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Abstract

We study certain questions in positive and mixed characteristic algebraic geometry related to the

direct summand conjecture.

Our main result in positive characteristic is that the direct summand condition (see Condition

1.0.2) coincides with a derived enhancement (see Condition 1.0.1); one can view this result as

asserting that the singularities satisfying the direct summand condition define a good positive char-

acteristic analogue of the rational singularities of characteristic 0. Using this theorem, we are able

to prove a number of results which, roughly speaking, assert that vanishing theorems familiar from

complex geometry have positive characteristic analogues provided we ask for vanishing “up to pas-

sage to finite covers.” Moreover, our results are sharp in the sense that we give examples illustrating

the necessity of our hypotheses.

We prove two theorems in mixed characteristic. The first is an analogue of the positive char-

acteristic theorem alluded to above, except that “vanishing” is replaced by “divisibility by p.” Our

proof of this theorem also provides a new proof of the pure positive characteristic result mentioned

above. The second is that the direct summand conjecture holds in cases where the ramification is

supported on a simple normal crossings divisor. To the best of our knowledge, this is the first family

of examples where the direct summand conjecture is proven without putting any restrictions on the

dimension; our proof uses methods from p-adic Hodge theory.
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Chapter 1

Introduction

The study of singular varieties, as limits of smooth varieties in moduli theory or as the objects of
intrinsic interest in higher dimensional geometry, is inevitable in modern algebraic geometry. The
results of this thesis pertain to certain basic features of a particularly nice class of singularities
known as “rational singularities”.

Definition. A scheme S has rational singularities if there is a resolution f : X → S with OS →
Rf∗OX an isomorphism1.

Standard examples of rational singularities are quotient singularities and cones on Fano hyper-
surfaces. The flawed yet useful intuition informing the general definition is that such varieties admit
resolutions with rational exceptional fibres and hence satisfy some local positivity. The resulting
class of singularities enjoys many pleasant features: independence of choice of resolution, closure
under deformations and quotients, and good Hodge-theoretic properties. The dependence on reso-
lutions, however, renders this definition inapplicable to positive or mixed characteristic geometry.
Recently, Sándor Kovács discovered an intrinsic characterisation of rational singularities using:

Condition 1.0.1. For any proper surjective morphism f : X → S, the natural map OS → Rf∗OX
is split in D(Coh(S)).

Kovács showed in [Kov00] that a complex variety S satisfies Condition 1.0.1 exactly when it has
rational singularities. This result is useful as Condition 1.0.1 is often easy to verify, e.g., canonical
singularities satisfy Condition 1.0.1 thanks to the Grauert-Riemenschneider vanishing theorem and
are thus rational. My own work attempts to understand Condition 1.0.1 in positive and mixed
characteristic, by relating it to an analogous condition involving only finite maps:

Condition 1.0.2. For any finite surjective morphism f : X → S, the natural map OS → f∗OX is
split in Coh(S).

As finite maps are proper, any scheme satisfying Condition 1.0.1 also satisfies Condition 1.0.2;
the converse fails in characteristic 0 as all normal schemes satisfy Condition 1.0.2 by a trace argu-
ment, while not all normal schemes have rational singularities. Away from characteristic 0, however,
we discover a remarkably different picture. We summarise our results in the next section.

1The tradtional definition (see [KKMSD73, Chapter I, §3, page 50]) of rational singularities also requires that
Rif∗ωX = 0 for i > 0, where ωX is the canonical line bundle on X . This last condition is automatic in charac-
teristic 0 by Grauert-Riemenschneider vanishing (see [Laz04a, Theorem 4.3.9]), but not true in general. Throughout
this thesis, all references to rational singularities will be made for schemes in characteristic 0, and consequently, this
distinction will not concern us.
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Summary of results

This thesis is organised as follows. The purpose of Chapter 2 is to setup some notation, and review
some relevant notions in duality theory. Chapters 3 and 4 are preliminary in nature, and contain
mainly examples. Chapters 5 through 7 study Condition 1.0.2 in positive characterstic p, though the
results in Chapter 6 are characteristic independent. The last two chapters, Chapters 8 and 9, study
mixed characteristic (0, p) analogues of questions studied earlier. A more detailed description of
the contents and results of each chapter (except Chapter 2) follows.

We begin with a preliminary study of Conditions 1.0.2 and 1.0.1 in Chapters 3 and 4. In each
case, we first understand the conditions in characteristic 0 in terms of classical notions in alge-
braic geometry, and then give some examples supporting the intuition that these conditions measure
positivity in positive characteristic. The emphasis in these chapters is on examples illustrating rep-
resentative behaviour rather than general theorems.

Chapter 5 marks our first serious foray into understanding these conditions in positive charac-
teristic. The main theorem of this chapter (see Theorem 5.0.2) is:

Theorem 1.0.3. Conditions 1.0.1 and 1.0.2 are equivalent for noetherian Fp-schemes.

The proof of Theorem 1.0.3 is inspired by certain well-known results in commutative algebra
originally due to Hochster and Huneke [HH92], and refined by [HL07]. While geometrising these
results, Karen Smith arrived at certain questions that we are able to answer. Our answer is sum-
marised below; we refer the reader to §5.5 for a detailed discussion.

Theorem 1.0.4. Let X be a proper variety over a field k of positive characteristic, and let L ∈
Pic(X). If L is semiample, then H i(X,L) can be killed by finite covers for i > 0; this conclusion
fails if L is only assumed to be nef. If L is semiample and big, then H i(X,L−1) can be killed
by finite covers for i < dim(X); this conclusion fails if either semiampleness or bigness is not
assumed (in particular, it fails in the nef and big case).

The main technique underpinning the results of Chapter 5 is a method for constructing finite
covers that annihilate coherent cohomology under suitable finiteness assumptions (see Proposition
5.2.2). This technique, originally due to Hochster and Huneke and dubbed the “Equational Lemma,”
has undergone a series of reformulations starting with [HH92], through [Smi94], and ending with
[HL07]. Despite these revisions, it retains a certain ad hoc character, essentially because it involves
manipulations with cocycles in coherent cohomology using Frobenius. Chapter 6 provides a new
proof of this result using general results on group schemes. Our approach has the advantage of pro-
viding perhaps a more conceptual understanding of the cocycle manipulations by embedding them
in a larger topological context. Our main theorem is the following result on the fppf cohomology of
group schemes (see Theorems 6.0.1 and 6.0.2); the coherent cohomology claims are deduced using
subgroup schemes of Ga defined by additive polynomials acting as endomorphisms of Ga.

Theorem 1.0.5. Let S be a noetherian excellent scheme. Given a finite flat group scheme G → S,
cohomology classes in Hn(S,G) can be killed by finite covers for n > 0. Given an abelian scheme
A→ S, cohomology classes in Hn(S,A) can be killed by proper covers for n > 0.

In Chapter 7, we relate Condition 1.0.2 to preexisting notions notions of rational singularities
in positive characteristic. Two of the most significant ones are pseudorationality due to Lipman
and Tessier [LT81], and F -rationality originally due to Fedder and Watanabe [FW89], and further
studied by Karen Smith. Our main theorem (see Theorems 7.1.4 and 7.2.5) indicates that there is a
close connection between all three:
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Theorem 1.0.6. Let R be an excellent Fp-algebra. If R satisfies Condition 1.0.2, then R is F -
rational and pseudorational. If R is Gorenstein and F -rational, then R satisfies Condition 1.0.2.

In Chapters 8 and 9, we move from positive characteristic p to mixed characteristic (0, p).
Chapter 8 studies the mixed characteristic version of the questions studied in Chapter 5. We are
unable to prove an exact analogue of Theorem 1.0.3 in mixed characteristic as we lack Frobenius.
Nevertheless, we can prove an analogue of the cohomology annihilation theorem alluded to earlier.

Theorem 1.0.7. Given a proper morphism f : X → Spec(A) with A excellent, there exists proper
cover π : Y → X such that π∗(H i(X,OX)) ⊂ p(H i(Y,OY )) for all i > 0.

Our proof of Theorem 1.0.7 is geometric, relying ultimately on the study of semistable curve
fibrations. Using Theorem 1.0.7, we are able to reprove Theorem 1.0.3 in yet another way in §8.2.

In Chapter 9, we study the direct summand conjecture. This conjecture asserts that regular
rings satisfy Condition 1.0.2, and formed our original motivation for studying Conditions 1.0.2 and
1.0.1. Under the analogy with rational singularities, this conjecture can be viewed as asking if
smooth schemes have rational singularities. The conjecture is easy in characteristic 0 (see Propo-
sition 3.1.5), known in characteristic p by work of Hochster (see Theorem 3.2.1), and known in
mixed characteristic in dimension ≤ 3 by work of Heitmann [Hei02]. In Chapter 9, we study this
conjecture in mixed characteristic using techniques and results from Faltings’ theory of almost étale
extensions (see [Fal02]), originally discovered in p-adic Hodge theory. Our main result is that the
direct summand conjecture holds in arbitrary dimensions when the ramification is supported on a
normal crossings divisor (see Theorem 9.0.1):

Theorem 1.0.8. Let R be a p-adic ring that is smooth over a finite extension of Zp, and let f : R→
S be the normalisation of R in a finite extension of its fraction field. Assume f is étale away from a
divisor with normal crossings. Then f is split as an R-module map.

A word on examples: we have tried hard to find many examples of most conditions, definitions,
and theorems appearing in this thesis. The more interesting amongst these are: Example 4.2.4,
Corollary 4.2.8, §5.5.2, Proposition 5.6.5, §6.5, Example 7.3.3, and Example 9.1.8.
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Chapter 2

Conventions

We list a few conventions followed throughout this thesis. Along the way, we also summarise
relevant background material in Grothendieck duality theory, if only to setup notation.

