Proof. 1. We may assume that rational set U has the form U := X
(
f1,...,fn

g

)
for f1, ..., fn, g ∈

A+ with fn = tN . Let B0 be the subring A+[fi
g

] ⊂ A[1
g
]. As fn = tN , we have B = B0[1

t
] =

A[1
g
]. Write B+ for the integral closure of B0 in B. Then (B,B+) is an affinoid Tate

(A,A+)-algebra with couple of definition (B0, t), and its completion is (OX(U),O+
X(U)) by

construction. Standard facts in algebraic geometry show thatB+ is an algebraically admissi-
ble Fp[t]-algebra. AsB0 → B+ is an isomorphism after inverting t, it follows from the finite
presentation of B+ that B+/B0 is killed by tN for some N . But then (B,B+) is uniform,
and hence so is its completion. Moreover, by Exercise 7.2.6 (7), the latter is computed as
(B̂+[1

t
], B̂+) with B̂+ being the t-adic completion of B+. Thus, we have shown everything

except O+
X(U) = OX(U)◦. For the latter equality, note that Exercise 7.1.4 identifies OX(U)◦

is the total integral closure of O+
X(U) in OX(U). As O+

X(U) = B̂+ is noetherian, its total
integral closure coincides with the integral closure, so we are done as B̂+ is integrally closed
in B̂.

2. The Tate acyclicity theorem3 implies that K[1
t
] is acyclic. As each term of K is open and

bounded in the corresponding term for K[1
t
] by (1), the claim follows by the Banach open

mapping theorem. Indeed, ker(di[
1
t
]) ⊂ Ki[1

t
] is a closed subset of a Banach space, and

hence is itself a Banach space. The differential di[1
t
] is a continuous surjection Ki−1[1

t
] →

ker(di[
1
t
]) of Banach spaces, and hence must have open image. But this means exactly that

d(Ki−1) contains tN ker(di) for some N ≥ 0, which immediately gives the claim.

3. The sheafyness follows from (2) by inverting t, while the rest follows from (2) by taking
a direct limit of the complexes M as the rational cover changes (as the vanishing of Cech
cohomology for a basis implies the vanishing of cohomology, see [SP, Tag 01EW]).

We give an example showing that H i(X,O+
X) may be unbounded torsion in general. On the

other hand, as we shall see later, this phenomenon cannot occur in the perfectoid setting: the
corresponding group is almost zero.

3Insert proof in previous chapter.
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rmk:UnboundedTorsion Remark 9.3.4 (Unbounded torsion in O+
X-cohomology). The integer N in Proposition 9.3.3 (3)

cannot be chosen independently of the cover {Ui}. If this were the case, then it would follow that
H i(X,O+

X) has bounded t-torsion for any i. However, we claim that H1(X,O+
X) has unbounded

t-torsion for X = Spa(A,A+) where A+ = Fp[t, x, y]/(y2 − z3). To see this, by the long exact
sequence

0→ O+
X

tn−→ O+
X → O+

X/t
n → 0

it suffices to find a compatible system of elements fn ∈ H0(X,O+
X/t

n) that does not come from
an element of H0(X,O+

X).
Let 0 ∈ X be the closed point defined by setting z = y = 0; this is the unique point in X that

contains z (or equivalently y) in its support. One easily checks that both y and z are invertible
outside 0, and thus there is a well-defined global function y

z
∈ H0(X − {0},OX). In fact, thanks

to the equation y2 = z3, we immediately see that |y
z
(x)| =

√
|z(x)| ≤ 1 for any x ∈ X − {0}, so

y
z
∈ H0(X − {0},O+

X).
Now consider the rational open neighbourhood Un := {x ∈ X | |z(x)| ≤ |t2n|} of 0. We claim

that y
z

restricts to the 0 function on Un − {0} modulo tn, i.e., that the image of y
x

in H0(Un −
{0},O+

X/t
n) is 0. To see this, as both y(x) and z(x) are nonzero for x ∈ Un − {0}, it is enough to

check that |y(x)| ≤ |z(x)||tn| for any x ∈ Un − {0}. But we have |z(x)| 12 ≤ |tn| for such an x by
definition of Un, and hence

|y(x)| = |z(x)|
3
2 ≤ |z(x)||tn|.

as well. In particular, it follows that we can glue the 0 element in H0(Un,O
+
X/t

n) to the element
y
z
∈ H0(X −{0},O+

X/t
n) to obtain an element fn ∈ H0(X,O+

X/t
n). It is clear from the construc-

tion that the {fn ∈ H0(X,O+
X/t

n)} form a compatible system. By checking on the open subset
X − {0}, one can also see that this system does not come from the t-adic completion Â+ of A+.
To finish the argument, it remains to observe that Â+ = H0(X,O+

X) as A+ is integrally closed in
A = A+[1

t
].

We can now prove Theorem 9.3.1 in the p-finite case.

cor:TateAcyclicitypfinite Corollary 9.3.5 (Tate acyclicity for p-finite perfectoid algebras). Let (R,R+) be a p-finite perfec-
toid affinoid L-algebra, arising as the completed perfection of some (A,A+) withA+ algebraically
admissible.

1. The map X := Spa(R,R+) → Y := Spa(A,A+) is a homeomorphism preserving rational
subsets.

2. For any rational V ⊂ Y with preimageU ⊂ X , the completed perfection of (OY (V ),O+
Y (V ))

identifies with (OX(U),O+
X(U)).

3. For any covering X = ∪iUi of X by rational subsets, the Cech complex

M :=

(
OX(X)◦ →

∏
i

OX(Ui)
◦ →

∏
i<j

OX(Ui ∩ Uj)◦...

)
is almost exact.
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4. (R,R+) is sheafy, and H i(X,O+
X)

a' 0 for i > 0.

Proof. 1. The adic spectrum is insenstive to passage to the perfection (by Exercise 7.4.11 (1))
and the completion (by Proposition 7.3.10 (3)).

2. Note that all affinoid Tate rings under consideration are uniform by Proposition 9.3.3. The
completed perfection (S, S+) of (OY (V ),O+

Y (V )) is the initial object in the category of
complete and perfect uniform affinoid Tate (A,A+) algebras (B,B+) such that the induced
map Spa(B,B+) → Y factors over V . By construction, (S, S+) is itself a perfectoid affi-
noid L-algebra. Moreover, (R,R+) is the completed perfection of (A,A+) by assumption.
The claim now follows from (1) as the functor that (S, S+) corepresents on the category of
perfectoid affinoid L-algebras coincides with that for (OX(U),O+

X(U)).

3. Let Y = ∪iVi be the corresponding covering of Y by rational subsets. Using Proposi-
tion 9.3.3 (2), the complex

M ′ :=

(
OY (Y )◦ →

∏
i

OY (Vi)
◦ →

∏
i<j

OY (Vi ∩ Vj)◦...

)

has cohomology groups annihilated by tN for some N ≥ 0. Moreover, by (2) above and
Proposition 9.3.3 (1), this complex gives M on passage to the completed perfection of each
term. Passing to the perfection has the effect of making the complex almost acyclic (see
Lemma 9.3.6 below), and this property is preserved under completions.

4. This is immediate from (3) as O+
X(U)

a' OX(U)◦ for any rational U ⊂ X .

The following lemma is an algebraic incarnation of the “contracting” nature of Frobenius:

lem:UnitalizeModuleRH Lemma 9.3.6. Let A be a commutative ring of characteristic p. Let t ∈ A be an element, and let
M be a tN -torsion A-module equipped with a map βM : M → F∗M , where F is the Frobenius on
A. Then the colimit of the diagram

M
βM−−→ F∗M

F∗βM−−−→ F 2
∗M

F 2
∗ βM−−−→ ....

is naturally a module over Aperf = colime F
e
∗M , and is annihilated by t

1
pn for all n ≥ 0.

Proof. It is clear that the direct limit has an Aperf -module structure. By replacing N with a larger
quantity, we may assume N = pm for some m ≥ 0. As M is killed by tpm , the A-module F e

∗M is
killed by tpm−e ∈ F e

∗A. Letting e→∞ then proves the lemma.

To handle the general case, we use the following lemma allowing us to “approximate” an arbitrary
perfectoid algebra in characteristic p in terms of p-finite ones; this result is analogous to noethe-
rian approximation results in algebraic geometry used to reduce (certain) problems about arbitrary
schemes to analogous questions about schemes that are finitely presented over Z.
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lem:ApproximatePerfectoidpfinite Lemma 9.3.7 (Approximating perfectoid algebras in characteristic p). Assume K is a perfectoid
field of characteristic p with pseudouniformizer t, and view K as an extension L via t 7→ t. Fix a
t-adically complete, perfect, flat K◦-algebra A that is integrally closed in A[1

t
]; equivalently, A is

a ring of integral elements in the perfectoid K-algebra A[1
t
].

1. We can write A as a completed filtered colimit (colimiBi)̂, where Bi is the completed per-
fection of an algebraically admissible Fp[t]-subalgebra Ai of A. For the rest of the lemma,
we fix such a description.

2. There is a compatible system of maps (Bi[
1
t
], Bi)→ (A[1

t
], A) of uniform affinoid Tate rings

that induces a homeomorphism

Spa(A[
1

t
], A) ' lim

i
Spa(Bi[

1

t
], Bi).

