AN IMPERFECT RING WITH A TRIVIAL COTANGENT COMPLEX

BHARGAV BHATT

Fix a perfect field \(k \) of characteristic \(p \). Recall the following well-known fact:

Proposition 0.1. If \(A \) is a perfect \(k \)-algebra, then \(L_{A/k} \simeq L_A \simeq 0 \).

Proof. The Frobenius \(F : A \to A \) induces the 0 map \(F_* : L_A \to L_A \) (which is true for any \(F_p \)-algebra \(A \)). On the other hand, since \(A \) is perfect, \(F \) is an isomorphism, so \(F_* \) is also an isomorphism, and thus \(L_A \simeq 0 \). Finally, since \(k \) is perfect, \(L_{A/k} \simeq L_A \) as \(L_k = 0 \). \(\square \)

The goal of this note is to record a counterexample to the converse statement; the idea of forcing variables to become products, rather than powers, used below was suggested to me by Gabber, and I grateful to him for this suggestion.

Proposition 0.2 (Gabber). There exists a non-reduced \(k \)-algebra \(A \) such that \(L_{A/k} \simeq L_A \simeq 0 \).

Proof. For \(i \geq 0 \), let \(B_i = k[x_{i,1}, x_{i,2}, \ldots, x_{i,2^i}] \) be the polynomial algebra on the displayed \(2^i \) generators. Write \(I_i \subset B_i \) for the ideal spanned by the variables, and set \(A_i = B_i,_{\text{perf}}/J_i \), where \(B_i,_{\text{perf}} \) is the perfection of \(B_i \) (i.e., the direct limit along Frobenius), and \(J_i = I_i \cdot B_i,_{\text{perf}} \). Then \(L_{B_i,_{\text{perf}}} = 0 \).

As \(J_i \) is defined by a regular sequence, it is standard to see that \(L_{A_i} \simeq J_i/J_i^2[1] \) is a free module on \(2^i \) generators, placed in homological degree 1. Now define maps \(A_i \to A_{i+1} \) given by

\[
x_{i,j}^p \mapsto \left(x_{i+1,2j} \cdot x_{i+1,2j+1} \right)^{p^i}.
\]

In other words, each variable in \(A_i \) becomes a product of two variables in \(A_{i+1} \). Set \(A = \text{colim} A_i \). Then we claim that \(L_A = 0 \), and yet \(A \) is non-reduced. To see \(L_A = 0 \), note that

\[
L_A \simeq \text{colim}_i L_{A_i} \simeq \text{colim}_i J_i/J_i^2[1],
\]

as the formation of the cotangent complex commutes with filtered colimits. Now it is enough to observe that the natural map

\[
J_i/J_i^2 \to J_{i+1}/J_{i+1}^2
\]

is the 0 map, since each variable in \(J_i \) becomes a product of two variables in \(J_{i+1} \). To see that \(A \) is not perfect, set \(\alpha := x_{0,1}^p \in A_0 \). Then \(\alpha^p = 0 \) (since \(x_{0,1} \in J_0 \)). On the other hand, the image of \(\alpha \) in \(A_i \) is given by

\[
\prod_{j=1}^{2^i} x_{i,j}^{p^j},
\]

which is non-zero (as it does not lie in \(J_i \)). Thus, \(\alpha \) gives a nilpotent non-zero element in \(A \), so \(A \) is not reduced. \(\square \)

We end by raising a question about the characteristic 0 analog:

Question 0.3. Let \(E \) be a field of characteristic 0. Does there exist an \(E \)-algebra \(A \) such that \(L_{A/E} \simeq 0 \), yet \(A \) is not ind-étale over \(E \)?