1. Finiteness conditions: All schemes occuring in Chapters 3 through 8 are assumed to be
noetherian.

2. Quasicoherent sheaves: We let QCoh(X) denote the category of quasicoherent sheaves on a
schemeX . WhenX is affine, we identify objects in QCoh(X) with modules over Γ(X,OX).
We adopt similar conventions for the category Coh(X) of coherent sheaves.

3. Derived categories: Given a noetherian scheme X , we use D(Coh(X)) to denote the derived
category of Coh(X). For integers m,n ∈ Z with m ≤ n, we use D[m,n](Coh(X) to denote
the full subcategory of D(Coh(X)) spanned by complexes K with Hi(K) = 0 for i <
m or i > n. We make similar definitions for Db(Coh(X)) (all complexes with bounded
cohomology),D≤n(Coh(X)), etc. As a reference for triangulated categories and t-structures,
we suggest [BBD82, §1].

4. Dualising complexes: A schemeX possessing a dualising complex ω•X in the sense of [Har66,
Chapter V, §2] always has the following normalisation: the dualising sheaf ωX as defined in
[Har77, Chapter III, §7] occurs as H−d(ω•X). Thus, we have ω•X ∈ D[−d,0](Coh(X)), where
d = dim(X).

5. Local duality: Let (S, s) = (Spec(R),m) be a noetherian local scheme possessing a dualising
complex ω•R. The local duality functor D (sometimes referred to as Matlis duality) is defined
by HomS(−, E) where E is an injective hull of the residue field R/m. Once a dualising
complex ω•R has been fixed, the hullE may be identified with RΓm(ω•R). This functor is exact,
contravariant, length preserving, and transforms ind-artinian OS-modules to pro-artinian OS-
modules. The duality theorem asserts that applying RΓm(−) induces a functorial equivalence

̂RHom(F, ω•R) ' D(RΓm(F))

for every F ∈ Db(Coh(S)). For more details, we refer the reader to [Har66, Chapter V, §6].

6. Localising local duality: Let (S, s) = (Spec(R),m) be a noetherian local scheme possessing
a dualising complex ω•R, and let p ⊂ R be a prime ideal. Our chosen normalisation for
dualising complexes implies that (ω•R)p ' ω•Rp

[cp] where cp = dim(R) − dim(Rp) is the

4



codimension of p. Hence, for any F ∈ Db(Coh(S)) and any integer i, we have

H−d+i(RHom(F, ω•R))p ' H−dRp+i(RHom(Fp, ω
•
Rp

))

where d = dim(R), and dRp = dim(Rp). Similarly, we also have

D(Hd−i
m (F))p ' D(H

dRp−i
p (Fp)).

One can summarise the above by saying that “codegree” of the local cohomology localises
well. For more details, we refer the reader to [Har66, Chapter V, §6].

7. Grothendieck duality: A proper map f : X → S of schemes possessing dualising complexes
induces a trace map Trf : Rf∗ω•X → ω•S which, in turn, gives rise to a functorial equivalence

Rf∗RHomX(F, ω•X) ' RHomS(Rf∗F, ω•S)

for every F ∈ Db(Coh(X)) (see [Har66, Chapter VII, Theorem 3.3]).

8. Serre duality: This duality is the special case of Grothendieck dualty when S = Spec(k)
is the spectrum of a field, and that X is proper, Cohen-Macaulay, and of equidimension n.
Given F ∈ Db(Coh(X)), there is a functorial isomorphism

H i(X,F)∨ ' Ext−iX (F, ω•X) ' Extn−iX (F, ωX).

The functoriality implies the following: given a map F → G in Db(Coh(X)), the induced
maps

H i(X,F) → H i(X,G)

and
Extn−iX (G, ωX) → Extn−iX (F, ωX)

are dual to each other as maps of finite dimensional vector spaces for each integer i.
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Chapter 3

The direct summand condition

In this chapter, we discuss the direct summand condition. Recall that this condition says:

Condition (1.0.2). Given a finite surjective morphism f : X → S, the morphism OS → f∗OX
admits a section in the category Coh(S) of coherent sheaves on S.

The plan for this chapter is as follows: in §3.1 we discuss the equivalence of Condition 1.0.2
with normality in characteristic 0, and in §3.2 we discuss the analogy between Condition 1.0.2 in
positive characteristic p and the theory of rational singularities by virture of examples.

3.1 The situation in characteristic 0

Condition 1.0.2 in characteristic 0 is classical and simple: it is equivalent to normality. To prove
this claim, we first verify that irreducibility is necessary.

Lemma 3.1.1. Let S be a connected noetherian scheme with irreducible components S1, . . . , Sk
given their reduced structure. Assume k ≥ 2. Then the map i : OS →

∏
i OSi has no splitting in

Coh(S).

Proof. Assume to the contrary that there was a section. Then the cokernel Q = coker(i) can be
viewed as a subsheaf of

∏
i OSi . This sheaf is supported exactly at those points of S through which

more than one of the Si’s pass. As each Si is a maximal irreducible closed subset, the preceding
implies that the image of the natural map Q → OSi is supported on a proper subset of Si. On the
other hand, each Si is an integral scheme and, consequently, its structure sheaf OSi does not contain
a non-zero submodule supported along a proper closed subset. Thus, the image of Q is 0 in each
OSi . This implies that Q = 0 and, consequently, that OS '

∏
i OSi . However, this is clearly false

because the fibres of the two sheaves differ at a point contained in more than one of the Si’s, and
such a point has to exist by connectedness. Thus, we reach a contradiction.

Next, we show that we can always refine the source without alterting the truth of Condition
1.0.2. The proof is trivial, but we record it for completeness.

Lemma 3.1.2. Let f : X → S, and π : Y → X be morphism of schemes. If OS → f∗π∗OY has a
section, so does OS → f∗OX .

Proof. We have a factorisation OS → f∗OX → f∗π∗OY in Coh(S). Hence, if the composite has a
section, so does the first map.

6



We next show that Condition 1.0.2 passes to summands. The proof is again trivial, but the
observation turns out to be useful, especially in the sequel.

Lemma 3.1.3. Let π : U → X be a morphism such that OX → π∗OU has a section. Then X
satisfies Condition 1.0.2 if U does so.

Proof. Let g : Z → X be a finite surjective morphism. Consider the diagram

ZU = Z ×X U
a //

b
��

U

π

��
Z

g // X

The maps a and b are defined by the diagram. This square gives rise to the following commutative
square in Coh(X):

(g ◦ b)∗OZU
' (π ◦ a)∗OZU π∗OUoo

g∗OZ

OO

OX

OO

oo

The arrows on the right and the top are split by assumption. It follows formally that the same is true
for the bottom arrow, as desired.

We now show that Condition 1.0.2 implies its ind-finite version; the additional flexibility of
provided by splitting off ind-finite morphisms is useful in avoiding excellence assumptions.

Proposition 3.1.4. Let S be a noetherian scheme satisfying Condition 1.0.2, and let f : X → S be
a surjective morphism of schemes such that OS → f∗OX is an ind-finite morphism of quasicoherent
OS-algebras. Then OS → f∗OX is split in Coh(S).

Proof. By Lemma 3.1.1, we may assume that S is integral. Hence, the surjectivity of f gives an
exact sequence

0 → OS → OX → Q → 0

with Q defined as the cokernel. This sequence defines a class ob(f) ∈ Ext1S(Q,OS), and our goal
is to show this class vanishes. The assumption implies that X = limXi, where fi : Xi → S is a
finite surjective morphism, and the indexing set is cofiltered. Hence, we can write f∗OX as a filtered
colimit of coherent OS-algebras:

f∗OX = colim fi∗OXi .

Each index i gives an exact sequence

0 → OS → f∗OXi → Qi → 0

where Qi is defined as the cokernel. The formula for f∗OX and the right exactness of colimits gives
the formula

Q = colimi Qi.

Since filtered colimits are exact, this formula translates to

Ext1S(Q,OS) ' lim
i

Ext1S(Qi,OS)

with the limit on the right cofiltered. The functoriality of the construction implies that ob(f) maps
to 0 in each Ext1S(Qi,OS); the preceding formula then implies that ob(f) = 0, as desired.

7



We can now prove the promised result.

Proposition 3.1.5. A noetherian Q-scheme S satisfies the direct summand condition if and only if
S is normal. In particular, the property that “S satisfies Condition 1.0.2” is local on S under the
preceding assumptions.

Proof. As both conditions are stable under taking connected components, we may assume that
S is connected for either implication. Now assume that S is a noetherian Q-scheme satisfying
Condition 1.0.2. We will verify that S is normal. By Lemma 3.1.1, we may assume that S is
integral. Let f : S′ → S be the normalisation of S in its fraction field. By Proposition 3.1.4, the
map OS → f∗OS′ has a section. It now suffices to verify the following ring-theoretic statement: ifR
is an integral domain with normalisation R′, then R→ R′ is a direct summand only if R is normal.
If R → R′ is a direct summand, then the complementary submodule to R in R′ is a torsion-free
R-module whose generic rank is 0. Such modules are forced to be trivial, and the claim follows.

For the converse implication, we need to show that if f : X → S is a finite surjective morphism,
and S is normal and connected, then f∗ : OS → f∗OX has a section in Coh(S). After replacing
X with the normalisation of a dominating irreduicible component thanks to Lemma 3.1.2, we may
assume that X is also normal and connected. Let d denote the degree of the map induced by f
at the level of function fields. Then the map 1

dTrX/S provides a canonical splitting for the map
f∗ : OS → f∗OX (here we use that the trace map on function fields preserves integrality).

Remark 3.1.6. In the proof of Proposition 3.1.5, the characteristic 0 assumption was only used
for the converse implication while dividing by the trace map by the degree. Thus, any noetherian
scheme satisfying Condition 1.0.2 is automatically normal.