Each rational subset on the left side is the preimage of a rational subset from some Spa(Bi[
1
t
], Bi).

3. With notation as in (2), write X := Spa(A[1
t
], A) and Xi := Spa(Bi[

1
t
], Bi). Fix some ratio-

nal subset Ui ⊂ Xi with preimage Uj ⊂ Xj for j ≥ i and U ⊂ X . Then (OXj(Uj),O
+
Xj

(Uj))

and (OX(U),O+
X(U)) are perfectoid affinoid L-algebras, and the natural map gives an iso-

morphism
colim

j
(OXj(Uj),O

+
Xj

(Uj)) ' (OX(U),O+
X(U))

in the category of perfectoid affinoid L-algebras.

Proof. 1. We trivially have
colim

i
Ai ' A,

where the colimit ranges through all finitely presented Fp[t]-subalgebras Ai of A. As A is
reduced and t-torsionfree, the same is true forAi. Moreover, asA is integrally closed inA[1

t
],

we may also replace Ai with its integral closure in Ai[1
t
] by passing to a cofinal subsystem

appearing above; here we use the finiteness of integral closures for finitely presented reduced
F[t]-algebras. Thus, we may assume that each Ai appearing above is admissible. Applying
the perfection functor gives

colim
i

Ai,perf ' A

as A is already perfect. Set Bi = Âi,perf to be the t-adic completion of Ai,perf . Applying the
t-adic completion functor to the previous isomorphism gives

(colim
i

Bi)̂ ' A

as A is already t-adically complete (and because completing a filtered colimit can also be
accomplished by first completing the terms, and then completing their colimit).

2. This is immediate from (1) and Corollary 7.4.10.
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3. By Corollary 7.4.10 (1) and Exercise 7.2.6 (7), we have (A[1
t
], A) ' colimj(Bj[

1
t
], Bj) in

the category of perfectoid affinoid L-algebras (or even all complete uniform affinoid Tate
rings). The universal property of Huber’s presheaf shows that the diagrams

(Bi[
1
t
], Bi) //

��

(Bj[
1
t
], Bj)

��
(OXi(Ui),O

+
Xi

(Ui)) // (OXj(Uj),O
+
Xj

(Uj))

for j ≥ i and
(Bi[

1
t
], Bi) //

��

(A[1
t
], A)

��
(OXi(Ui),O

+
Xi

(Ui)) // (OX(U),O+
X(U))

are pushouts of perfectoid affinoid L-algebras. Indeed, this pushout property for the larger
category of all complete affinoid Tate rings is proven in Corollary 7.5.3, and this implies
the analogous property in the subcategory of perfectoid affinoid L-algebras as all objects in-
volved live in the smaller subcategory. The claim in the lemma follows as pushouts commute
with filtered colimits.

We can now put everything together to prove Theorem 9.3.1.

Corollary 9.3.8 (Tate acyclicity for perfectoid algebras). Fix notation as in Notation 9.2.1.

1. For every covering X = ∪iUi by rational subsets, the Cech complex

M :=

(
OX(X)◦ →

∏
i

OX(Ui)
◦ →

∏
i<j

OX(Ui ∩ Uj)◦...

)

is almost exact.

2. (R,R+) is sheafy and H i(X,O+
X)

a' 0 for i > 0.

In particular, the phenomenon encountered in Remark 9.3.4 cannot occur in the perfectoid world:
the t-torsion in H i(X,O+

X) is always almost zero for X as above.

Proof. It is enough to prove (1). Moreover, as a complex M of π-adically complete and flat
OC-modules is almost exact if and only if M/π is so, it is enough to show that M/π is almost
exact. But M/π is almost isomorphic to the analogous complex constructed using the covering
X[ = ∪iU [

i of the tilt by Theorem 9.2.2. Thus, we may assume that X = X[, i.e., the field K
has characteristic p. Moreover, by replacing K with the subfield L, we may also assume K = L.
Proposition 9.3.7 (as well as the fact that the functor (A,A+) 7→ A+ from perfectoid affinoid K◦-
algebra to π-adically complete K◦-algebras preserves filtered colimits) then allows us to reduce to
the case where (R,R+) is p-finite, and the latter is settled by Corollary 9.3.5.
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In particular, the adic spectrum of (R,R+) is an affinoid adic space. This allows us to define:

Definition 9.3.9 (Perfectoid spaces). The adic space Spa(R,R+) attached to a perfectoid affinoid
K-algebra (R,R+) is called an affinoid perfectoid space over K. More generally, a perfectoid
space over K is an adic space over Spa(K,K◦) that is locally isomorphic to an affinoid perfectoid
space.

The tilting correspondence in Proposition 9.1.2 now immediately globalizes to give:

Theorem 9.3.10 (Tilting correspondence). Fix a perfectoid field K with tilt K[.

1. For any perfectoid space X over K, there is a unique (up to unique isomorphism) perfectoid
space X[ over K[ characterized as follows: for any perfectoid affinoid K-algebra (R,R+),
we have a functorial bijection

X(R,R+) ' X[(R[, R[+).

Moreover, there is a natural homeomorphism |X| ' |X[|. We call X[ the tilt of X .

2. The association X 7→ X[ gives an equivalence between the categores of perfectoid spaces
over K and K[; we call this the tilting equivalence.

3. The tilting equivalence restricts to an equivalence on the subcategories of affinoid perfectoid
spaces, and the latter equivalence is compatible with the one from Propositiion 9.1.2.

Remark 9.3.11. It is not clear if a perfectoid space that is affinoid as an adic space is an affinoid
perfectoid space, i.e., if X := Spa(R,R+) for a sheafy affinoid Tate ring (R,R+), and X has a
rational coverX := ∪iUi with each Ui being affinoid perfectoid, it is not clear ifX is itself affinoid
perfectoid. See the papers by Mihara and Buzzard-Verberkmoes for more.

Exercise 9.3.12 (Mihara). Let X := Spa(A,A+) be an affinoid adic space for a sheafy complete
Tate ring (A,A+) of characteristic p. Assume that X is a perfectoid space. Show that X is affinoid
perfectoid. (Hint: use the sheaf axiom and Lemma 7.1.6.)

We conclude this section by discussing one pleasant feature of perfectoid spaces:

cor:PerfSpaceFiberProduct Corollary 9.3.13. The category of perfectoid spaces over K admits fiber products.

Proof. It is enough to prove this in characteristic p when all objects in sight are affinoid perfectoid.
As our test objects are also obtained by glueing affinoid perfectoids, we are reduced to check-
ing that the category of perfectoid affinoid K-algebras admits pushouts. Consider the following
diagram

(A,A+) //

��

(B,B+)

(C,C+)

of perfectoid affinoid K-algebras. Set D0 = B ⊗A C, and set D+
0 to be the integral closure of

the image of B+ ⊗A+ C+ → D0. Then (D0, D
+
0 ) gives a uniform affinoid K-algebra with D+

0

being perfect and t-torsionfree. Passing to the t-adic completion then gives a perfectoid affinoid
K-algebra (D,D+). One easily checks that (D,D+) has the desired universal property.
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Exercise 9.3.14. Given a pushout diagram

(A,A+) //

��

(B,B+)

��
(C,C+) // (D,D+)

of perfectoid affinoid K-algebras in any characteristic, show that the natural map B+ ⊗A+ C+ →
D+ is an almost isomorphism after π-adic completion.

9.4 Zariski closed subsets
We discuss one construction of perfectoid spaces. Namely, we explain why Zariski closed subsets
of an affinoid perfectoid space support a unique perfectoid structure; this is in stark contrast to the
case of schemes, where the analogous statement has no chance of being true due to the existence
of nilpotents. We continue using Notation 9.2.1.

prop:ZariskiClosedPerfectoid Proposition 9.4.1 (Zariski closed subsets of perfectoids). Let (R,R+) be a perfectoid affinoid K-
algebra. Let I ⊂ R be an ideal. Let X := Spa(R,R+), and let Z ⊂ X be the Zariski closed set
defined by I . Then:

1. There exists an initial object (RZ , R
+
Z ) in the category of complete uniform affinoid (R,R+)-

algebras (S, S+) such that Spa(S, S+)→ Spa(R,R+) has image contained in Z.

2. The map (R,R+) → (RZ , R
+
Z ) is a filtered colimit of rational localizations in the category

of complete uniform affinoid Tate rings. In particular, (RZ , R
+
Z ) is a perfectoid affinoid

K-algebra.

3. The map Spa(RZ , R
+
Z ) → Z is a homeomorphism. Thus, the closed subset Z supports a

unique perfectoid structure.

4. When K has characteristic p, the map R+ → R+
Z is almost surjective, and hence R → RZ

is surjective.

Proof. Set (RZ , R
+
Z ) := colimZ⊂U rational(OX(U),O+

X(U)), where the colimit is computed in the
category of perfectoid affinoid algebras; thus, R+

Z is the π-adic completion of colimZ⊂U O+
X(U),

and RZ = R+
Z [ 1

π
], viewed as a Tate ring with couple of definition (R+

Z , π). Then (2) is true by
construction and Theorem 9.2.2, while (1) and (3) follow from Corollary 7.5.8.
For (4), using (1) and (2), one checks that the map R+ → R+

Z is universal amongst maps R+ →
S+ to t-adically complete and t-torsionfree perfect K◦-algebras S+ that are integrally closed in
S+[1

t
] such that I ∩R+ maps to 0 in S+. From this, one immediately deduces that R+

Z is computed
as follows: take the perfection (R+/I ∩ R+)perf of R+/I ∩ R+, take its integral closure R/I+

in (R/I)perf , and set R+
Z to be the t-adic completion of R/I+. Now recall that for any perfect

t-torsionfree K◦-algebra A, the cokernel of the map from A to its integral closure (or even its total
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integral closure) in A[1
t
] is almost zero; see the second paragraph of the proof of Proposition 4.3.4.

