Problem 1 (10 points):

Find the equation of the cubic equation (general form: \(f(x) = ax^3 + bx^2 + cx + d \)) whose graph passes through the points \((-1, 2), (0, 3), (1, 6), (2, 23)\).

Answer.

These four points lead to the following linear system.

\[
\begin{align*}
-a + b - c + d &= 2 \\
d &= 3 \\
a + b + c + d &= 6 \\
8a + 4b + 2c + d &= 23
\end{align*}
\]

This has the unique solution \(a = 2, b = 1, c = 0, d = 3\).

\[f(t) = 2t^3 + t^2 + 3 \]

Problem 2 (10 points):

Let \(L\) be the line spanned by the vector \(\begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}\). Write down the matrix representing the orthogonal projection onto the line \(L\) in \(\mathbb{R}^4\).

Answer.

\[
\begin{pmatrix}
1/4 & -1/4 & 1/4 & -1/4 \\
-1/4 & 1/4 & -1/4 & 1/4 \\
1/4 & -1/4 & 1/4 & -1/4 \\
-1/4 & 1/4 & -1/4 & 1/4
\end{pmatrix}
\]

Problem 3 (10 points):

Is the vector \(\vec{x} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}\) in the linear span of \(\vec{v} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}\) and \(\vec{w} = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}\)? If so, find real numbers \(a, b\) such that \(a \vec{v} + b \vec{w} = \vec{x}\).

Answer.

By reducing the matrix \(\begin{pmatrix} 2 & 4 & 3 \\ 4 & 3 & 1 \\ 0 & 5 & 5 \end{pmatrix}\) or by any other means, \(\frac{3}{5} = \frac{-1}{2} \begin{pmatrix} 2 \\ 4 \end{pmatrix} + 1 \begin{pmatrix} 4 \\ 3 \end{pmatrix}\).
Problem 4 (10 points):

In geometry, the centroid of a triangle is given by a simple formula. If the vertices of a triangle are at the points \((x_1, y_1), (x_2, y_2), (x_3, y_3)\), then the centroid of that triangle is at the point \(
\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\).

We can think of this formula as defining a “centroid map” \(T: \mathbb{R}^6 \rightarrow \mathbb{R}^2\); let \(T \begin{bmatrix} u & v \\ w & x \\ y & z \end{bmatrix} = \begin{bmatrix} s \\ t \end{bmatrix}\), where \((s, t)\) is the centroid of the triangle whose vertices \((u, v), (w, x), (y, z)\). This \(T\) is a linear transformation.

a) Write down the matrix that represents \(T\).

b) What is the rank of \(T\)?

Answer.

\(T\) is represented by \(\begin{bmatrix} 1/3 & 0 & 1/3 & 0 & 1/3 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \end{bmatrix}\).

The rank is 2.

Problem 5 (10 points):

Alice and Bob are studying a two dimensional subspace of \(\mathbb{R}^{100}\) relative to bases \(A\) and \(B\). They are particularly interested in three vectors \(\vec{x}, \vec{y}, \vec{z}\).

In Alice’s coordinates, we have \([\vec{x}]_A = \begin{bmatrix} 8 \\ 4 \end{bmatrix}\), \([\vec{y}]_A = \begin{bmatrix} 3 \\ 5 \end{bmatrix}\), \([\vec{z}]_A = \begin{bmatrix} 1 \\ 11 \end{bmatrix}\).

In Bob’s coordinates, we have \([\vec{x}]_B = \begin{bmatrix} 4 \\ 0 \end{bmatrix}\), \([\vec{y}]_B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}\).

How is \(\vec{z}\) written in \(B\)-coordinates?

Answer.

Note \(\begin{bmatrix} 1 \\ 11 \end{bmatrix} = 3\begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix}\). So \(\vec{z} = 3\vec{y} - \vec{x}\), and that will be true in any coordinate system. \([\vec{z}]_B = 3\begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}\).

(This problem can alternately be done by computing a change-of-basis matrix.

Problem 6 (15 points):

Consider the matrix

\[
A = \begin{pmatrix}
1 & 1 & 0 & 3 & 1 \\
2 & 0 & 2 & 0 & 4 \\
1 & 0 & 1 & 0 & 7 \\
2 & 1 & 1 & 3 & 2
\end{pmatrix}
\]

and let \(T\) be the transformation represented by \(A\).

a) Write down a basis for the kernel of \(T\).

b) Write down a basis for the image of \(T\).
c) What is the rank (the dimension of the image) of A?

d) What is the nullity (the dimension of the kernel) of A?

Answer.

First, we row reduce the matrix to find $\text{rref } A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

A basis of $\ker T$ is $\begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} -3 \\ -1 \\ 0 \\ 0 \end{pmatrix}$.

A basis of $\im T$ is $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 4 \\ 7 \\ 2 \end{pmatrix}$.

The rank is 3.

The nullity is 2.

Problem 7 (15 points):

Consider the following matrices.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

a) Compute $C = AB$.
b) Compute A^{-1} or explain why A is not invertible.
c) Compute B^{-1} or explain why B is not invertible.
d) Compute C^{-1} or explain why C is not invertible. (*Hint: there is more than one way to do this part.*)

Answer.

$$C = \begin{pmatrix} 4 & -1 & 3 \\ 1 & -1 & 2 \\ -1 & -1 & 1 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix}.$$

$$C^{-1} = B^{-1}A^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -3 & 7 & -5 \\ -2 & 5 & -3 \end{pmatrix}.$$

Problem 8 (20 points):

Indicate whether each item is true or false. Each item is worth 2 points. No explanation necessary, no partial credit possible.

a) If A and B are invertible matrices and $AB = BA$, then also $A^{-1}B^{-1} = B^{-1}A^{-1}$.

TRUE
b) If \vec{v} and \vec{w} are in the kernel of a linear transformation T, then $\vec{v} + \vec{w}$ is also in the kernel of T.

TRUE

c) If two matrices have the same rref, then they have the same kernel.

TRUE

d) If V and W are 2-dimensional subspaces of \mathbb{R}^3 and $V \neq W$, then the set of vectors in both V and W is a 1-dimensional subspace of \mathbb{R}^3.

TRUE

e) If a linear transformation is invertible, then the inverse is linear.

TRUE

f) There exists a system of three equations in four variables what has a unique solution.

FALSE

g) There exists a system of three equations in four variables which has no solutions.

TRUE

h) The kernel of
\[
\begin{pmatrix}
2 & 1 & 0 & 2 \\
1 & 0 & 0 & 3 \\
7 & 3 & 0 & 4 \\
1 & 1 & 1 & 1
\end{pmatrix}
\]
is a subspace of \mathbb{R}^4.

TRUE

i) If $\vec{u}, \vec{v}, \vec{w}, \vec{x}$ are linearly independent vectors in \mathbb{R}^n, then $n \geq 4$.

TRUE

j) If $\{\vec{a}_1, \vec{a}_2, \vec{a}_3, ..., \vec{a}_k\}$ and $\{\vec{b}_1, \vec{b}_2, \vec{b}_3, ..., \vec{b}_\ell\}$ are bases of the same vector space, then $k = \ell$.

TRUE