3.2 The situation in characteristic p

Condition 1.0.2 in positive characteristic p is subtler than its characteristic 0 avatar: it measures
some kind of positivity (both local and global) on the variety. In this section, we summarise some
known examples (and non-examples) of schemes satisfying this condition. The intuition informing
most of these results is that rings satisfying Condition 1.0.2 are analogous to rational singularities
in characteristic 0, an intuition that will be justified to some extent in Chapters 5 and 7.

3.2.1 The case of regular schemes

The first result we discuss is that regular affine Fp-schemes satisfy Condition 1.0.2. Under the
afore mentioned analogy with the theory of rational singularities, this result may be understood as
analogous to the fact that smooth varieties have rational singularities. We provide two proofs of this
fact: the first is due to Mel Hochster (see [Hoc73]), and the second was discovered by the author.
The latter is certainly obvious to the experts as it is essentially a translation of Hochster’s proof into
local cohomology; we decided to include it as it introduces ideas that will be useful in the sequel.

Proposition 3.2.1 (Hochster). Let R be an regular Fp-algebra, and let f : R → S be finite exten-
sion, i.e., S is a domain, Frac(R) → Frac(S) is a finite field extension, and S is finite over R. Then
f admits an R-linear splitting π : S → R.

Hochster’s proof. Let Q be the quotient S/R. Then the existence of an R-linear splitting of f
amounts to the triviality of the extension class in Ext1R(Q, R) determined by

0 → R→ S → Q → 0
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As Ext groups localise well for the fpqc topology, we immediate reduce to the case that R is a
complete regular local ring with maximal ideal m. Let x1, . . . , xn be a regular sequence generating
m, and set mk = (xk1, . . . , x

k
n) for any integer k ≥ 1. With this notation, we claim that f is R-split

if and only if mkS ∩R = mk. The forward implication is clear. To verify the converse implication,
note that mkT ∩ T = mk implies that fk : R/mk → T/mkT is injective. As the ring R/mk is
Gorenstein, it is injective as a module over itself. Hence, the map fk being injective implies that fk
is split. As {mk}k forms a basis for the m-adic topology on R, we see that f : R→ S is also split.

Given the preceding claim, it suffices to verify that mk+1S ∩ R = mk+1 for each k. We may
now choose an R-linear map φ : S → R such that φ(1) 6= 0 (choose one at the level of function
fields and scale until it is integral). As R/mk+1 is Gorenstein, the socle of m/mk+1 is generated by
the element

∏
i x

k
i . Thus, verifying mk+1S∩R = mk+1 amounts to verifying that

∏
i x

k
i /∈ mk+1T .

Assume towards contradiction that ∏
i

xki =
∑
i

six
k+1
i

for some si ∈ S. The basic idea is that the failure of φ to be a section of i is bounded by φ(1), while
applying Frobenius sufficiently many times to the preceding equation makes this failure unbounded.
In more detail, applying φ to the preceding equation gives

∏
i x

k
i φ(1) ∈ mk+1. By the regularity

of R, this means that φ(1) ∈ m. On the other hand, running this argument again after applying
Frobenius to the preceding equation tells us that φ(1) ∈ mp. Continuing this way, we see that
φ(1) ∈ mpk for all k, which contradicts Krull’s theorem asserting that ∩kmpk = (0).

Second proof. We first explain the idea informally. Using the fact that R is Gorenstein, an elemen-
tary duality argument will reduce us to showing that Hd

m(R) → Hd
m(S) is injective. The kernel of

this map is a Frobenius stable proper submodule ofHd
m(R) of finite length by an inductive argument

due to Grothendieck (see [Gro68a, Exposé VIII, Théorème 2.1]). The regularity of R is regular will
then imply that this is impossible for length reasons.

Now for the details. After localising as in Hochster’s proof, we may assume that (R,m) is a
complete regular local Fp-algebra of dimension d. By the Cohen structure theorem (see [Mat70,
§28, Theorem 28.J and Corollary 2]), we know that R ' kJx1, · · · , xnK. By Lemma 3.1.3 and
the fact that field extensions k → L split as k-modules, we may pass to the algebraic closure
of the coefficient field to assume that k is algebraically closed. In particular, the Frobenius map
F : R → R is finite. Given a finite extension f : R → R, we need to show that the natural map
evf : Hom(S,R) → Hom(R,R) is surjective. By induction, we may assume that the cokernel
Q is supported only at the closed point {m} ⊂ Spec(R). In particular, the cokernel Q has finite
length. Now the fact that R is Gorenstein implies that ωR ' R. Thus, the map being considered
is simply the trace map Hom(S, ωR) → ωR, which is dual to the canonical pullback map Hd

m(f) :
Hd

m(R) → Hd
m(S). As local duality interchanges kernels and cokernels while preserving lengths, it

follows that the kernel ker(Hd
m(f)) has the same length as Q. This kernel is also Frobenius-stable

by construction. On the other hand, since R is regular, the Frobenius map F : R → R is also
flat in addition to being finite. The flat base change isomorphism RΓm(R) ⊗R,F R ' RΓm(R)
(see [BS98, §4.3.2]) then shows that Hd

m(R) has a natural F -crystal structure. It then follows that
ker(Hd

m(f)) ⊂ Hd
m(R) is a finite length Frobenius-stable submodule of the F -crystal Hd

m(R). By
explicit calculation (see Lemma 3.2.2 below), however, we know that Hd

m(R) has no finite length
Frobenius stable submodules except the trivial one. Hence, we see that ker(Hd

m(f)) = 0 and,
therefore, that Q = 0 as desired.

Here is the elementary calculation that was needed in our proof of Proposition 3.2.1.
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Lemma 3.2.2. Let X be an regular Fp-scheme of dimension d, and let (E, φ) by a unit F -crystal
onR, i.e., E is a quasi-coherent sheaf, and φ : F ∗E ' E is an isomorphism, where F is the absolute
Frobenius on X . If F ⊂ E is a finite length coherent subsheaf with length λ, then φ(F ∗F) ⊂ E is a
finite length coherent subsheaf with length pdλ. In particular, φ does not preserve F unless d = 0
or F = 0.

Proof. The case d = 0 is trivial, so we assume d > 0. As the claims are étale local on the base, we
may assume that X = Spec(R) is local. In this case, the sheaf F admits a finite filtration whose
graded pieces look like R/m where m ⊂ R is the maximal ideal. By flatness, we are reduced to
verifying the claim for F ' R/m. In this case, the sheaf F ∗(F) is simply R/m[p], where m[p] is the
ideal generated by the p-th powers of elements of m. In particular, its length is clearly bigger than 1
as long as d > 0, proving the claim.

Remark 3.2.3. The second proof of Proposition 3.2.1 given above uses the fact thatR is Gorenstein,
and that the top dimensional local cohomology group Hd

m(R) does not contain any F -stable finite
length submodules except 0. By [Smi97b, Theorem 2.6], it follows that proof goes through to show
that any excellent local Gorenstein F -rational ring satisfies Condition 1.0.2. This proof will be
re-explained in Chapter 7 with more context.

3.2.2 Some further affine examples

We now discuss a few further examples and one non-example of rings satisfying Condition 1.0.2.
The key feature in the examples is that the corresponding characteristic 0 objects have rational
singularities. The first example we look at is the cone on the standard quadric.

Example 3.2.4. We claim that R = kJx1, . . . , xnK/(
∑

i x
2
i ) satisfies Condition 1.0.2 for n ≥ 3

provided char(k) > 2. By Remark 3.2.3, it suffices to show that R is F -rational. By [Hun96,
Theorem 4.2], it suffices to show that R/(xn) is F -rational. Thus, we can set up an induction once
we settle the n = 3 case. This case follows from [Hoc73, Example 3]. Alternately, in the n = 3
case, we may identify S with (completion at the origin of) the affine cone on a smooth conic in P2.
Applying the techniques of Lemma 4.2.2 and Example 4.2.4, we compute that

H2
m(R) ' ⊕n∈ZH

1(P1,O(2n)).

The preceding presentation is Frobenius equivariant, where Frobenius acts on the grading on the
right by multiplying the weights by p. By inspection, it easily follows then that H2

m(R) has no
Frobenius-stable proper non-zero submodules. As R is Gorenstein we can follow the arguments
given in the second proof of Theorem 3.2.1 to see that R satisfies Condition 1.0.2.

Next, we show that certain quotient singularities satisfy Condition 1.0.2.

Example 3.2.5. Let k be a field, and let R be a regular k-algebra. Let G be a linearly reductive
group acting on R. Then Spec(RG) satisfies Condition 1.0.2. Indeed, the inclusion RG → R has
an RG-linear section by the Reynolds operator. Lemma 3.1.3 and Example 3.2.1 finish the proof.
More generally, the same argument shows thay any subring A of a regular ring R that splits off as
anA-linear summand satisfies Condition 1.0.2. In particular, ifG is a reductive group over C acting
on an affine algebraic C-scheme Spec(R), then infinitely many positive characteristic reductions of
Spec(RG) satisfy Condition 1.0.2.

Lastly, we discuss a non-example due to Hochster: a hypersurface singularity of dimension 2 in
characteristic 2 that violates Condition 1.0.2. Aside from its intrinsic interest, this example is meant
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to caution the reader against putting excessive faith in the belief that Condition 1.0.2 is equivalent
to rationality: the standard lift of this hypersurface to characteristic 0 has rational singularities.