Thus, in the almost category, the preceding construction collapses to identify R+
Z almost as the

t-adic completion of the perfection of R+/I ∩ R+. As R+/I ∩ R+ is a quotient of R+, it has
a surjective Frobenius. It follows that R+ → R+

Z is almost surjective modulo t, and thus almost
surjective by completeness of both rings.

Warning 9.4.2 (Zariski closed maps do not correspond to surjective maps). The conclusion of
Proposition 9.4.1 (4) is false if K has characteristic 0. For example, define (R,R+) by setting

R+ =
̂

K◦[T
1
p∞ ] and I = (T − 1), with K being a perfectoid field of characteristic 0. Then the

images in RZ of the elements T
1
p−1

p
1
p
∈ R actually lies in R+

Z . However, there is no element h ∈ R+

that maps to this element of R+
Z : if there were such an h, we would have p

1
ph = T

1
p − 1 mod

(T − 1) in R+ (as R+/(T − 1) is π-torsionfree, so R+/(T − 1)→ R+
Z is injective), which implies

that T
1
p − 1 lies in the ideal generated by T − 1 in the ring K◦/m[T

1
p∞ ], which is clearly false.

We can use the theory introduced above to prove a theorem in commutative algebra. Roughly,
it says the following: given an perfectoid K◦a-algebra S and an element g ∈ S, one can freely
extract a compatible system of p-power roots of g to obtain an extension S → S ′ of perfectoid
K◦a-algebras that is almost faithfully flat modulo π. In fact, the precise statement is a bit stronger
as it allows us to extract p-power roots of solutions of any monic polynomial (with the previous
case corresponding to degree 1 polynomials):

thm:AndreExtractRoots Theorem 9.4.3 (André). Let (A,A+) be a perfectoid affinoid K-algebra. Let g(T ) ∈ A+[T ] be
a monic polynomial of positive degree. Let B+ be the π-adic completion of the integral closure
of A+ in A[T

1
p∞ ]/(g(T )), and set B := B+[ 1

π
], so (B,B+) is a complete uniform affinoid Tate

(A,A+)-algebra.

1. (B,B+) is a perfectoid affinoid K-algebra. Moreover, the map (A,A+) → (B,B+) is
initial amongst maps (A,A+) → (C,C+) of complete uniform affinoid rings equipped with
a solution h0 ∈ C+ of g(T ) = 0 together with a compatible system of p-power roots of h0.

2. The map A+ → B+ is almost faithfully flat modulo π.

Note that part (2) above is a purely algebraic statement that can be formulated without any of
the theory of perfectoid spaces. The proof, however, crucially uses the tilting correspondence
for rational subsets of affinoid perfectoid spaces. The main idea is to access (B,B+) in terms
of rational localizations of (A,A+), and study the latter using characteristic p techniques (via
Theorem 9.2.2).

Proof. 1. Consider the perfectoid affinoid (A,A+)-algebra (R,R+) obtained by freely adjoin-

ing a variable T together with all of its p-power roots, i.e., R+ =
̂

K◦[T
1
p∞ ] and R = R+[ 1

π
].

Thus, given a complete uniform affinoid Tate (A,A+)-algebra (D,D+), specifying a map
(R,R+) → (D,D+) of (A,A+)-algebras is the same as specifying an element h0 ∈ D+
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together with a compatible sequence of p-power roots (hn) of h0; equivalently, one must
specify an element h ∈ D+[.

Let X := Spa(R,R+), and let Z ⊂ X be the Zariski closed set attached to the ideal
I = (g(T )) ⊂ R. Let (RZ , R

+
Z ) be the perfectoid affinoid K-algebra coming from Proposi-

tion 9.4.1 applied to Z. Then the map (R,R+) → (RZ , R
+
Z ) is universal amongst all com-

plete uniform affinoid (R,R+)-algebras (D,D+) such that Spa(D,D+)→ X has image in
Z; the latter is equivalent to requiring that g(T ) ∈ R+ maps to 0 in D+.

By combining the universal properties of (A,A+) → (R,R+) and (R,R+) → (RZ , R
+
Z ),

we learn the following: given a complete uniform affinoid Tate (A,A+)-algebra (D,D+),
specifying a map (RZ , R

+
Z ) → (D,D+) of (A,A+)-algebras is the same as specifying an

element h ∈ D+[ such that g(h]) = 0; equivalently, one must specify a root h0 ∈ D+ of
g(T ) together with a compatible system of p-power roots hn of h0. It is then easy to see that
(B,B+) has the same universal property, and thus (B,B+) ' (RZ , R

+
Z ).

2. We must check that A+ → R+
Z is almost faithfully flat modulo π. Proposition 9.4.1 and the

description of filtered colimits in the category of complete uniform affinoid Tate rings shows
that

colim
Z⊂U rational

O+
X(U)/πδ'R+

Z/π
δ.

for any positive δ ∈ N[1
p
]. In fact, a cofinal system of open neighbourhoods of Z is given by

the rational sets Un = X
(
g(T ),πn

πn

)
⊂ X , so we have

colim
n

O+
X(Un)/πδ ' R+

Z/π
δ

for any positive δ ∈ N[1
p
]. To prove the lemma, as both O+

X(Un) and R+
Z are π-torsion free,

it suffices4 to show the following: for each n ≥ 0, there exists some positive δ ∈ N[1
p
] such

that O+
X(Un)/πδ is almost faithfully flat over A+/πδ.

Using Lemma 9.2.7 (1) with 1− ε = 1
p
, we can find some f ∈ R+[ such that

(a) X
(
g(T ),πn

πn

)
= X

(
f],πn

πn

)
as subsets of X . Thus, Un ⊂ X is the preimage of U [

n :=

X[
(
f,tn

tn

)
⊂ X[ under X ' X[.

(b) f ] = g(T ) mod π
1
pR+.

Part (a) and Theorem 9.2.2 (2) show that

O+
X(Un)/π

1
p ' O+

X[(U
[
n)/t

1
p .

4Here we are implicitly using the following characterization of flatness: if M is an almost π-torsionfree A+-
module, thenM/π is almost flat overA+/π if and only ifM/πδ is almost flat overA+/πδ for some positive δ ∈ N[ 1p ].
This follows immediately from the long exact sequences of Tor by filtering for the π-adic filtration.
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as algebras over A+/π
1
p ' A[+/t

1
p . Thus, we are reduced to proving the analogous asser-

tion for the tilt. By Lemma 9.2.3 (2), the A[+-algebra O+
X[(U

[
n) is almost isomorphic to the

t-adic completion of the perfection of the A[+-algebra A[+[T,X]/(tnX − f). The latter is
t-torsionfree: the elements t

1
p and tnX − f form a Koszul regular sequence in A[+[T,X],

as f is a monic polynomial in T modulo t
1
p by (b) above. Thus, it is enough5 to show

A[+[T,X]/(tnX − f) is faithfully flat over A[+ modulo some power of t. Reducing mod-
ulo t

1
p kills tn and, thus, using (b) above reduces us to checking that the A[+/t

1
p -algebra

(A[+/t
1
p )[T,X]/g(T ) is faithfully flat, which is clear as g(T ) is monic of positive degree.

The following two examples capture some of the features of this construction:

Example 9.4.4. Let (A,A+) be a perfectoid affinoid K-algebra, and consider the monic polyno-
mial g(T ) := T ∈ A+[T ]. Let (B,B+) be affinoid Tate ring provided by Theorem 9.4.3. As
complete uniform affinoid Tate rings are reduced, the universal property of (B,B+) ensures that
(A,A+) ' (B,B+). This can also be shown directly: B+ is the π-adic completion of the integral
closure B+

0 of B0 = A+[T
1
p∞ ]/(T ) in A[T

1
p∞ ]/(T ). Now B+

0 contains π−nT
1
pm for all n,m by

nilpotence. It follows that T
1
pm ∈ ∩nπnB+

0 for all m, and thus it does in the completion. It is then
not difficult to check that A+ → B+

0 is an isomorphism after π-adic completion.

Exercise 9.4.5. Let K be a perfectoid field of characteristic 0 that contains µp∞ . Show that the
affinoid Tate ring (B,B+) obtained by applying the construction of Theorem 9.4.3 with (A,A+) =
(K,K+) and g(T ) = T − 1 satisfies B+ '

∏
Zp(1)K

+.

Remark 9.4.6 (Finding perfectoid covers of syntomic extensions). The preceding construction can
be extended to a slightly more general context. Say (A,A+) is a perfectoid affinoid K-algebra,
and let B0 be an A+. Choose a presentation B0 := A+[Ti]/I . Let (B,B+) be the perfectoid
affinoid (A,A+)-algebra attached to the Zariski closed set defined by I inside Spa(R,R+), where

R+ :=
̂

A+[T
1
p∞
i ]. Then there is an obvious map B0 → B+. The argument above can then be

adapted to show the following: if A+ → B0 is (faithfully) flat and lci, then (A,A+)→ (B,B+) is
almost (faithfully) flat modulo π.

