This is an 80-minute exam, but you have the full 110-minute class period to complete it. There are a total of 100 points possible; the value of each problem is marked. Partial credit may be given for significant progress toward the solution to a problem. Except where otherwise indicated, you must show sufficient work to make it clear to me what you are doing and why in order to obtain full credit.

Problem 1 (10 pts)
Compute the determinant of the following matrix by whatever method seems best to you.

\[
\begin{pmatrix}
 1 & 2 & 0 & 0 \\
 4 & -1 & 4 & 1 \\
 3 & 5 & 0 & 0 \\
 -7 & 3 & -1 & 2
\end{pmatrix}
\]

Problem 2 (10 pts)
The set of points in \(xyz\)-space with \(x + y + z = 0\) forms a plane \(V\). Find the matrix which represents orthogonal projection onto \(V\).

Problem 3 (10 pts)
Consider the following matrix.

\[
A = \begin{pmatrix}
 2 & -1 & 2 \\
 1 & 3 & 5 \\
 2 & 0 & 3
\end{pmatrix}
\]

a) Compute \(\text{adj } A\).

b) It turns out that \(\det A = -1\). (You don’t have to verify this fact.) Compute \(A^{-1}\).

Problem 4 (10 pts)
Consider the following linear system.

\[
\begin{align*}
2x + y &= 5 \\
x - y &= 3 \\
x &= 3
\end{align*}
\]

Write down the corresponding normal equation. (You don’t need to solve it.)

Problem 5 (10 pts)
Fill in the missing entries so that the matrix is orthogonal.

\[
\begin{pmatrix}
 3/13 & 4/13 \\
 4/13 & -12/13 \\
 12/13 & -4/13
\end{pmatrix}
\]
Problem 6 (15 pts)

Let V be the subspace of \mathbb{R}^5 with a basis $A = \left\{ \begin{pmatrix} 2 & 7 \\ 2 & 1 \\ 2 & 1 \\ 3 & 6 \end{pmatrix}, \begin{pmatrix} 7 & 1 \\ 2 & 7 \\ 2 & 1 \end{pmatrix} \right\}$.

a) Compute the QR decomposition of \(\begin{pmatrix} 2 & 7 \\ 2 & 1 \\ 2 & 1 \\ 3 & 6 \end{pmatrix} \).

b) Write down an orthonormal basis B of V.

c) Consider the vectors \vec{v}, \vec{w} whose A-coordinates are $\left(\frac{2}{3} \right)$ and $\left(\frac{1}{-1} \right)$. Express these vectors in B-coordinates.

d) What is the cosine of the angle between \vec{v} and \vec{w}?

Problem 7 (15 pts)

Consider the linear transformation $T: P_2 \to P_2$ defined by $T(f(t)) = f(2t + 1) - f(t + 1)$.

a) Write the matrix representation of T, relative to the basis $\{t^2, t, 1\}$.

b) Write down a basis for the kernel of T.

c) Write down a basis for the image of T.

d) What is the nullity (the dimension of the kernel) of T?

e) What is the rank (the dimension of the image) of T?

f) What is the determinant of T?

Problem 8 (20 pts)

Indicate whether each item is true or false. Each item is worth 2 points. No explanation necessary, no partial credit possible.

a) T / F ? If a 2×2 matrix P represents the orthogonal projection onto a line in \mathbb{R}^2, then P is similar to $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

b) T / F ? There exists an isomorphism from P_4 to the space of 2×2 matrices.

c) T / F ? The invertible 5×5 matrices form a subspace of the space of 5×5 matrices.

d) T / F ? If A and B are any linear transformations from a linear space V to itself, then ker(AB) contains ker B.

e) T / F ? A matrix is orthogonal if and only if it has orthogonal columns.

f) T / F ? Every system of linear equations has a (not-necessarily unique) least-squares solution.

g) T / F ? If A, B, C are symmetric $n \times n$ matrices, then $ABACABA$ is also a symmetric matrix.

h) T / F ? The matrices $\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$ and $\begin{pmatrix} 3 & -4 \\ 4 & 6 \end{pmatrix}$ are similar.

i) T / F ? If $(v_1 \ v_2 \ v_3 \ v_4)$ is a 4×4 matrix with determinant 10, then the matrix $(v_1 \ 2v_2 \ v_1 \ v_1 + 3v_2)$ has determinant -60.

j) T / F ? A 3×3 matrix has determinant zero if and only if its rows are linearly dependent.