Example 3.2.6. Let k be a field of characteristic 2. Let S = k[u, v] be a polynomial ring, and let
R = k[u2, v2, u3 + v3] ↪→ S. Since char(k) = 2, R admits the presentation R = k[x, y, z]/(x3 +
y3 + z2) where x = u2, y = v2, and z = u3 + v3. In particular, Spec(R) is a hypersurface
singularity of dimension 2. Since the singularity is isolated, R is even normal. On the other hand,
Spec(R) violates Condition 1.0.2 because the natural map f : Spec(S) → Spec(R) is a finite
surjective map such that OSpec(R) → f∗OSpec(S) has no section: identifying sheaves with modules
and applying such a section s to u3 + v3 = u · u2 + v · v2 would give us u3 + v3 = s(u3 + v3) =
s(u)u2 +s(v)v2 ∈ (u2, v2)R which is false. The same example can be adapted to arbitrary positive
characteristic p by setting R = k[up, vp, ua + va] for some p < a < 2p.

3.2.3 Some global examples

The examples discussed hitherto were all affine. Requiring Condition 1.0.2 on a projective variety
X over a positive characteristic field k leads to questions of a very different flavour as the geometry
of X is heavily constrained. For example, Theorem 5.0.1 from Chapter 5 shows that H i(X,O) = 0
for all i > 0. In fact, Theorem 5.0.1 implies that Condition 1.0.2 is equivalent to the much stronger
sounding Condition 1.0.1. Thus, examples might be harder to find; nevertheless, they do exist. We
will discuss such examples in §4.2.3 and §5.6. In the present section, we simply give an explicit
example to show that not all smooth projective varieties satisfy Condition 1.0.2.

Example 3.2.7. Let E be an elliptic curve over an algebraically closed field k of positive charac-
teristic. We will show that E does not satisfy Condition 1.0.2. In the case E is supersingular, we
know that the Frobenius morphism F : E → E induces the 0 map H1(E,OE) → H1(E,OE).
Identifying the target with the cohomology of the second term of the exact sequence

0 → OE → F∗OE → Q → 0

shows that the map OE → F∗OE is not split. Thus, supersingular elliptic curves fail Condition
1.0.2. If E is ordinary, then H1(E,Z/p) 6= 0. The Artin-Schreier exact sequence of étale sheaves
for E takes the form

0 → Z/p→ OE
xp−x→ OE → 0.

The map x 7→ xp − x is clearly surjective on k ' H0(E,OE). It follows that the image of
H1(E,Z/p) → H1(E,OE) is non-zero. On the other hand, classes in H1(E,Z/p) can be trivi-
alised by finite covers. Indeed, a class is classified by a Z/p-torsor f : C → E, and passing to C
kills the class. It follows then that the map H1(E,OE) → H1(C,OC) is 0. Therefore, the induced
map OE → f∗OC is not split.
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Chapter 4

The derived direct summand condition

In this chapter, we discuss the derived direct summand condition. Recall that this condition says:

Condition (1.0.1). Given a proper surjective morphism f : X → S, the morphism OS → Rf∗OX
admits a section in the derived category D(Coh(S)) coherent sheaves on S.

The plan for this chapter is as follows: in §4.1 we discuss the equivalence of Condition 1.0.1
with that of rational singularities in characteristic 0 (due to Kovács [Kov00]), and in §4.2 we discuss
some examples in charactersitic p which illustrate the parallels between Condition 1.0.1 and the
notion of rational singularities.

4.1 The situation in characteristic 0

Condition 1.0.1 is closely related to the notion of rational singularities. Recall the following classical
definition:

Definition 4.1.1. An noetherian integral scheme S has rational singularities if there exists a proper
birational map f : X → S with X regular such that OS ' Rf∗OX .

Examples of rational singularities are cones on Fano hypersurfaces and quotient singularities.
Kovács (see [Kov00]) shows that a complex variety S satisfies Condition 1.0.1 if and only if it has
rational singularities. We review a proof below. Both directions are proven using Grothendieck
duality and the Grauert-Riemenschneider vanishing theorems, following Kovács strategy for the
forward direction. Kovács proves the reverse directon differently, using Kollár’s vanishing theorems
(see [Kol86a] and [Kol86b]). Consequently, he can prove more such as a higher dimensional version
of Kempf’s criterion for rational singularities. We eschew this perspective to keep our treatment low
brow; the reader interested in the deeper proof is referred to [Kov00, Theorems 2 and 3].

Warning 4.1.2. Throughout this thesis, we often make statements to the effect that certain di-
agrams of complexes of exist and are commutative. In each such case, what is really meant is
the corresponding statement in the derived category, i.e., that the relevant maps exist up to quasi-
isomorphisms, and the diagrams commute up to homotopy. We have preferred to commit this abuse
of language as we believe it improves readability without making any real sacrifices.

Theorem 4.1.3 (Kovács). Let S be a scheme of finite type over a field k of characteristic 0. Then S
satisfies Condition 1.0.1 if and only if it has rational singularities.
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Proof. Let us prove first that if S satisfies Condition 1.0.1, then S has rational singularities. By
Proposition 3.1.5, we may assume S is normal. By Hironaka’s theorem (see [Hir64]) or even the
weaker results in Abramovich-de Jong (see [AdJ97]), we may assume that there exists a proper
birational map f : X → S with X smooth. The natural map OS → Rf∗OX has a section by
assumption. Thus, we have a diagram

OS → Rf∗OX → OS

with the composite map the identity. Applying RHom(−, ω•S) with ω•S the dualising complex on S
(normalised so that the dualising sheaf sits in homological degree d), we obtain a diagram

ω•S → RHom(Rf∗OX , ω•S) → ω•S

with the composite map the identity. By Grothendieck duality, the middle term is identified with
Rf∗ω•X where ω•X is the dualising complex on X normalised as above. Thus, we obtain a diagram

ω•S → Rf∗ω•X → ω•S

with the composite map the identity. As X is smooth, ω•X ' ωX [d] where ωX = det(Ω1
X) is the

canonical bundle, and d = dim(X) = dim(S). Grauert-Riemenschneider vanishing (see [Laz04a,
Theorem 4.3.9]) tells us that Rf∗ωX is concentrated in degree 0. Thus, the complex ω•S is also
concentrated in degree d. In particular, S is Cohen-Macaulay with dualising complex ωS [d], where
ωS is the dualising sheaf. Moreover, the preceding diagram tells us that we have a diagram

ωS → f∗ωX → ωS

with the composite map the identity. As ωX is a torsion free sheaf of generic rank 1, the same is
true for f∗ωX . In particular, it admits no non-trivial direct summands for rank reasons. Hence, we
have ωS ' f∗ωX and, therefore, ω•S ' Rf∗ω•X . Now we have the following sequence of canonical
isomorphisms:

OS ' RHom(ω•S , ω
•
S) ' RHom(Rf∗ω•X , ω

•
S) ' Rf∗RHom(ω•X , ω

•
X) ' Rf∗OX

which implies that S has rational singularities.
For the reverse implication, let S be a complex variety with rational singularities, i.e., there

exists a resolution f : X → S such that OS ' Rf∗OX . Let g : Y → S be a proper surjective
morphism. We need to show that OS → Rg∗OY has a section. By repeatedly cutting Y by hy-
perplane sections, we may assume that g is generically finite. By the Raynaud-Gruson flattening
theorem (see [RG71, Théorème 5.2.2]) or a simple Hilbert scheme argument, we can find a diagram
as follows:

Y ′′ //

h
��

Y

g

��
Y ′ b // S.

Here b is a normalised blowup of S, h is the strict transform of g along b, and h is finite flat. As we
are in characteristic 0 and Y ′ is normal, OY ′ → h∗OY ′′ ' Rh∗OY ′′ has a section coming from the
trace map. Thus, to show that OS → Rg∗OY has a section, it suffices to show that OS → Rb∗OY ′
has a section. In other words, we may assume that g is a modification. Moreoever, by Hironaka or
Abramovich-de Jong as above, we may even assume that Y is smooth. The situation now can be
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summarised in the following diagram:

X

f
��

Y
g // S.

Here f is the original resolution witnessing S having rational singularities, while g is another res-
olution. We need to show that OS → Rg∗OY has a section. Using resolutions, we may fill up the
above diagram to get a diagram

Z
g′ //

f ′

��

X

f
��

Y
g // S

where all maps are proper birational maps, and Z is smooth. We will first show that the map
OX → Rg′∗OZ has a section, and then use this section to get the desired result.

The pushforwards Rig′∗ωZ vanish for i > 0 by Grauert-Riemenschneider vanishing (see [Laz04a,
Theorem 4.3.9]). By birational invariance of plurigenera, we also know that the trace mapH0(Z, ωX) '
H0(X, g′∗ωZ) → H0(X,ωX) induces an isomorphism. Hence, g′∗ωZ ' ωX , and consequently,
Rg′∗ω

•
Z ' ω•X . Applying RHom(−, ω•S), we find that OX ' Rg′∗OZ via the natural map. By the

commutativity of the square

R(g∗ ◦ f ′∗)OZ ' R(f∗ ◦ g′∗)OX Rf∗OXoo

Rg∗OY

OO

OSoo

OO

and the fact the top and right arrows have sections, it follows that OS → Rg∗OY has a section.

Remark 4.1.4. Theorem 4.1.3 uses the characteristic 0 assumption in each direction of the implica-
tion. Namely, both the Grauert-Riemenschneider vanishing theorem and resolution of singularities
are used in each direction. We do not know which direction, if any, survives in general.

4.2 The situation in characteristic p

As indicated in Remark 4.1.4, we do not know the exact relation between Condition 1.0.1 and the
theory of rational singularities. Nevertheless, we believe that the two are very closely related. In
this section, we will provide some examples and non-examples to support this intuition.

4.2.1 Regular schemes

We first discuss the example of regular schemes. This can be viewed as the positive characteristic
analogue of the fact that smooth varieties have rational singularities. The bulk of that proof will be
explained in Chapter 5.