One may iterate the preceding construction to get functorial extensions of a perfectoid algebra
where every fppf extension is split:

Corollary 9.4.7. Let (A,A+) be a perfectoid affinoid K-algebra. Then we can construct a map
(A,A+)→ (B,B+) of perfectoid affinoid K-algebras that is functorial in the input pair (A,A+),
and satisfies:

1. A+ → B+ is almost faithfully flat modulo π.
5We are implicitly using the following abstract fact. If R is a perfect ring of characteristic p and f0 : R → S0

is a map of rings that is faithfully flat modulo some t ∈ R that is a nonzerodivisor on both R and S, then the map
f : R → S := S0,perf is also faithfully flat modulo any power of t. To see this, observe that f can be written as a

filtered colimit of the maps R Frobe−−−−→ R
f0−→ S0, and the latter is faithfully flat modulo any power of t.
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2. The ring B+ is absolutely integrally closed, i.e., each monic polynomial has a root.

In particular, each b ∈ B+ admits a compatible system of p-power roots, so ] : B+[ → B+ is
surjective.

The idea of the proof is to simply iterate the construction of Theorem 9.4.3 infinitely many times;
to circumvent the issue that the one does not have good control on the fppf covers over the comple-
tion of a filtered colimit, we iterate the construction transfinitely many times (for a large ordinal).

Proof. Let I ⊂ A+[T ] be the subset of all monic polynomials of positive degree. For each i =
i(T ) ∈ I , we have the associated map A+ → B0,i := A+[T ]/i(T ). Applying Theorem 9.4.3
to each such map gives a perfectoid affinoid (A,A+)-algebra (Bi, B

+
i ) such that B+

i is almost
faithfully modulo π overA+, and the mapA+ → B+

i factorsB0,i. Let (A1, A
+
1 ) be the coproduct of

(Bi, B
+
i ) in the category of perfectoid affinoid (A,A+)-algebras, soA+

1 is almost isomorphic to the
completion of the tensor product ⊗iB+

i over A+. This construction has the following properties:

1. The map A+ → A+
1 is almost faithfully flat modulo π. One sees this by writing an infinite

coproduct as a filtered colimit of finite ones.

2. Each monic polynomial over A+ has a root in A+
1 . Indeed, this is simply because the map

A+ → A+
1 factors each extension A+ → B0,i by construction.

3. The construction that carries (A,A+) to the map (A,A+) → (A1, A
+
1 ) is functorial in the

input perfectoid affinoid pair (A,A+) (as monic polynomials map to monic polynomials
under change of scalars).

By transfinite induction, for each ordinal µ, we can define a perfectoid affinoid (A,A+)-algebra
(Aµ, A

+
µ ) with a transitive system of maps (Aλ, A

+
λ )→ (Aµ, A

+
µ ) for λ ≤ µ such that:

• A+
λ → A+

µ is almost faithfully flat modulo π if λ ≤ µ.

• Each monic polynomial over A+
λ has a root in A+

µ if λ < µ.

Explicitly, for successor ordinals µ = λ+ 1, one defines (Aµ, A
+
µ ) be applying the construction in

the first paragraph to (Aλ, A
+
λ ), and for a limit ordinal µ, we set

(Aµ, A
+
µ ) = colim

λ<µ
(Aλ, A

+
λ ),

where the colimit is computed in the category of perfectoid affinoid K-algebras. It is easy to see
that this construction has the required properties.
Let µ := ω1 be the first uncountable ordinal. As the functor (R,R+) → R+ from perfectoid

affinoid K-algebras to π-adically complete K◦-algebras commutes with filtered colimits, we can
calculateA+

µ as the π-adic completion of the underlying colimit colimλ<µA
+
λ of abstract rings. But,

since µ is countably filtered, so is the preceding colimit. It is easy to see that a countably filtered
colimit of π-adically complete rings is already π-adically complete: any failure to completeness of
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the colimit can be witnessed using countably many elements, and can thus be witnessed using one
of the terms defining the colimit by countable filteredness. In other words, the formula

A+
µ ' colim

λ<µ
A+
λ

also holds true in the world of all commutative rings (i.e., the colimit need not be completed). But
then any monic polynomial over A+

µ is defined over some A+
λ for λ < µ, and must thus have a

root in A+
µ . Also, the transition maps in the above system are almost faithfully flat modulo π by

construction. Thus, setting (B,B+) = (Aµ, A
+
µ ) for µ = ω1 solves the problem.
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Chapter 10

The almost purity theorem

Fix a perfectoid field K. The main goal of this chapter is to finish proving the almost purity
theorem 6.2.10 by establishing the following:

thm:APTRedux Theorem 10.0.1. Fix a perfectoid affinoid K-algebra (R,R+).

1. If S ∈ Rfet, then the integral closure S+ of R+ in S lies in R+a
afet.

2. Inverting π gives an equivalence R+
afet ' Rfet, and an inverse is given by forming integral

closures as in (1).

We have already proven Theorem 10.0.1 in two special cases: either when K has characteristic p
(see Theorem 4.3.6), or when (R,R+) is a perfectoid affinoid field (see discussion following The-
orem 6.2.10). To prove the statement in characteristic 0, the strategy is to “localize” the theorem
on the adic spectrum. This reformulation will ultimately reduce Theorem 10.0.1 to the case of a
perfectoid field, which was already explained earlier. To make this discussion flow, we adopt the
following definitions:

Definition 10.0.2 (Finite étale maps of adic spaces). Define

1. A map (A,A+)→ (B,B+) of affinoid Tate rings is finite étale if A→ B is finite étale, and
B+ is the integral closure of A+ in B. Write (A,A+)fet for the category of all such maps.

2. A map f : X → Y of adic spaces is finite étale if there exists a cover of Y by affinoids
V ⊂ Y such that U = f−1(V ) is affinoid, and (OY (V ),O+

Y (V )) → (OX(U),O+
X(U)) is

finite étale. Write Yfet for the category of such maps.

It is easy to see that the category the forgetful functor gives an equivalence (A,A+)fet ' Afet.
We shall eventually show that if (A,A+) → (B,B+) is a finite étale map with A perfectoid, then
B is also perfectoid, and the map A+ → B+ is almost finite étale. En route to this result, however,
it is convenient to give this conclusion a name. Thus, we define:

Definition 10.0.3 (Strongly finite étale maps of perfectoids). Define
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1. A map (A,A+) → (B,B+) of perfectoid affinoid K-algebras is strongly finite étale if it is
finite étale, and B+a is almost finite étale over A+a. Write (A,A+)sfet for the category of all
such maps.

2. A map f : X → Y of perfectoid spaces is strongly finite étale if there exists a cover
of Y by affinoid perfectoids V ⊂ Y such that U = f−1(V ) is affinoid perfectoid, and
(OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is strongly finite étale in the sense of (1). Write Ysfet

for the category of such maps.

For a perfectoid space X over K, the affinoid perfectoid subspaces of X and X[ match up under
tilting. The already proven portion of the almos purity theorem 6.2.10 shows that almost finite étale
maps are compatible under tilting. It then follows from chasing definitions that tilting induces an
equivalence Xsfet ' X[

sfet. Thus, the notion of strongly finite étale morphisms is compatible with
tilting. To proceed further, the following theorem of Gabber-Ramero, generalizing work of Elkik,
will be crucial to our arguments.

thm:GabberRameroEtaleApprox Theorem 10.0.4 (Gabber-Ramero). Let A be a flat K◦-algebra that is henselian along the ideal π,
and let Â be its completion. Then A[ 1

π
]fet ' Â[ 1

π
]fet.

Proof. See [GR, Proposition 5.4.53].

In fact, it is the following corollary that is most important for our purposes.

cor:LimitsUniformFet Corollary 10.0.5 (Finite étale covers and direct limits of complete uniform rings). Let (Ai, A
+
i ) be

a filtered system of complete uniform affinoid Tate K-algebras, and let (A,A+) be their colimit in
complete uniform affinoid Tate rings. Then colimiAi,fet ' Afet.

Proof. Recall that (A,A+) is computed by letting A+ be the π-adic completion of the algebraic
colimit B+ := colimiA

+
i , and setting A = A+[ 1

π
]. As each A+

i is π-adically complete and π-
torsionfree, the ring B+ is π-adically henselian and π-torsionfree. In particular, Theorem 10.0.4
implies B+[ 1

π
]fet ' Afet. It now remains to observe that colimiAi,fet ' B+[ 1

π
]fet, which is

immediate from the description colimiAi ' B+[ 1
π
] as the functor of “finite étale maps” commutes

with filtered colimits of rings.

The main component of the proof of Theorem 10.0.1 is the following proposition, which states
that strongly finite étale maps can be described in terms of algebra if one works over affinoids.

prop:SFetAffinoid Proposition 10.0.6 (Strongly finite étale maps form a stack). Let f : X → Y be a strongly finite
étale map with Y being affinoid perfectoid. Then X is also affinoid perfectoid, and the map

(OY (Y ),O+
Y (Y ))→ (OX(X),O+

X(X))

is strongly finite étale.

