PROBLEM SET 4 (MATH 631)

BHARGAV BHATT

The problems marked with (∗) do not need to be submitted. Some of them rely on material not covered yet in our class, and are meant to exploratory.

(1) Let Spec\((B) \subset \text{Spec}(A) \) be an open immersion defined by a map \(A \to B \) of rings.

(a) Show that \(A \to B \) is flat.

(b) If \(A \to B \) is faithfully flat, conclude that \(A \cong B \).

(c) If \(R \) is an artinian local ring and \(A = R[x] \), show that \(B \cong A_f \) for some \(f \in A \).

(d) (∗) Is there an example where \(\text{Spec}(B) \) is not a distinguished open of \(\text{Spec}(A) \)?

(2) For any category \(C \), write \(PShv(C) \) for the category of presheaves on \(C \) (i.e., functors \(C^{\text{op}} \to \text{Sets} \)).

(a) (∗) Prove Yoneda’s lemma: the map \(X \mapsto h_X := \text{Hom}(-, X) \) extends to a fully faithful functor \(C \to PShv(C) \). A presheaf \(F \) is isomorphic to \(h_X \) for some \(X \in C \) is called \textit{representable}, and the object \(X \) (which is unique up to unique isomorphism) is called the representing object.

We now specialize to \(C = \text{Sch} \) being the category of schemes; write \(\text{Sch}^{\text{aff}} \) for the category of affine schemes. We call a presheaf \(F \) on \(\text{Sch} \) a \textit{sheaf} if it satisfies the sheaf axiom, i.e., if \(U \) is a scheme equipped with an open cover \(\{U_i\} \), then composition with each \(U_i \to U \) is required to induce a bijection

\[
F(U) \cong \text{Eq}(\prod_i F(U_i) \xrightarrow{s} \prod_{i,j} F(U_i \cap U_j))
\]

where \(s \) and \(t \) are induced by the inclusions \(U_i \cap U_j \to U_i \) and \(U_i \cap U_j \to U_j \), and Eq refers to the equalizer\(^1\).

(b) For any \(X \in \text{Sch} \), show that \(h_X \) is a sheaf.

(c) Show that the full subcategory of sheaves inside \(PShv(\text{Sch}) \) and \(PShv(\text{Sch}^{\text{aff}}) \) are naturally identified. (For this reason, one often views \(h_X \) as a functor on affine schemes.)

If \(U = \text{Spec}(A) \) is an affine scheme and \(F \) is a presheaf, we often write \(F(A) = F(\text{Spec}(A)) \) if there is no possibility of confusion. For \(F = h_X \) and a commutative ring \(A \), we also simply write \(X(A) = h_X(\text{Spec}(A)) = \text{Hom}(\text{Spec}(A), X) \); this is called the \textit{functor of points} of \(X \).

(d) Decide if the following functors on \(\text{Sch} \) are representable. If representable, construct the corresponding representing objects; if not, explain why.

\(^1\)This is just the categorical name for the concept that showed up explicitly when we talked about sheaves. Concretely,

\[\text{Eq}(X \xrightarrow{s} Y) = \{ x \in X \mid s(x) = t(x) \}.\]
(i) $U \mapsto \mathcal{O}(U)$
(ii) $U \mapsto \mathcal{O}(U) \otimes \mathcal{O}(U)$
(iii) $U \mapsto \mathcal{O}(U)^S$ for some set S.
(iv) $U \mapsto \{f, g \in \mathcal{O}_X(U) \mid f^2 = g^3\}$
(v) $U \mapsto \text{GL}_n(\mathcal{O}(U))$ (for fixed n)
(vi) $U \mapsto \{f, g \in \mathcal{O}_X(U)^2 \mid (f, g) = (1)\}$
(vii) $(\ast) U \mapsto \{f, g \in \mathcal{O}_X(U) \mid (f, g) = (1)\}/\mathcal{O}(U)^\ast$, where $\mathcal{O}(U)^\ast$ acts by scaling both factors.
(viii) $U \mapsto$ the set of open subsets of U

(e) Show that an affine scheme X is locally of finite presentation over $\text{Spec}(\mathbb{Z})$ if and only if for any directed system $\{A_i\}$ of rings with limit $A_\infty := \varprojlim A_i$, we have
\[
\varprojlim_i X(A_i) \simeq X(A)
\]
via the natural map. (Bonus: show the same when X is not assumed affine.)

(f) Give an example of a map $X \to Y$ of reduced schemes where $X(k) \simeq Y(k)$ for all fields k, but $X \to Y$ is not an isomorphism.

The following numbers refer to exercises in §II.3 of Hartshorne.

(3) 3.9
(4) 3.11
(5) 3.15
(6) 3.16
(7) 3.17
(8) 3.18
(9) 3.19. (Bonus: try to use Chevalley’s theorem to prove the following special case of the Ax-Grothendieck theorem: given a scheme X of finite type over \mathbb{Z} and an endomorphism $f : X \to X$, if the induced map $X(\mathbb{C}) \to X(\mathbb{C})$ is injective, it is also surjective.)
(10) 3.20
(11) 3.22