Theorem 4.2.1. Let S = Spec(R) with R be a regular Fp-algebra. Then S satisfies Condition
1.0.1.
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Proof. Let f : X → S be a proper surjective morphism. By Theorem 5.0.1, there exists a finite
surjective morphism π : Y → X such that, with g = f ◦ π, the pullback map τ≥1Rf∗OX →
τ≥1Rg∗OY is 0. By applying Hom(Rf∗OX ,−) to the exact triangle

g∗OY → Rg∗OY → τ≥1Rg∗OY → g∗OY [1]

we see that the natural pullback map Rf∗OX → Rg∗OY factors through g∗OY → Rg∗OY . As
g : Y → S is a proper surjective morphism, the algebra g∗OY is a coherent sheaf of algebras
corresponding to the structure sheaf of a finite surjective morphism. By Theorem 3.2.1, the natural
map OS → g∗OY has a splitting, and thus the same is true for OS → Rf∗OX .

4.2.2 Some cones

We now discuss a non-example: a cone on an elliptic curve. Such singularities are not rational in
characteristic 0 (this fact is well-known, follows from Theorem 4.1.3, and is explained below). In
order to prove that this singularity violates Condition 1.0.1 in general, we need a result in algebra.

Lemma 4.2.2. Let X = Spec(R) with (R,m) a Cohen-Macaulay local ring of dimension d > 1
essentially of finite type over a field k, and let j : V ↪→ X be complement of the closed point. Then
we have:

1. R0j∗OV ' R.

2. Rij∗OV = 0 for 0 < i < d− 1.

3. Rd−1j∗OV ' Hd
m(R).

4. The R-module ExtdR(Hd
m(R), R) is free of rank 1. The complex Rj∗OV determines a canon-

ical generator of this module.

Proof. For any local scheme (X, 0) = (Spec(R),m), with U = X−{x}, we have an exact triangle

RΓm(R) → RΓ(X,OX) → RΓ(U,OU ) → RΓm(R)[1].

Since X is affine, the middle term vanishes in positive degrees. The first three claims now follow
as the Cohen-Macaulay condition is equivalent to the vanishing of H i

m(R) for i < d. For the last
claim, note that everything can be checked after passage to the algebraic closure. Thus, we assume
that k is algebraically closed. We will first verify the claim for R regular, and then deduce the one
for the Cohen-Macaulay case by flat base change.

Assume thatR is regular. As all the claims being made are local on Spec(R) and detectable after
completion, we reduce to the case that R is complete. Since k is algebraically closed, there exists
an isomorphism kJx1, · · · , xdK ' R. Since completion commutes with taking local cohomology,
we reduce our calculations to understanding the local cohomology of Ad at the origin. Using the
Gm-action, we find an H0(Ad − {0},O)-equivariant identification

Rij∗OV ' ⊕k∈ZH
i(Pd−1,O(k)).

Now the claim follows from standard calculations of the cohomology of projective space.
In the general Cohen-Macaulay case, we localise as above and assume that there exists a finite

morphism f : A → R with (A,mA) a regular local ring of dimension d. Since R is Cohen-
Macaulay, the map f is finite flat thanks to Auslander-Buschbaum. If we let U = Spec(A)−{mA},
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then flat base change (see [Gro61, Proposition 1.4.15]) gives us an isomorphism

a : RΓ(V,OV ) ' RΓ(U,OU )⊗A R.

Given the claims for A, it now suffices to verify that ExtdR(Hd
m(R), R) is free of rank 1. By the

flatness of f , for any A-module M , we have a change of rings isomorphism

ExtpR(M ⊗A R,R) ' ExtpA(M,R).

In the case that M = Hd
mA

(A), we know that M ⊗A R ' Hd
m(R) by the flat base change isomor-

phism a. Thus, the above isomorphism gives

ExtdR(Hd
m(R), R) ' ExtdA(Hd

m(A), R) ' ExtdA(Hd
m(A), A)⊗R ' A⊗R ' R.

Hence, the Ext-group has the correct form, as desired.

Remark 4.2.3. It is probably unnecessary to assume that we are working over a field in Lemma
4.2.2. The natural approach to proving this would be to use the Cohen presentation theorems and
proceed as above. We do not pursue this extra generality here as it is not needed for Example 4.2.4.

Here is the promised example.

Example 4.2.4. Let k be a field, and let f(x, y, z) be a homogeneous cubic defining a non-singular
elliptic curve E ⊂ P2. Let X = Spec(k[x, y, z]/(f)) be the affine cone on E. We will show that
X does not satisfy Condition 1.0.1. To show this, it suffices to exhibit a proper surjective morphism
π : B → X such that OX → Rπ∗OB is not split. Our choice of B will be the blowup of X at the
origin. The normality of X and the fact that the blowup map π : B → X is an isomorphism away
from the origin imply that OX ' R0π∗OB . As the fibres of π have dimension at most 1, it follows
that Riπ∗OB = 0 for i > 1. We will show that R1π∗OX ' κ(0) where κ(0) is the structure sheaf
of the origin, and that the extension class in Ext2X(κ(0),OX) determined by the complex Rπ∗OB
is non-zero. This will suffice to prove the claim, as the existence of a section of OX → Rπ∗OB is
tantamount to splitting the complex Rπ∗OB .

The space B can be identified with the total space of the line bundle O(−1) on E with the zero
section coinciding with the exceptional divisor. If f : B → E denotes the projection map, then the
affineness of f and the construction of B imply that

Rf∗OB = f∗OB = ⊕i≥0O(i).

Riemann-Roch then shows that H1(E,O) ' H1(E,Rf∗OB) ' H1(B,O). As X is affine, it
follows that H0(R1π∗OB) is 1-dimensional. The sheaf R1π∗OB is only supported at the origin, so
R1π∗OB ∼= κ(0).

Let U ⊂ X be the complement of the origin in X . As π : B → X is an isomorphism over U ,
we may identify U with an open subset of B. We may summarise the picture obtained thus far in
the following diagram:

U

j

��

i

~~}}
}}

}}
}

B
π //

f
��

X

E

16



Under the identification of B with the total space of the line bundle O(−1)|E , the open subset
U is identified with the complement of the zero section, i.e., as the total space of the Gm-torsor
O(−1)|E − 0(E) over E. This tells us that

R(π ◦ i)∗OU = π∗i∗OU = ⊕i∈ZO(i).

Hence, H1(U,O) = ⊕i∈ZH
1(E,O(i)).

The factorisation j = π ◦ i gives us a morphism i∗ : Rπ∗OB → Rj∗OU . Identifying sheaves
with their spaces of sections and using the previous calculations, we see that i∗ is an isomorphism
on R0, and induces the inclusion of a 1-dimensional vector space H1(B,O), viewed as a sheaf
on X supported at the origin, into the R-module H1(U,O). By Lemma 4.2.2, we may identify
H1(U,O) = H0(R1j∗OU ) with the local cohomology group H2

m(R) which, by the Gorenstein
property, is identified with an injective hull of the residue field k. Thus, the map on R1 induced by
i∗ can be identified with an injective map a : k ⊂ H2

m(R), which is unique up to scaling because
H2

m(R) is an injective hull of k. We may summarise this information in the following morphism of
exact triangles

OX // Rπ∗OB //

��

H1(B,O)[−1] ' k[−1]
ob(B) //

a[−1]
��

OX [1]

OX // Rj∗OU // H1(U,O)[−1] ' H2
m(R)[−1]

ob(U) // OX [1].

By Lemma 4.2.2, the class ob(U) determines a canonical generator of the group Ext2R(H2
m(R), R) '

R. SinceR is Gorenstein, the functor Ext2R(−, R) is simply the local duality functor. By the discus-
sion above, the map a was injective. Thus, by duality, the map Ext2R(H2

m(R), R) → Ext2R(k,R)
determined by a is simply the natural projection map R → R/m (up to a unit). In particular, the
image ob(B) of the class ob(U) is non-zero, as desired.

Remark 4.2.5. The methods of Example 4.2.4 can be adapted to show the following more general
statement: if (S, 0) = (Spec(R),m) is a Gorenstein normal surface singularity, and f : X → S is
a resolution with R1f∗OX 6= 0, then OS → Rf∗OX does not admit a section. In order to apply the
arguments of Example 4.2.4, one needs to know that the map i∗ : R1f∗OX → R1j∗OU is non-zero,
where j : U ↪→ S is the punctured spectrum, and i : U → X is a section of f over U . To see this,
let E denote the exceptional fibre f−1(0). Note that E = X − i(U). Since E is a Cartier divisor,
the functor i∗ is exact. Now consider the short exact sequence

0 → OX → i∗OU → Q → 0

Since i∗ is exact, the middle term computes the cohomology of U . Hence, our claim will follow if
we can show that H0(Q) = 0. The sheaf Q has a natural presentation

Q = colimn OX(nE)/OX

which defines a filtration whose associated graded pieces look like OX(nE) ⊗ OE with n > 0.
Since E is exceptional, we know that OX(nE)⊗OE is an antiample line bundle on E when n > 0.
It follows that H0(OX(nE) ⊗ OE) = 0 when n > 0. By devissage and the commutation of
cohomology with inductive limits, it follows that H0(Q) = 0, as desired.
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4.2.3 Some global examples

Our goal in this section is to discuss some global or projective examples of varieties satisfying
Condition 1.0.1, fulfilling a promise made in §3.2.3. The techniques used in Theorem 4.1.3 show
that Condition 1.0.1 is a local condition in characteristic 0. In particular, all smooth projective
varieties over C satisfy it. On the other hand, as explained in Example 3.2.7, even Condition 1.0.2
is not a local condition in positive characteristic. In fact, thanks to Theorems 5.0.1 and 5.0.2, we
know that projective varieties S satisfying Condition 1.0.1 in positive characteristic are strongly
constrained: the groups H i(S,O) vanish for i > 0, for example. Nevertheless, we will show below
that there are large classes of varieties satisfying Condition 1.0.1, namely, the toric ones. In §5.6,
we will give a non-toric exampple.