The proof below relies on “noetherian approximation” techniques to reduce the claim to an anal-
ogous statement for noetherian adic spaces, which is classical.
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Proof. As strongly finite étale maps behave well under tilting, we may assumeK has characteristic
p. Set L = ̂FpJtKperf [1

t
], and view K as an extension of L via t 7→ t; we can now forget K

and work directly over L. Write Y = Spa(A,A+) for a perfectoid affinoid L-algebra (A,A+).
We can then write (A,A+) = colimi(Bi, B

+
i ) as a filtered colimit of p-finite perfectoid affinoid

L-algebras (Bi, B
+
i ), as in Lemma 9.3.7. As both rational subsets and finite étale covers pass

through such filtered colimits (by Corollary 7.4.10 and Corollary 10.0.5 respectively), we may
assume that f arises via base change from some (Bi, B

+
i ). The construction of fiber products

in Corollary 9.3.13 shows that it suffices to solve the problem over (Bi, B
+
i ) instead. Thus, we

may assume that (A,A+) is itself p-finite, i.e., (A,A+) = colimφ(R,R+), where R+ itself being
the t-adic completion of an algebraically admissible ring over Fp[t], and the colimit is computed
in complete uniform affinoid rings; a similar description then applies to rational subsets as well
by Proposition 9.3.3. By Corollary 7.4.10, Corollary 10.0.5, and the observation that Frobenius
does not affect the notion of étale morphisms of rings or rational subsets, it follows that the finite
étale map X → Spa(A,A+) arises as the base change of a finite étale map Z → Spa(R,R+).
It is a classical theorem (INSERT BACKWARDS REFERENCE) that all finite étale maps Z →
Spa(R,R+) are of the form Z = Spa(S, S+) with R → S finite étale and S+ being the integral
closure of R+ in S. By the description of pushouts in the category of complete uniform affinoid
rings, it follows that X = Spa(D,D+) where D+ is the t-adic completion of the integral closure
of the image of S+ ⊗R+ A+ in S ⊗R A.
We shall check that D+ is almost finite étale over A+. Note that S+ is a finite R+-algebra that

is finite étale after inverting p. As A is perfect and R → S is étale, the ring S ⊗R A is also
perfect. So we can also describe D+ as the t-adic completion of the integral closure D1 of the
image of D0 := S+

perf ⊗R+
perf

A+ in S ⊗R A. But the map R+
perf → S+

perf is almost finite étale by
Proposition 4.3.4, and hence the same holds true for A+ → D0 by base change. As D0 is almost
finite projective over A+, it is also t-adically complete as A+ is so. Moreover, the integral closure
D1 of D0 in D0[1

t
] = S ⊗R A is almost isomorphic to D0 by Theorem 4.3.6, and hence is already

t-adically complete as D0 is so. Finally, since D+ is the t-adic completion of D1, it follows that
D1 ' D+, so the claim follows.

As a consequence of this proposition, the notion of strongly finite étale maps has good geometric
properties:

cor:sFetSheaf Corollary 10.0.7 (Algebraic description of strongly finite étale maps). For an affinoid perfectoid
space Y = Spa(R,R+), the functor X 7→ O+

X(X) induces an equivalence Ysfet ' R+a
afet, and the

functor X 7→ OX(X) gives a fully faithful functor Ysfet → Rfet.

Proof. The first part follows from Proposition 10.0.6, and the second then results from the already
proven part of Theorem 6.2.10.

The final ingredient needed to prove Theorem 10.0.1 is the perfectoid analog of the familiar fact
in algebraic geometry that modules over a commutative ring R can be viewed as (certain) sheaves
of OX-modules on X := Spec(R) in a lossless fashion:
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lem:GlueVectWeak Lemma 10.0.8 (Realizing finite projective modules as sheaves). Let X := Spa(A,A+) for a per-
fectoid affinoid K-algebra (A,A+). For a finite projective A-module M , write M̃ := M ⊗A OX

for the associated sheaf of OX-modules.

1. For any rational subset U ⊂ X , we have H0(U, M̃) = M ⊗A OX(U).

2. The functor M 7→ M̃ is fully faithful.

The stronger statement that every locally free OX-module has the form M̃ for a (necessarily
unique) finite projective A-module M is also true, but we do not prove it here.

Proof. For (1): as M̃ is the sheafification of the presheaf U 7→ M ⊗A OX(U) on the category of
rational subsets of X , it is enough to check that this presheaf is already a sheaf. By writing M as
a summand of a finite free A-module, this reduces to checking U 7→ OX(U)⊕n is a sheaf, which
follows from Theorem 9.3.1.
For (2): again, by passage to summands, we reduce to checking full faithfulness on the category

of finite free A-modules. In this case, the assertion amounts to showing that A ' H0(X,OX),
which follows from Theorem 9.3.1.

Proof of Theorem 10.0.1. We must show that the fully faithful functor R+a
afet → Rfet is an equiv-

alence; equivalently, we must check essential surjectivity. Fix a finite étale R-algebra S. We
shall check that S comes from an almost finite étale R+-algebra by first doing so locally on
X := Spa(R,R+), and then patching the local ones together using Proposition 10.0.6, using
Lemma 10.0.8 to ensure that the patched R-algebra coincides with S.
More precisely, we first check that there exists a cover {Vi} of X by rational subsets such that

the finite étale OX(Vi)-algebra S ⊗R OX(Vi) lifts (necessarily uniquely) to an almost finite étale
O+
X(Vi)-algebra S+

i . Fix a point x ∈ X . Then, varying through rational subsets U ⊂ X containing
x, we obtain

colim
x∈U

OX(U)fet ' k̂(x)fet

by Corollary 10.0.5 as
colim
x∈U

(OX(U),O+
X(U)) ' (k̂(x), k̂(x)+)

in the category of complete uniform affinoid Tate rings. Applying this formula in the tilted setting,
using the almost purity theorem, and untilting, we get

colim
x∈U

O+
X(U)afet ' k̂(x)+

afet.

Now the almost purity theorem for perfectoid fields shows that the canonical map

k̂(x)+
afet → k̂(x)fet

is an equivalence. It follows that the canonical map

colim
x∈U

O+
X(U)afet → colim

x∈U
OX(U)fet
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is an an equivalence. In particular, there exists some rational subset V ⊂ X containing x such that
the finite étale OX(V )-algebra S ⊗R OX(V ) lifts to (necessarily uniquely) to an almost finite étale
O+
X(V )-algebra. As x varies, this gives the desired cover {Vi} of X . We shall write Vij = Vi ∩ Vj .
Thus, for each i, we have a strongly finite étale map Ui := Spa(Si, S

+
i ) → Vi of affinoid per-

fectoid spaces, where Si = S+
i [ 1

π
], whose underlying finite étale map corresponds to the finite

étale OX(V )-algebra S ⊗R OX(V ). By full faithfulness in Corollary 10.0.7, there is a canonical
isomorphism Ui ×Vi Vij ' Uj ×Vj Vij: both sides are strongly finite étale perfectoid spaces over
Vij whose underlying finite étale OX(Vij)-algebras are canonically identified with S ⊗R OX(Vij).
These isomorphisms satisfy the cocycle condition, so the Ui’s can be glued together to give a per-
fectoid space Y with a map Y → X that is strongly finite étale over each Vi. But then Y → X
is strongly finite étale (by definition), so Y = Spa(T, T+) for a strongly finite étale perfectoid
affinoid (R,R+)-algebra (T, T+) by Proposition 10.0.6.
It remains to check that T ' S. Both T and S are finite étale R-algebras, and hence finite pro-

jective as R-modules. Write T̃ and S̃ for the corresponding sheaves of OX-modules, as described
in Lemma 10.0.8. Then T̃ and S̃ are isomorphic: they are identified with each other over each Vi
in a manner that is compatible over the overlaps Vij . It follows from Lemma 10.0.8 that there is
a unique isomorphism φ : T ' S patching together the local ones over the Vi’s. As the latter are
R-algebra isomorphisms, the same is true for φ, so the claim follows.

In Theorem 10.0.1, one would expect that finite étale covers of R lift to almost finite étale covers
of R+. While this is not formal from the conclusion of Theorem 10.0.1, it is true.

rmk:AlmostFiniteEtaleMapsCoversChar0 Proposition 10.0.9 (Finite étale covers give almost split almost finite étale covers). If (R,R+) →
(S, S+) is finite étale map of perfectoid affinoid K-algebras with R→ S being injective (and thus
faithfully flat), then R+ → S+ is almost faithfully flat. In this case, the map R+ → S+ is almost
split as an R+-module map.

