PROBLEM SET 11 (MATH 631)

BHARGAV BHATT

Problems marked with a (*) need not be submitted. All the numbered problems are from §II.8 in Hartshorne’s book.

1. Fix a field k, and a finite k-algebra A. Show that $\Omega^1_{A/k} = 0$ exactly when A is a finite product of finite separable field extensions.

2. Say $A \to B$ is a map of rings. Assume B is an F_p-algebra which is perfect (i.e., Frobenius is an isomorphism). Show that $\Omega^1_{B/A} = 0$.

3. Give examples of the following:

 (a) A finite field extension L/K with $\Omega^1_{L/K} \neq 0$.

 (b) A non-algebraic extension L/K with $\Omega^1_{L/K} = 0$.

 (c) A non-reduced F_p-algebra R such that $\Omega^1_{R/F_p} = 0$.

 (d) A Dedekind scheme that is quasi-affine (i.e., occurs as a quasi-compact open subset of an affine scheme) but not affine.

 (e) A map $f : X \to Y$ of schemes whose diagonal Δ_f is an open immersion but not a closed immersion.

4. Let X be a scheme, and let V be a vector bundle on X. If $f : \text{Spec} \left(\text{Sym}^* V \right) \to X$ is the “geometric vector bundle” attached to V, describe Ω^1_f in terms of V.

5. Let $f : X \to \text{Bl}_0(\mathbb{A}^2)$ be the blowup at $0 \in \mathbb{A}^2$ over a field k. Describe Ω^1_f in terms of sheaves on the exceptional divisor $E \simeq \mathbb{P}^1$.

6. Let X be a scheme, and $f : \mathbb{P}_X(V) \to X$ be the projectivization of a vector bundle V on X. The goal of this exercise is to construct the Euler sequence

$$0 \to \Omega^1_f(-1) \to f^*V \to \mathcal{O}_{\mathbb{P}_X(V)}(1) \to 0$$

using the functor of points.

 (a) Fix a commutative ring R, a map $g : \text{Spec}(R) \to X$, and an invertible quotient $\alpha_g : g^*V \to L$, corresponding to a map $\overline{g} : \text{Spec}(R) \to \mathbb{P}_X(V)$ lifting g. Show that the collection of all X-maps

 $$\text{Spec}(R[\epsilon]/\epsilon^2) \to \mathbb{P}_X(V)$$

 lifting \overline{g} over $\text{Spec}(R)$ identifies canonically with the cokernel of the map $R \to \text{Hom}(g^*V, L)$ sending 1 to α_g.

 (b) Use (1) to construct a short exact sequence

 $$0 \to \Omega^1_f(-1) \to f^*V \to \mathcal{O}_{\mathbb{P}_X(V)}(1) \to 0$$

1A scheme is Dedekind if it is integral, noetherian, normal and has dimension ≤ 1.
of vector bundles on $\mathbb{P}_X(V)$.

(c) Give an example of such a pair (X, V) with X projective over a field k and $\mathcal{O}_{\mathbb{P}_X(V)}(1)$ not ample as a line bundle on $\mathbb{P}_X(V)$.

(7) II.8.3

(8) (*) Please read about regular rings in a commutative algebra textbook. One suggestion: read pages 153 through 157 of Matsumura’s *Commutative Ring Theory*.