We begin with some preliminary lemmas. The first one is an analogue of Lemma 3.1.3 with an
identical proof.

Lemma 4.2.6. Let π : U → X be a morphism such that OX → Rπ∗OU has a section. Then X
satisfies Condition 1.0.1 if U does so.

Proof. Let g : Z → X be a proper surjective morphism. Consider the diagram

ZU = Z ×X U
a //

b
��

U

π

��
Z

g // X

The maps a and b are defined by the diagram. This square gives rise to the following commutative
square in D(Coh(X)):

R(g ◦ b)∗OZU
' R(π ◦ a)∗OZU Rπ∗OUoo

Rg∗OZ

OO

OX

OO

oo

The arrows on the right and the top are split by assumption. It follows formally that the same is true
for the bottom arrow, as desired.

Next, we show that Condition 1.0.1 restricts well to open subschemes.

Lemma 4.2.7. Let U ↪→ S be an open immersion of noetherian schemes. Then U satisfies Condi-
tion 1.0.1 if S does so.

Proof. Let f : Y → U be a proper surjective morphism. By Nagata compactification, we can
find an extension f : Y → S of f to S. By assumption, we know that OS → Rf∗OY is split.
Restricting such a section to U and using the commutation of cohomology with flat base change
gives the desired result for U .

As a corollary, we arrive at the desired examples.

Corollary 4.2.8. Toric varieties that are projective over an affine satisfy Condition 1.0.1. In partic-
ular, projective spaces and their products satisfy Condition 1.0.1.

Proof. A toric variety X that is projective over an affine can be obtained as a quotient U/G (see
[MS05, Theorem 10.27]), where U ⊂ An is an open subscheme, and G ⊂ Gn

m is an algebraic
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subgroup preserving U . As Gn
m is linearly reductive, so is G (see [AOV08, Proposition 2.5]). In

particular, we see that OX → π∗OU ' Rπ∗OU is a direct summand. The result now follows
by combining Lemmas 4.2.6 and 4.2.7 and the fact that An satisfies Condition 1.0.2 thanks to
Hochster’s theorem (see Proposition 3.2.1).
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Chapter 5

Positive characteristic

This chapter forms the core of our investigations into the nature of Conditions 1.0.2 and 1.0.1 in
positive characteristic p. The main goal of this chapter is to prove the following two theorems:

Theorem 5.0.1. Let f : X → S be a proper morphism of noetherian Fp-schemes of finite Krull
dimension. Then there exists a finite surjective morphism π : Y → X such that, with g = f ◦ π, the
pullback map π∗ : τ≥1Rf∗OX → τ≥1Rg∗OY is 0.

Theorem 5.0.2. Given a noetherian Fp-scheme S, Condition 1.0.2 is satisfied if and only if Condi-
tion 1.0.1 is satisfied.

This chapter is organised as follows: in §5.1 we review some general results about derived
categories used in our proof; in §5.2 we prove Theorems 5.0.1 and 5.0.2; in §5.3 we make some
comments related to our proof of Theorems 5.0.1 and 5.0.2; in §5.4, we formulate and prove some
(essentially already known) results in commutative algebra using the above theorems; in §5.5 we use
our results to answer some questions raised by Karen Smith and also provide some counterexamples
that seem to be missed in the literature; in §5.6 we use our results to provide some examples of non-
toric smooth projective varieties satisfying Condition 1.0.2.

5.1 Some facts about derived categories

The purpose of this section is to collect a couple of well-known facts about triangulated cate-
gories for later use. As a general reference for triangulated categories and t-structures, we suggest
[BBD82]. For the convenience of the reader, we recall some notation regarding truncations

Notation 5.1.1. Let D be a triangulated category with a t-structure given by a pair (D≥0,D≤0)
of full subcategories satisfying the usual axioms. For each integer n, we let D≥n = D≥0[−n]
(respectively, D≤n = D≤0[−n]); this can be thought of as the fullsubcategory spanned by objects
with cohomology only in degree at least (respectively, at most) n. Moreover, there exist truncation
functors: for each integer n, there exist endofunctors τ≤n and τ≥n of D which are retractions of
D onto the fullsubcategories D≤n and D≥n. We let τ>n = τ≥n+1, and τ<n = τ≤n−1. These
truncation functors are not exact, but they sit in an exact triangle

τ≤n → id → τ>n → τ≤n[1]

Lastly, we point out that the preceding notation clashes with the standard notation from topology
concerning Postnikov truncation functors: if A is a complex of abelian groups bounded below 0,
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and K denotes the Dold-Kan functor which takes such a complex to its associated simplicial set,
then K(τ≥−n(A)) ' τ≤nK(A), where the latter is the Postnikov truncation of K(A) in homotopy
≤ n. This will not be an issue for us as we will never work with triangulated categories not coming
from an abelian category.

5.1.1 Cohomologically trivial maps are nilpotent

Fix a triangulated category D, with a t-structure (D≥0,D≤0). The first result we need arises from
the following question: given a morphism f : K → L in D such that H∗(f) = 0, when can we
conclude that f = 0?

As the non-trivial extension Z/2 → Z/2[1] in the derived category D(Ab) of abelian groups
shows, the short answer is “not always”. To understand this phenomenon better, fix a test object
M ∈ D, and consider the associated map of abelian groups

Hom(M,f) : Hom(M,K) → Hom(M,L)

The chosen t-structure gives rise to a functorial filtration on the morphism spaces of D. Thus, the
preceding map is a filtered map of filtered abelian groups. The assumption that H∗(f) = 0 implies
that this filtered map induces the 0 map on the associated graded pieces. In other words, f moves the
filtration one level down. This simple analysis suggests that under certain boundedness hypotheses,
we may be able to salvage an implication of the form “H∗(f) = 0 ⇒ f = 0” at the expense of
iterating a map like f a few times. This idea informs the title of this section, and is formalised in
the following lemma:

Lemma 5.1.2. Let D be a triangulated category with t-structure (D≥0,D≤0) whose heart is A.
Assume that for a fixed integer d > 0, we are given objects K1, . . . ,Kd+1 ∈ D[1,d] and maps
fi : Ki → Ki+1 such that Hd+1−i(fi) = 0 for all i. Then the composite map fd ◦ · · · ◦ f2 ◦ f1 :
K1 → Kd is the 0 map.

Proof. In D, we have the exact triangle

τ≤d−1K2 → K2 → Hd(K2)[−d] → τ≤d−1K2[1]

where τ≤j : D → D≤j are the truncation functors associated to the given t-structure. Applying
HomD(K1,−), using that it’s a triangulated functor, and using the formula

HomD(K1,H
d(K2)[−d]) = HomD(K1[d],Hd(K2)[0])

= HomD≤0(K1[d],Hd(K2)[0])
= HomD≤0(H0(K1[d]),Hd(K2)[0])
= HomD≤0(Hd(K1)[0],Hd(K2)[0])
= HomA(Hd(K1),Hd(K2))

we see that the map K1 → Hd(K2)[−d] factors through Hd(f1) and, consequently by hypothesis,
is 0. Thus, we obtain a (non-unique) factorisation of f1 of the form K1 → τ≤d−1K2 → K2. The
same method shows that the morphism τ≤d−iKi+1 → τ≤d−iKi+2 factors through τ≤d−(i+1)Ki+2.
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Thus, we obtain a diagram of morphisms:

K1

��

K1

f1
��

τ≤d−1K2 //

��

K2

f2

��. . . //

��

. . .

fd
��

τ≤0Kd+1
// Kd+1

As Kd+1 ∈ D≥1(A), we see that τ≤0Kd+1 = 0. Thus, the composite vertical morphism on the left
is zero, which implies that the one on the right is 0 as well.

Remark 5.1.3. It seems worthwhile to point out that Lemma 5.1.2 is proven in the abstract setting
of triangulated categories with t-structures rather than the concrete setting of derived categories. In
particular, it applies to triangulated categories of non-algebraic origin, such as the stable homotopy
category of spaces.

5.1.2 Behaviour of truncations

We need a fact concerning a universal property of the truncation functors associated to a t-structure.
The proof is completely trivial given the definition of a t-structure; the only reason we state it here
is that we use it several times.

Lemma 5.1.4. Let D be a triangulated category with t-structure (D≥0,D≤0) whose heart is A.
Given an object K ∈ D≥0, the natural transformation of functors Hom(−, τ≤0K) → Hom(−,K)
is an isomorphism when restricted to D≤0. In particular, for any object A ∈ A, we have an
identification Hom(A, τ≤0K) ' Hom(A,K)

Proof. As K ∈ D≥0, we have an exact triangle

τ≥1K[−1] → H0(K) → K → τ≥1K

with τ≥1K ∈ D>0 and, therefore, τ≥1K[−1] ∈ D>1 ⊂ D>0. On other hand, by one of the axioms
for a t-structure, the group Hom(D≤0,D>0) vanishes. Fixing an object L ∈ D≤0 and applying the
triangulated functor Hom(L,−) to the preceding triangle now finishes the proof.