Proof. When K has characteristic p, this follows from Remark 4.3.5. In general, R+ → S+ is
almost flat by almost purity. For almost faithful flatness, we must check that if M ⊗R+ S+ a' 0,
then M

a' 0. By filtering M , we may assume M = R+/I is cyclic. In this case, we must check:
given an ideal I ⊂ R+, if mS+ ⊂ IS+, then mR+ ⊂ I .
We first note that Spec(R+/I) ⊂ Spec(R+/mR+) inside Spec(R+). Indeed, we have the anal-

ogous containments inside Spec(S+), so it suffices to show Spec(S+/IS+) → Spec(R+/I) is
surjective. But this is a consequence of the surjectivity of Spec(S+) → Spec(R+), and the lat-
ter holds true as its image is closed under specializations (as R+ → S+ is integral) and contains
generic points (as R+ → S+) is injective. In particular, I contains πN for some N � 0.
Thanks the previous reduction, for the first part of the proposition, it now suffices to show that
R+/πN → S+/πN is almost faithfully flat. By devissage, this reduces to the case N = 1. But the
latter follows via tilting from the characteristic p case settled in Remark 4.3.5, so we are done.
To get the almost splitting, one could argue directly by showing that the trace map is almost sur-

jective: this assertion can be checked modulo π, and thus follows from tilting and Remark 4.3.5
granting the compatibility of the trace map with reduction modulo π in the almost world. Alter-
nately, using the almost finite projectivity of S+ as an R+-module, it is easy to see that

Ext1
R+(Q,R+)⊗R+ S+ → Ext1

R+(Q,S+)
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is an almost isomorphism for anyR+-moduleQ. We apply this toQ = S+/R+ and the tautological
class α ∈ Ext1

R+(Q,R+) measuring the failure to split R+ → S+. We must show that α is almost
zero. By the almost faithful flatness of R+ → S+ and the preceding almost isomorphism, it is
enough to show that the image of α⊗ 1 in Ext1

R+(Q,S+) along the displayed map above is almost
zero. But the latter corresponds to the obstruction to splitting the base change S+ → S+ ⊗R+ S+

of R+ → S+ along itself, and is thus 0 (as the multiplication map yields a splitting).
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Chapter 11

The direct summand conjecture

In this chapter, we explain an application of the preceding theory (due to André) in resolving
Hochster’s direct summand conjecture:

thm:DSC Theorem 11.0.1 (Direct summand conjecture). Let A0 be a regular noetherian ring, and let f0 :
A0 → B0 is a finite injective map. Then f0 admits an A0-module splitting.

Remark 11.0.2. Discuss historical relevance of DSC

An elementary but useful observation that shall be used repeatedly is the following: given maps
A0 → B0 → C0 of commutative rings, if the composite A0 → C0 admits a splitting, so does
A0 → B0. We discuss some special cases next.

Example 11.0.3 (Characteristic 0). If A0 is any normal domain containing Q, then any finite
injective map f0 : A0 → B0 admits a splitting. To see this, we may replace B0 by a suitable
quotient to assume that B0 is also a domain. In fact, the trace map Tr : B0 → A0 is surjective
since the composition A0

f0−→ B0
Tr−→ A0 is multiplication by the nonzero integer d := [Frac(B0) :

Frac(A0)]. Thus, choosing any element b ∈ B0 with Tr(b) = 1 (such as b = 1
d
) provides a splitting

s0 : B0 → A0 by the formula s0(c) := Tr(bc).

Example 11.0.4 (Finite étale maps). If f0 : A0 → B0 is an injective finite étale map, then it is easy
to see that f0 is split. Indeed, as above, it is enough to show that the trace map Tr is surjective. But
this assertion is local for the étale topology on A0, so we can assume that B0 is just a finite product
of copies of A0, where everything is clear.

Example 11.0.5 (Small dimensions). If f0 : A0 → B0 is an injective map of noetherian rings
that realizes B0 as a finite projective A0-module, then f0 is split. In particular, this applies if A0

is regular of dimension ≤ 2, and B0 is the normalization of A0 in a finite extension of Frac(A0)
(which is always possible to arrange by refining by B0); this settles Theorem 11.0.1 in dimension
≤ 2. To see this claim, note that f0 is split if and only if the extension

0→ A0 → B0 → Q0 → 0
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(which defines Q0) splits as A0-modules. If one writes α ∈ Ext1
A0

(Q0, A0) for the extension class,
then it is easy to see that the formation of α is compatible with base change. In particular, as the
formation of Ext-groups commutes with faithfully flat base change (as Q0 is a finitely presented
A0-module), we reduce to the case where A0 is a local ring. But then B0 is a finite free A0-module.
Working modulo the maximal ideal shows that A0 → B0 is the inclusion of a free summand as an
A0-module, so f0 is split.

Remark 11.0.6. Heitmann’s proved Theorem 11.0.1 in dimension 3.

The strategy for proving Theorem 11.0.1 is roughly as follows:

1. Choose g ∈ A0 such that A0[1
g
]→ B0[1

g
] is finite étale.

2. Construct a huge extension A0 → A∞ such that A∞ is the ring of integral elements in a
perfectoid K-algebra (where K is some auxiliary perfectoid field), the map A0 → A∞ is
almost faithfully flat, and the element g ∈ A0 acquires a compatible system of p-power roots
in A∞. This step will be accomplished using Theorem 9.4.3.

3. Show that the base change map A∞ → B0 ⊗A0 A∞ is almost split. If g | pN , then this
is deduced from the almost purity theorem. In general, for each n > 0, we may apply
the preceding argument to get a splitting over the rational subsets Un := X

(
pn

g

)
of X :=

Spa(A∞[1
p
], A∞) using the same argument. Note that Un ⊂ Un+1, and colimn Un = U

is the Zariski open subset of X defined by g 6= 0. We then prove (see Theorem 11.2.1
and Corollary 11.2.2) a quantitative form of the perfectoid Riemann extension theorem that
(roughly) says that A∞ is isomorphic to limnO

+
X(Un), and that the same holds true for

ExtiA∞(−, A∞) and limn ExtiA∞(−,O+
X(Un)); this allows us to deduce that the vanishing of

the relevant obstruction class on X from the corresponding statement on each Un. (More
precisely, the previous statement is only almost true, where almost mathematics is measured
with respect to (pg)

1
p∞ .)

4. Descend the almost splitting over A∞ to an honest splitting over A0. This step relies on the
almost faithful flatness of the map A0 → A∞ and Krull’s intersection theorem.

Remark 11.0.7. Hochster has shown that, in order to prove Theorem 11.0.1, it is sufficient to do so
for regular ringsA0 of the formW Jx1, ..., xdK, whereW is the ring of Witt vectors of a perfect field
k of characteristic p. In the language of commutative algebra, it suffices to prove Theorem 11.0.1
in the unramified case. We shall use this reduction in the proof given below, although it is not
criticial to the arguments.

11.1 DSC for maps which are unramified in characteristic 0

In this section, we fix a perfect field k of characteristic p, and let W = W (k) be the ring of
Witt vectors. Our goal is to explain how to prove Theorem 11.0.1 in the special case where f0

is unramified after inverting p. In terms of strategy outlined above, this leads to the following
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simplifications: (a) the construction of the relevant extension A0 → A∞ is straightforward, and (b)
the Riemann extension theorem is not needed.

thm:DSCUnramified Theorem 11.1.1. Set A0 = W Jx1, ..., xdK. Let f0 : A0 → B0 be a finite injective map such that
f0[1

p
] is finite étale. Then f0 admits an A0-module splitting.

Proof. Write Q0 := B0/A0, so there is a tautological obstruction class α ∈ Ext1
A0

(Q0, A0) whose
vanishing is equivalent to the theorem. We shall check that this class vanishes after a faithfully flat
cover of A0.

Set A∞ to be the p-adic completion of A0[p
1
p∞ , x

1
p∞
i ]. Then (A∞[1

p
], A∞) is a perfectoid affinoid

K-algebra for K = Q̂p(p
1
p∞ ). The natural map A0 → A∞ is faithfully flat (INSERT PROOF).

Thus, it is enough to check that A∞ → B0 ⊗A0 A∞ is split. By the flatness of A0 → A∞, we have
a base change isomorphism

Ext1
A0

(Q0, A0)⊗A0 A∞ ' Ext1
A∞(Q0 ⊗A0 A∞, A∞). (11.1) eq:DSCProofUnramifiedExt

and thus
AnnExt1A0

(Q0,A0)(α)A∞ = AnnExt1A∞ (Q0⊗A0
A∞,A∞)(α⊗ 1).

As A0 → A∞ is faithfully flat, this also gives

AnnExt1A0
(Q0,A0)(α) = A0 ∩ AnnExt1A∞ (Q0⊗A0

A∞,A∞)(α⊗ 1),

and the same holds true for powers of the ideal. By Krull’s intersection theorem, it is thus enough
to show that

p ∈
(

AnnExt1A∞ (Q0⊗A0
A∞,A∞)(α⊗ 1)

)pn
for all n ≥ 0. We shall check the stronger statement that

p
1
pn ∈ AnnExt1A∞ (Q0⊗A0

A∞,A∞)(α⊗ 1)

for all n ≥ 0. Now under the isomorphism (11.1), the class α ⊗ 1 is the obstruction to splitting
A∞ → B0 ⊗A0 A∞. Thus, we must check that A∞ → B0 ⊗A0 A∞ is almost split. We shall do so
by constructing an extension B0 → B∞ such that A∞ → B∞ is almost split.
Let (A∞[1

p
], A∞) → (B∞[1

p
], B∞) be the finite étale map obtained by setting B∞[1

p
] := B0 ⊗A0

A∞[1
p
], so B∞ is the integral closure of A∞ in B∞[1

p
]. By the almost purity theorem 10.0.1, the

map A∞ → B∞ is almost finite étale. Proposition 10.0.9 implies that this map is almost split. But,
since B0 is integral over A0, there is an obvious A∞-algebra map A∞ → B0 ⊗A0 A∞ → B∞. As
the composite is almost split, we are done.

