1. Let \(f : X \to Y \), and \(g : Y \to Z \) be covering spaces. Assume that \(g^{-1}(z) \) is finite for each \(z \in Z \). Show that \(g \circ f \) is a covering space.

2. Let \(f : X \to Y \) be a covering space, and let \(\alpha : Z \to Y \) be any map. Show that the projection map \(X \times_Y Z \to Z \) is a covering space; here \(X \times_Y Z \) is the fibre product of \(f \) and \(\alpha \).

3. Let \(f : X \to Y \) and \(g : Y \to Z \) be two maps. Assume \(f \) and \(g \circ f \) are covering spaces. Prove that \(g \) is a covering space.

4. Let \(f : X \to Y \) be a covering space.
 (a) Show that \(f \) is an open map.
 (b) Show that \(f \) is a local homeomorphism, i.e., for each \(x \in X \), there is an open neighbourhood \(x \in U \subset X \) such that \(f \) induces a homeomorphism \(U \simeq f(U) \).

5. Let \(\alpha_n : S^1 \to S^1 \) be the map \(z \mapsto z^n \). Let \(m \) and \(n \) be coprime positive integers. Using covering space theory, show that there is no continuous map \(f : S^1 \to S^1 \) such that \(\alpha_m \circ f = \alpha_n \).

6. Show that all continuous maps \(\mathbb{R}P^2 \to S^1 \times S^1 \) are null-homotopic.

7. Let \(G \) be a (discrete) group acting on a topological space \(X \). Assume that for each \(x \in X \), there is an open neighbourhood \(x \in U \subset X \) such that \(e \neq g \in G \). Show that the quotient map \(X \to X/G \) is a covering space.

8. For a finite group \(G \), construct a path-connected space \(X \) with fundamental group \(G \).

9. Let \(G \) and \(H \) be path-connected topological groups, and let \(f : G \to H \) be a covering space that is also a group homomorphism. Show that \(\ker(f) \) is abelian.

10. Using the path/homotopy lifting property, show that any simply connected space \(Y \) has no non-trivial covering spaces, i.e., if \(f : X \to Y \) is a covering space, then \(X = \sqcup \{ Y_i \} \), with \(f \) inducing a homeomorphism \(Y_i \to Y \).

The next set of exercises describe the classification of covering spaces in terms of groupoids. Let \(Y \) be a topological space, and assume that \(Y \) is locally simply connected, i.e., there is an open cover \(\{ U_i \} \) of \(Y \) with each \(U_i \) simply connected.

11. Let \(f : X \to Y \) be a covering space. Show that the association \(y \mapsto f^{-1}(y) \) extends to a functor \(\Phi_f : \tau_{\leq 1}Y \to \text{Set} \) using the path/homotopy lifting property; here \(\text{Set} \) is the category of sets.

12. Let \(F : \tau_{\leq 1}Y \to \text{Set} \) be a functor. Define \(X \) to be the set of pairs \((y, \eta) \), where \(y \in Y \), and \(\eta \in F(y) \); let \(\Psi_F : X \to Y \) be the projection on the first factor. Endow \(X \) with a topology to make \(\Psi_F \) into a covering space.

13. For a functor \(F : \tau_{\leq 1}Y \to \text{Set} \), show that \(\Phi_{\Psi_F} \simeq F \).

14. For a covering space \(f : X \to Y \), show that \(\Psi_{f*} \simeq f \); here two covering spaces \(X_1 \to Y \) and \(X_2 \to Y \) are said to be isomorphic if there is a homeomorphism \(X_1 \to X_2 \) commuting with the map down to \(Y \) from either factor.