Remark 5.1.5. Lemma 5.1.4 admits the following generalisation to homotopy theory: if X is an
n-connected CW complex (i.e., πi(X) = 0 for i ≤ n) and Y is an (n + 1)-truncated connected
CW complex (i.e., πi(Y ) = 0 for i > n + 1), then any map f : X → Y is uniquely determined
(up to homotopy) by the induced map πn+1(X) → πn+1(Y ). As the homotopy category of spaces
in not a triangulated category, we cannot directly apply Lemma 5.1.4. Instead, one can argue as
follows: as Y is (n + 1)-truncated, the map f : X → Y uniquely factors as X → τ≤n+1(X) '
K(πn+1(X), n + 1) → Y . The claim now boils down to verifying that maps K(π, n + 1) → Y
are uniquely determined by the induced map K(π, n+ 1) → K(πn+1(Y ), n+ 1) for any group π
(abelian if n+ 1 ≥ 2). This can be shown by climbing up the Postnikov tower of Y and observing
that, by Hurewicz, classes in H i(K(π, n+ 1),Λ) vanish for i ≤ n and any coefficient system Λ.
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5.2 The main theorem

This section is dedicated to the proof of Theorems 5.0.1 and 5.0.2. In fact, the bulk of the work
involves proving Theorem 5.0.1 as Theorem 5.0.2 then follows by a fairly formal argument. The
proof we give here draws on ideas whose origin can be traced back to Hochster and Huneke’s work
[HH92] on big Cohen-Macaulay algebras in positive characteristic. Later in this thesis, we provide
two more proofs of this result: in §6.4, we reprove Theorem 5.0.1 using some general results about
finite flat group schemes, while in §8.2, we prove a mixed characteristic enhancement of Theorem
5.0.1 by completely different geometric methods.

We begin with a rather elementary result on extending covers of schemes.

Proposition 5.2.1. Fix a noetherian scheme X . Given an open dense subscheme U → X and a
finite (surjective) morphism f : V → U , there exists a finite (surjective) morphism f : V → X
such that fU is isomorphic to f . Given a Zariski open cover U = {ji : Ui → X} with a finite
index set, and finite (surjective) morphisms fi : Vi → Ui, there exists a finite (surjective) morphism
f : Z → X such that fUi factors through fi. The same claims hold if “finite (surjective)” is
replaced by “proper (surjective)” everywhere.

Proof. We first explain how to deal with the claims for finite morphisms. For the first part, Zariski’s
main theorem (Théorème 8.12.6 of [Gro66]) applied to the morphism V → X gives a factorisation
V ↪→ W → X where V ↪→ W is an open immersion, and W → X is a finite morphism. The
scheme-theoretic closure V of V in W provides the required compactification in view of the fact
that finite morphisms are closed.

For the second part, by the first part, we may extend each ji ◦ fi : Vi → X to a finite surjective
morphism fi : Vi → X such that fi restricts to fi over Ui ↪→ X . Setting W to be the fibre product
over X of all the Vi is then seen to solve the problem.

To deal with the case of proper (surjective) morphisms instead of finite (surjective) , we repeat
the same argument as above replacing the reference to Zariski’s main theorem by one to Nagata’s
compactification theorem (see [Con07, Theorem 4.1]).

Next, we present the primary ingredient in the present proof of Theorem 5.0.1: a general tech-
nique for constructing covers to annihilate coherent cohomology of Fp-schemes under suitable
finiteness assumptions. The method of construction is essentially borrowed from [HL07] where
it is used to reinterpret and simplify the “Equational Lemma,” one of the main ingrendients in the
proof of the existence of big Cohen-Macaulay algebras in positive characteristic (see [HH92]).

Proposition 5.2.2. Let X be a noetherian Fp-scheme with H0(X,OX) finite over a ring A. Given
an A-finite Frobenius-stable submodule M ⊂ H i(X,OX) for i > 0, there exists a finite surjective
morphism π : Y → X such that π∗(M) = 0

Proof. We first explain the idea informally. As M is A-finite, it suffices to work one cohomology
class at a time. If m ∈ M , then the Frobenius-stability of M gives us a monic additive polynomial
g(Xp) such that g(m) = 0 where Xp acts by Frobenius. After adjoining g-th roots of certain local
functions representing a coboundary, we can promote the preceding equation in cohomology to an
equation of cocycles, i.e, we find g(m) = 0 where m is a cocycle of local functions that represents
m, and the displayed equality is an equality of functions on the nose, not simply up to coboundaries.
Since g is monic, such functions are forced to be globally defined (after normalisation), and this
gives the desired result; the details follow.

Fix a finite affine open cover U = {Ui} ofX , and consider the cosimplicialA-algebra C•(U,OX)
as a model for the A-algebra RΓ(X,OX). The Frobenius action F ∗

X : RΓ(X,OX) → RΓ(X,OX)
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is modelled by the actual Frobenius map Xp : x 7→ xp on each term of this A-algebra. This gives
C•(U,OX) the structure of an A{Xp}-module, where A{Xp} is the non-commutative polynomial
ring on one generator Xp over A satisfying the commutation relation rpXp = Xpr (see [Lau96,
§1.1] for more details on this ring). In more concrete terms, at the level of cohomology, we see the
following: for each polynomial g ∈ A{Xp}, classes α, β ∈ H i(X,OX), and a scalar r ∈ A, we
have g(α+ β) = g(α) + g(β), and g(rα) = rpg(α).

The A-finiteness of the Frobenius stable module M ensures that for any class m ∈ M , there
exists a monic polynomial g ∈ A{Xp} such that g(m) = 0. If we pick representatives in C•(U,OX)
for this equation, we obtain an equation in Ci(U,OX) of the form

g(m̃) = d(n)

where m̃ ∈ Ci(U,OX) is a cocycle lifting m and n ∈ Ci−1(U,OX). As g is a monic equation, we
can find a finite surjective morphism π′ : Y ′ → X such that n = g(n′) for some n′ ∈ Ci(U ×X
Y ′,OY ′). For example, we could do the following: for each component nj of n (where j is a multi-
index), the scheme Vj = Spec(O(Uj)[T ]/(g(T ) − nj)) is a quasi-finite X-scheme such that the
equation g(n′) = n admits a solution in H0(Vj ,OVj ). Using Proposition 5.2.1, we find a Y ′ and n′

with the desired properties. The additivity of Frobenius now tells us that we obtain an equation in
Ci(U×X Y ′,OY ′) of the form

g(m̃− d(n′)) = 0.

The monicity of g implies that the components of m̃− d(n′) are integral over A. Setting Y to be an
irreducible component of Y ′×Spec(A)Spec(A[T ]/(g(T ))) that dominates Y ′ under the natural map,
we find a finite surjective morphism Y → Y ′. The pullback of m̃ − d(n′) in Ci(U ×X Y,OY ) is a
vector of local functions whose components satisfy the monic polynomial g overA. As Y is integral
and H0(Y,OY ) already contains roots of g, it follows that these functions are globally defined.
Thus, they lie in the image of the natural map H0(Y,OY ) → C•(U ×X Y,OY ) where H0(Y,OY )
is viewed as a constant cosimplicial algebra. As the complex underlying the former cosimplicial
algebra has cohomology only in degree 0, it follows that m̃− d(n′) is a coboundary, which implies
that m̃ is a coboundary on Y , which shows that Y satisfies the required conditions.

Remark 5.2.3. It would be interesting to know if Proposition 5.2.2 can be proved purely in the
setting of cosimplicial Fp-algebras. Part of the problem is that we do not know a good definition of
a finite surjective morphism in the dual category of such algebras.

As a corollary of Proposition 5.2.2 and the finiteness properties enjoyed by proper morphisms,
we arrive at the following result:

Corollary 5.2.4. Let f : X → S be a proper morphism of Fp-schemes, with S noetherian and
affine. Then there exists a finite surjective morphism π : Y → X such that π∗ : H i(X,O) →
H i(Y,O) is 0 for i > 0.

Proof. The properness of X over an affine implies that H i(X,O) is a finite H0(X,OX)-module
and that H i(X,OX) = 0 for i sufficiently large (see [Gro61, Corollaire 3.2.3]). Proposition 5.2.2
then finishes the proof.

We will now finish the proof of Theorem 5.0.1. To pass from the conclusion of Corollary 5.2.4
to the general statement of Theorem 5.0.1, the obvious strategy is to cover S with affines, construct
solutions that work over the affines, and take the normalisation of X in the fibre product of all of
these. When carried out, this process produces a finite cover π : Y → X such that, with g = f ◦ π,
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the mapsRif∗OX → Rig∗OY are 0 for i > 0. This is not quite enough to prove the theorem: a map
in D(Coh(S)) that induces the 0 map on cohomology sheaves is not necessarily zero. However,
with the boundedness conditions enforced by properness, a sufficiently high iteration of this process
turns out to be enough.

Proof of Theorem 5.0.1. Fix a finite affine covering U = {Ui} of S, and denote X ×S Ui by Xi.
Using Corollary 5.2.4, we can find finite surjective maps φi : Zi → Xi such that the induced map
Hj(Xi,OXi) → Hj(Zi,OZi) is 0 for each j > 0. Using Proposition 5.2.1, we may find a finite
surjective morphism φ : Z → X such that φUi factors through φi. This implies that Rjf∗OX →
Rj(f ◦ φ)∗OZ is 0 for each j (as vanishing is a local statement on S). Iterating this construction
dim(X) times and using Lemma 5.1.2, we obtain a proper S-scheme g : Y → S and a finite
surjective S-morphism π : Y → X such the natural pullback map π∗ : τ≥1Rf∗OX → τ≥1Rg∗OY
is 0, thereby proving the theorem.

Finally, having proven Theorem 5.0.1, we point out how Theorem 5.0.2 follows. The argument
given is identical to the one in Theorem 4.2.1 and only repeated here for the reader’s convenience.