Remark 11.1.2 (DSC in characteristic p). The argument given above to prove Theorem 11.1.1
readily adapts to prove the general case of Theorem 11.0.1 when A0 has characteristic p (which is
Hochster’s theorem). The role of p is played by any element g ∈ A0 such that A0[1

g
] → B0[1

g
] is

the composition of a purely inseparable map followed by a finite étale map; such elements always
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exist by field theory. One then replaces the map A0 → A∞ used above with the map A0 → A0,perf

to the perfection (which is faithfully flat by the regularity of A0), while the role of B∞ is played by
the perfection B0,perf . In this case, the relevant consequence of almost purity can be proven in an
elementary fashion. Indeed, the map A0,perf → B0,perf is an injective integral map of perfect rings
that is finite étale after inverting g ∈ A, and is thus almost split by the argument in Remark 4.3.5.

11.2 Quantitative Riemann Hebbarkeitssatz
sec:RH

In complex geometry, Riemann’s extension theorem shows that bounded functions on a Zariski
open subset of a complex manifold extend uniquely across the boundary to give bounded functions
on the manifold itself. This result admits an analog in perfectoid geometry (provided “bounded”
is interpreted as sections of the sheaf O+

X). The goal of this section is prove a finer version of this
result adapted to algebraic applications.
Let K be perfectoid field, and let (R,R+) be a perfectoid affinoid K-algebra. Fix some g ∈ R+

that lifts to R+[, i.e., g admits a compatible system {g
1
pn } of p-power roots. Let t ∈ K◦ be any

pseudouniformizer that lifts to K◦[. We write Un := X
(
tn

g

)
⊂ X for the rational subset where

|tn| ≤ |g(x)|. As |tn| → 0, we have a tower of rational open subsets

U0 ⊂ U1 ⊂ U2 ⊂ ... ⊂ Un ⊂ ..

of rational subsets of X , and the union U∞ := ∪nUn is the Zariski open subset where |g(x)| 6= 0.
We write

A+〈t
n

g
〉 := O+

X(Un)

of the ring of functions on Un bounded above by 1. We shall show that the projective system
{A+〈 tn

g
〉} approximates the ring A+ is a rather strong sense:

thm:QuantRH Theorem 11.2.1. Fix some integer m ≥ 0, and assume g is a nonzerodivisor in A+/tm. Then the
projective system of natural maps{

fn : A+/tm → A+〈t
n

g
〉/tm

}
is an almost-pro-isomorphism in the sense of Definition 11.3.1. In fact, we have the following more
precise pair of assertions:

1. The kernels ker(fn) are almost 0 for each n ≥ 0.

2. For each k ≥ 0 and c ≥ pkm, the transition map coker(fn+c) → coker(fn) has image

almost annihilated by g
1

pk .

The assumption on g imposed above is not necessary for the almost-pro-isomorphy conclusion,
but it simplifies the argument and is harmless in applications.
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Proof. As both t and g admit a compatible system of p-power roots, using Lemma 9.2.5 (2) and
(3), it is sufficient to prove the analogous assertions for the map{

fn : A+/tm →Mn := A+[X
1
p∞
n ]/(tm,∀` : g

1

p`X
1

p`

n − t
n

p` )
}
.

As g is a nonzerodivisor modulo tm, the same is true for g
1

pk for all k ≥ 0. Using this, it is easy
to see that the kernels are almost zero for each n ≥ 0. For the assertion about cokernels, fix some

k ≥ 0. We must check that g
1

pk ·X
i

p`

n+c ∈ Mn+c maps into A+/tm ⊂ Mn under the transition map

Mn+c → Mn for c ≥ pkm and all i, ` ≥ 0. Note that the transition map carries X
i

p`

n+c to X
i

p`

n · t
ci

p` .

Thus, if p` ≤ ipk, then tm | t
ci

p` as c ≥ pkm, so X
i

p`

n+c maps to 0 in Mn, and there is nothing to

show. On the other hand, if p` ≥ ipk, then g
i

p` | g
1

pk in A+, so we can write

g
1

pk ·X
i

p`

n+c = g
1

pk
− i

p` · g
i

p` ·X
i

p`

n+c = g
1

pk
− i

p` · t
(n+c)i

p` ∈Mn+c,

which obviously maps into A+/tm ⊂Mn.

On taking limits over n and m, the preceding theorem implies that

A+ → lim
n
A+〈t

n

g
〉

is injective with cokernel annihilated by (tg)
1
p∞ . Reinterpreting these rings in terms of the adic

spectrum, this says that the natural map

O+
X(X)→ O+

X(U∞) := lim
n

O+
X(Un) (11.2) eq:RH

is injective cokernel annihilated by (tg)
1
p∞ . Thus, in the world of almost mathematics with respect

to the ideal (tg)
1
p∞ , the above map is an isomorphism, i.e., every function on the Zariski open

set U∞ ⊂ X that is bounded above by 1 extends uniquely to a function on X that is bounded
above by 1. The finer statement of Theorem 11.2.1 can then be interpreted as saying that the
almost isomorphism (11.2) holds true for essentially “diagrammatic” reasons, and thus one may
apply A+-linear functors to both sides of (11.2), commute them past the limit on the right, and still
obtain a similar almost isomorphism. It is this consequence (where the functor is Ext1

A+(Q,−) for
some A+-module Q) that is most relevant for Theorem 11.0.1, so we isolate it:

cor:QuantRHExt Corollary 11.2.2. For any A+-complex Q, any integer m ≥ 0, and any integer i, the natural map

g : ExtiA+(Q,A+/tm)→ lim
n

ExtiA+(Q,A+〈t
n

g
〉/tm)

has kernel and cokernel annihilated by (tg)
1
p∞ .

The proof below uses the formalism of almost-pro-isomorphisms introduced in the next section.
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Proof. The natural map A+/pm → R limnA
+〈 tn

g
〉/pm has cone annihilated by (tg)

1
p∞ . Hence,

the map

RHomA+(Q,A+/tm)→ RHomA+(Q,R lim
n
A+〈t

n

g
〉/tm)

also has cone annihilated by (tg)
1
p∞ . It thus suffices to work with the right side above. As right

derived functors commute with right derived functors, we have

RHomA+(Q,R lim
n
A+〈t

n

g
〉/tm) ' R lim

n
RHomA+(Q,A+〈t

n

g
〉/tm)

Using the Milnor sequence for derived functors of inverse limits, we get a short exact sequence

0→ R1 lim Exti−1
A+ (Q,A+〈t

n

g
〉/tm)→ ExtiA+(Q,R lim

n
A+〈t

n

g
〉/tm)→ lim

n
ExtiA+(Q,A+〈t

n

g
〉/tm)→ 0

It is thus enough to show that the term on the left is annihilated by (tg)
1
p∞ . But this follows from

the last clause in Corollary 11.3.5 using Theorem 11.2.1.

11.3 Almost-pro-isomorphisms
To prove Corollary 11.2.2 above, it is convenient to extend the notion of almost mathematics to
the world of pro-objects. As this discussion is independent of the perfectoid theory, we revert to
the basic setup of almost mathematics. Thus, fix a ring R equipped with a flat ideal m satisfying
m = m2, so there is a good notion of almost mathematics in this context. Recall that there is the
classical notion of the associated abelian category Pro(ModR) of pro-R-modules: its objects are
diagrams {Mi}i∈I of R-modules indexed by a cofiltered category I1, and maps2 are defined by

Hom({Mi}i∈I , {Nj}j∈J) := lim
j

colim
i

Hom(Mi, Nj).

It is tempting to mimic the same definition in the almost world, i.e., to contemplate the category
Pro(ModaR). However, as with the notion of almost finite generation, this naive guess turns out
to be too strong: the resulting notion of almost-pro-isomorphism would not accommodate Theo-
rem 11.2.1. Instead, the following variant works well:

def:AlmostProIsom Definition 11.3.1. A pro-R-module {Mi}i∈I is R-modules is almost-pro-zero if for each ε ∈ m
and i ∈ I , there exists some j ≥ i such that the transition map Mj → Mi has image killed by ε;
a map {Mi}i∈I → {Nj}j∈J of pro-R-modules is called an almost-pro-isomorphism if the kernel
and cokernel pro-objects are almost-pro-zero.

1In the application of Theorem 11.2.1, it is enough to restrict to the case where I is the poset of natural numbers,
i.e., with projective systems of modules indexed by the positive integers.

2Given a map f : {Mi}i∈I → {Nj}j∈J in the pro-category, we can always replace the source and target by
isomorphic objects to assume that the map is represented by an actual map {fk : Mk → Nk}k∈K of projective
systems indexed by the same indexing poset K.

129



One checks that the collection of almost-pro-zero R-modules forms a thick Serre subcategory Σ
of Pro(ModR), and that almost-pro-isomorphisms are exactly the maps that become isomorphisms
in the quotient Pro(ModR)a := Pro(ModR)/Σ (see [SP, Tag 02MN] for more on Serre quotients).
In particular, almost-pro-isomorphisms are closed under compositions and satisfy the 2-out-of-3
property. The following lemma gives alternate characterizations of almost-pro-zero objects:

lem:AlmostProZeroCharacterization Lemma 11.3.2. Let M := {Mi}i∈I be a pro-R-module. The following are equivalent:

1. M is almost-pro-zero.

2. For each ε ∈ m, the inclusion {Mi[ε]}i∈I → {Mi}i∈I is a pro-isomorphism.

3. For each ε ∈ m, the pro-R-module {Mi}i∈I is pro-isomorphic to a pro-R-module {Nj}j∈J
with Nj killed by ε.

In this case, all homology groups of R limiMi are almost zero.

Proof. It is clear that 1⇒ 2⇒ 3. The implication 3⇒ 1 follows from the definition of morphisms
of pro-R-modules. For the last part, we use (2) to conclude that R limiMi ' R limiMi[ε] for each
ε ∈ m. Thus, the homology groups of R limnMn are killed by ε for each ε ∈ m, as wanted.

There is also a direct characterization of almost-pro-isomorhisms:

lem:ProAlmostIsomorphy Lemma 11.3.3. Let {fi : Mi → Ni}i∈I be a map projective systems of R-modules indexed by
cofiltered category I , and write f for the associated map of pro-R-modules. Then f is an almost-
pro-isomorphism if and only if for each ε ∈ m, we can find a map bε : {Ni}i∈I → {Mn}i∈I of
pro-R-modules such that both compositions f ◦ bε and bε ◦ f are multiplication by ε.

Proof. The existence of the bε’s immediately shows that {ker(fi)}i∈I and {coker(fi)}i∈I are almost-
pro-zero, so one direction is clear. Conversely, assume that f is an almost-pro-isomorphism. By
factoring f through the image, it suffices to show the claim separately when each fi is either sur-
jective or injective. Assume each fi is injective, so we can identify Mi with a submodule of Ni.
Our assumption on f then says {Ni/Mi}i∈I is almost-pro-zero. Unwinding definitions, this means
the following: if nji : Nj → Ni is the transition map, then the map ε · nji has image contained
in Mi for j � i. This exactly says that multiplication by ε on the pro-R-module {Ni} factors
(necessarily uniquely) over the inclusion {Mi}i∈I ⊂ {Ni}i∈I , giving the desired map. The dual
case where each fi is surjective is handled similarly.

Using the previous characterization, we obtain:

lem:AlmostProZeroRlinear Lemma 11.3.4. Let F : ModR → ModR be an R-linear functor. Then F preserves almost-pro-
isomorphisms and almost-pro-zero modules.

Proof. As almost-pro-zero pro-R-modules are exactly those that are almost-pro-isomorphic to the
0 pro-R-module, it is enough to check F preserves almost-pro-isomorphisms. But this follows
from the characterization in Lemma 11.3.3.

Putting these things together, we obtain:
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cor:FunctorAlmostProConstant Corollary 11.3.5. Let {Mi}i∈I → {Nj}j∈J be a almost-pro-isomorphism, and let F : ModR →
ModR be an R-linear functor. Then R limi F (Mi) → R limj F (Nj) is an almost isomorphism
on each cohomology group. If particular, if {Mi}i∈I is almost-pro-isomorphic to a constant pro-
system, then Rk limi F (Mi) is almost zero for k 6= 0.

Proof. By Lemma 11.3.4, it is enough to show that if f : {Mi}i∈I → {Nj}j∈J is an almost-
pro-isomorphism, then R limiMi → R limjMj is an almost isomorphism. By changing our pro-
R-modules by pro-isomorphic ones, we may assume that I = J and that f is represented by a
projective system of maps fi : Mi → Ni. The characterization in Lemma 11.3.2 then shows that
R limi fi has cone annihilated by ε for all ε ∈ m, which clearly implies the claim.

11.4 Proof of DSC
We shall need the following consequence of the Artin-Rees lemma

lem:lim1vanishing Lemma 11.4.1. Let R be a noetherian ring equipped with an ideal I . Fix finitely generated R-
modulesM andN withN being I-adically complete. Then Ext1

R(M,N) ' limn Ext1
R(M,N/InN).

Proof. Using a finite free resolution for M , it is easy to see that

RHomR(M,N) ' R lim
n

RHomR(M,N/InN).

Thus, there is a Milnor short exact sequence

0→ R1 lim HomR(M,N/In)→ Ext1
R(M,N)→ lim Ext1

R(M,N/InN)→ 0.

We must show that the term on the left is 0. We shall verify the stronger assertion that the pro-R-
modules {HomR(M,N)/In}n≥1 and {HomR(M,N/InN)}n≥1 are pro-isomorphic via the natural
map. For this, we use the following formulation of the Artin-Rees lemma: the functor P 7→
{P/In} is an exact functor from finitely generated R-modules P to pro-R-modules. To apply this,
pick a presentation

F1 → F0 →M → 0

with Fi being finite free. Applying HomR(−, N) gives an exact sequence

0→ HomR(M,N)→ HomR(F0, N)→ HomR(F1, N).

The previously mentioned form of the Artin-Rees lemma then yields an exact sequence of pro-R-
modules of the form

0→ {HomR(M,N)/In}n≥1 → {HomR(F0, N)/In}n≥1 → {HomR(F1, N)/In}n≥1.

Repeating this analysis using the functor HomR(−, N/InN) instead gives an exact sequence of
pro-R-modules

0→ {HomR(M,N/InN)}n≥1 → {HomR(F0, N/I
nN)}n≥1 → {HomR(F1, N/I

nN)}n≥1.

Comparing the sequences yields the lemma as HomR(Fi, N/I
nN) ' HomR(Fi, N)/In since Fi

is finite free.
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Proof of Theorem 11.0.1. We break the proof into the following steps:

1. Reformulation in terms of obstruction classes. We may assume A0 = W Jx1, ..., xdK by
Hochster’s theorem. Let Q0 = B0/A0, and let αA0 ∈ Ext1

A0
(Q0, A0) be the obstruction

to splitting f0. We shall check that αA0 = 0. For any A0-algebra R, we write αR ∈
Ext1

R(Q0 ⊗LA0
R,R) for the corresponding obstruction to splitting f0 ⊗LA0

R; this is also
just the image of αA0 under the map

Ext1
A0

(Q0, A0)→ Ext1
A0

(Q0, R) ' Ext1
R(Q0 ⊗LA0

R,R).

Note that αR = 0 if the (non-derived) base change f0 ⊗A0 R admits an R-linear splitting.
Using Lemma 11.4.1, it is enough to check that αA0/pm = 0 for all m � 0. Choose any
g ∈ A0 coprime to p such that A0[ 1

pg
] → B0[ 1

pg
] is finite étale. Using the perfectoid theory,

for each m � 0, we shall construct in (2) a faithfully flat A0/p
m-algebra Rm such that

p2g ∈ Ann(αRm)p
n for all n ≥ 0. Granting this, by the flatness of A0/p

m → Rm, we have

Ext1
A0/pm

(Q0 ⊗LA0
A0/p

m, A0/p
m)⊗A0/pm R/p

m ' Ext1
R/pm(Q0 ⊗LA0

R/pm, R/pm).

The faithful flatness of A0/p
m → R/pm then shows that

Ann(αA0/pm) = Ann(αRm) ∩ A0/p
m ⊂ Rm

and similarly for powers, so p2g ∈ Ann(αA0/pm)p
n for all n. Krull’s intersection theorem

then implies that either p2g = 0 in A0/p
m or that Ann(αA0/pm) = (1). As g 6= 0, the first

possibility cannot happen for m� 0, so αA0/pm = 0 for m� 0, as wanted.

2. Constructing faithfully flat extensions. LetC+ be the p-adic completion ofA0[p
1
p∞ , x

1
p∞
1 , ..., x

1
p∞

d ],

set C = C+[1
p
], and letK = Q̂p(p

1
p∞ ). Then (C,C+) is a perfectoid affinoidK-algebra, and

the natural mapA0 → C+ is faithfully flat modulo3 any power of p. Applying Theorem 9.4.3
to (C,C+) equipped with the element g ∈ C+ gives a map (C,C+)→ (A,A+) of perfectoid
affinoid K-algebras such that g ∈ A+ admits a compatible system of p-power roots, and that
C+/pm → A+/pm is almost faithfully flat for all m. For each m ≥ 0, we shall check in
(3) that αA+/pm is annihilated by (pg)

1
p∞ . Granting this, we get pg ∈ Ann(αA+/pm)p

n for all
n. Almost faithful flatness of C+/pm → A+/pm then shows that p2g ∈ Ann(αC+/pm)p

n for
all n (where the extra power of p handles passage from the almost world to the real world).
Thus, taking Rm = C+/pm will present the construction required in (1).

3. Almost vanishing over a faithfully flat extension. Using the notation of §11.2 with t = p, we
obtain a projective system of A+-algebras {A+〈pn

g
〉}. The base change of the map A0 → B0

along A0 → A+〈pn
g
〉 is finite étale after inverting p (as g | p in this ring). Set B(n)+ to be

the integral closure of A+〈pn
g
〉 inside A+〈pn

g
〉 ⊗A0 B0[1

p
], so B(n)+ refines B0 ⊗A0 A

+〈pn
g
〉.

By the almost purity theorem and Proposition 10.0.9, the map A+〈pn
g
〉 → B(n)+ is almost

3In fact, as A0 is noetherian, this forces to the map be faithfully flat on the nose, but we do not need that here.
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split, and hence the same holds modulo pm. In particular, αA+〈 pn
g
〉/pm is almost zero for all

n and m. Corollary 11.2.2 then shows that αA+/pm is annihilated by (pg)
1
p∞ for all m, as

wanted in (2).
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