Proof of Theorem 5.0.2. It is clear that if S satisfies Condition 1.0.1 then it satisfies Condition 1.0.2.
Thus, we equip ourselves with a scheme S satisfying Condition 1.0.2, and a proper surjective mor-
phism f : X → S. By Theorem 5.0.1, there exists a finite surjective morphism π : Y → X
such that, with g = f ◦ π, the pullback map τ≥1Rf∗OX → τ≥1Rg∗OY is 0. By applying
Hom(Rf∗OX ,−) to the exact triangle

g∗OY → Rg∗OY → τ≥1Rg∗OY → g∗OY [1]

we see that the natural pullback map Rf∗OX → Rg∗OY factors through g∗OY → Rg∗OY . As
g : Y → S is a proper surjective morphism, the algebra g∗OY is a coherent sheaf of algebras
corresponding to the structure sheaf of a finite surjective morphism. By assumption, the natural
map OS → g∗OY has a splitting, and thus the same is true for OS → Rf∗OX .

5.3 Commentary

We make a few comments about Theorem 5.0.1. In §5.3.1 we point out how to prove a version of
Theorem 5.0.1 with coefficients. In §5.3.2, we point out how some assumptions in Theorem 5.0.1
cannot be dropped.

5.3.1 Some refinements

Roughly speaking, Theorem 5.0.1 says that proper morphisms behave like finite morphisms after
passage to finite covers when one is working with theorems concerning the annihilation of coherent
sheaf cohomology. In the following proposition, we formalise this intuition, extract a kind of “con-
verse” to this statement, and work with non-trivial coefficients. These results will be useful in the
sequel when we prove vanishing results.
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Proposition 5.3.1. Let S be a noetherian Fp-scheme, and f : X → S be a proper surjective
morphism. Then we can find a diagram

Y
π //

a

��

g

  A
AA

AA
AA

A X

f

��
S′

h // S

with π and h finite surjective morphisms such that for every locally free sheaf M on S and every
i ≥ 0, we have:

1. The morphism h∗ : H i(S,M) → H i(S′, h∗M) factors through f∗ : H i(S,M) → H i(X, f∗M).

2. The morphism π∗ : H i(X, f∗M) → H i(Y, g∗M) factors through a∗ : H i(S′, h∗M) →
H i(Y, g∗M).

Proof. Theorem 5.0.1 gives a finite surjective morphism π : Y → X such that, with g = f ◦ π, we
have a map s and the following diagram:

OS //

��

g∗OY

��
Rf∗OX //

s
99ssssssssss

Rg∗OY

We claim that this is a commutative diagram. The triangle based at Rg∗OY commutes by construc-
tion. Given this commutativity, to see that the triangle based at OS commutes, it suffices to show
that Hom(OS , g∗OY ) → Hom(OS ,Rg∗OY ) is injective. This injectivity (and, in fact, bijectivity)
follows from Lemma 5.1.4. Thus, the preceding diagram is a commutative diagram in D(Coh(S)).
Applying−⊗M, setting S′ to be the Stein factorisation of Y → S, and using the projection formula
now gives the desired result.

5.3.2 Possible generalisations

We have not strived to find the most general setting for Theorem 5.0.1. For example, one can easily
extend the theorem to algebraic spaces or even Deligne-Mumford stacks. On the other hand, the
properness hypothesis seems essential as the example below shows. In fact, the method of the proof
shows that the essential property we use is that the relative cohomology classes of the structure
sheaf for f : X → S are annihilated by a monic polynomial in Frobenius. We do not know if there
is a better characterisation of this class of maps.

Example 5.3.2. Fix a base field k. Let X = A2, and U = A2 − {0}. The quotient map U →
U/Gm = P1 gives a natural identification H1(U,O) = ⊕i∈ZH

1(P1,O(i)). We claim that the
non-zero classes in this group cannot be killed by a finite cover of U . To see this, note that one may
view H1(U,O) as the local cohomology group H2

{0}(X,O) = H2
m(R), where R = k[x, y] is the

coordinate ring ofX and m = (x, y) is the maximal ideal corresponding to the origin. Given a finite
surjective morphism π : Y → U , we may normalise X in π to obtain a finite surjective morphism
π : Y → X which contains π as the fibre over U . As before, the cohomology group H1(Y,O) can
be viewed as H2

Y \Y (Y ,O) which, in turn, may be viewed as H2
m(S), where S is the coordinate ring

of Y considered as an R-module in the natural way. Under these identifications, the pullback map
H1(U,O) → H1(Y,O) corresponds to the morphism H2

m(R) → H2
m(S) induced by the inclusion
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R → S coming from π. By the validity of the direct summand conjecture (proven by Hochster in
[Hoc73]) for equicharacteristic regular rings such as R, the inclusion R → S is a direct summand
as an R-module map. In particular, the map H2

m(R) → H2
m(S) is injective, which shows that the

non-zero classes in H1(U,O) persist after passage to finite covers.

5.4 Application: A result in commutative algebra

We discuss some applications of Proposition 5.2.2 to commutative algebra. Most of these applica-
tions are implicit in [HL07]. The first result we want to dicuss is an analogue of Proposition 5.2.2
for local cohomology.

Proposition 5.4.1. Let (R,m) be an excellent local noetherian Fp-algebra such thatR is finite over
some ring A. For any A-finite Frobenius-stable submodule M ∈ H i

m(R) with i ≥ 1, there exists a
finite surjective morphism f : Spec(S) → Spec(R) such that f∗(M) = 0.

Proof. Since R is excellent, we may pass to the normalisation and assume that R is normal. In
particular, H i

m(R) = 0 for i = 0, 1. For i > 1, we have an Frobenius equivariant identification δ :
H i−1(U,OU ) ' H i

m(R), where U = Spec(R)−{m} is the punctured spectrum of R. Since i > 1,
Proposition 5.2.2 gives us a finite surjective morphism f : V → U such that f∗(δ−1(M)) = 0.
Setting S to be the normalisation of R in V is then easily seen to do job.

Next, we dualise the Proposition 5.4.1 to obtain a global result in terms of dualising sheaves.

Proposition 5.4.2. Let X be an excellent noetherian Fp-scheme of equidimension d that admits
a dualising complex ω•X . Then there exists a finite surjective morphism π : Y → X such that
τ>−d(Trπ) = 0 for i > 0, where Trπ is the trace map Trπ : π∗ω•Y → ω•X .

Proof. Fix an integer i > 0. We prove the claim by induction on the dimension d = dim(X).
We may assume that d > 0 as the there is nothing to prove when the dimension is 0. By repeated
iterations of Lemma 5.1.2, it suffices to find a finite surjective morphism π : Y → X such that
H−d+i(Trπ) = 0. As vanishing of a map of sheaves is a local statement, we reduce to the case
that X is an excellent noetherian local Fp-algebra (R,m) admitting a dualising complex. For each
non-maximal p ∈ Spec(R), we can inductively find a finite morphism πp : Yp → Spec(Rp) such
that H−dRp+i(Trπp) is the 0 map. As explained in Chapter 2, the R-module H−d+i(ω•R) localises
to H−dRp+i(ω•Rp

) at p. Hence, the normalisation πp : Yp → X induces the 0 map on H−d+i(Trπ)
when localised at p. Finding such a cover for each non-maximal prime p in the finite set of associated
primes of H−d+i(ω•R) and normalising X in the fibre product of the resulting collection, we find
a cover π : Y → X such that H−d+i(Trπ) has an image supported only at the closed point.
Setting Y = Spec(S), duality tells us that the image M of Hd−i

m (R) → Hd−i
m (S) is a finite

length Frobenius-stable R-submodule. Proposition 5.4.1 then allows us to find a finite surjective
morphism g : Spec(T ) → Spec(S) such that g∗(M) = 0. It follows that the composite map
π′ : Spec(T ) → Spec(R) induces the 0 map onHd−i

m (R). By duality, we see that H−d+i(Trπ′) = 0
as desired.

Using Proposition 5.4.1, we discover that rings satisfying Condition 1.0.2 are Cohen-Macaulay.
We will use this result in Chapter 7 when comparing Condition 1.0.2 to F -rationality.

Corollary 5.4.3. Let (R,m) is an excellent noetherian local Fp-algebra satisfying Condition 1.0.2.
Assume that R admits a dualising complex. Then R is a normal Cohen-Macaulay domain.
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Proof. The normality of R follows from Remark 3.1.6. To verify that R is Cohen-Macaulay, it
suffices to show that ω•R is concenctrated in degree d where d = dim(R), i.e., that H−d+k(ω•R) = 0
for k > 0. By Proposition 5.4.2, we can find a finite surjective morphism π : Spec(S) → Spec(R)
such that H−d+k(Trπ) = 0, where Trπ : π∗ω•S → ω•R. Since R satisfies Condition 1.0.2, the
inclusion R → S is a direct summand. Applying RHom(−, ω•R), we see that the trace map Trπ
is the projection onto a summand. Hence, the assumption that H−d+k(Trπ) = 0 implies that
H−d+k(ω•R) = 0, as desired.

Remark 5.4.4. One key ingredient in the proof of Proposition 5.4.2 is the good behaviour of local
cohomology and dualising sheaves with respect to localisation. This behaviour, already mentioned
in Chapter 2, was first observed by Grothendieck in [Gro68a, Exposé VIII, Théorème 2.1] where it is
used to show the following: a noetherian local ring (R,m) of dimension d that is Cohen-Macaulay
outside the closed point and admits a dualising complex has the property that H i

m(R) has finite
length for i < d. This argument can also be found in the main theorem [HL07].

5.5 Application: A question of Karen Smith

The main result of Hochster-Huneke [HH92] is a result in commutative algebra. While geometrising
it in [Smi97c], K. Smith arrived at the following question (see [Smi97a]):

Question 5.5.1. Let X be a projective variety over a field k of characteristic p, and let L be a
“weakly positive” line bundle on X . For any n ∈ Z and any 0 < i < dim(X), does there exist a
finite surjective morphism π : Y → X such that H i(X,L⊗n) → H i(Y, π∗L⊗n) is 0?

Using the algebraic result of Hochster-Huneke [HH92], one can show that if we take “weakly
positive” to mean ample, then Question 5.5.1 has an affirmative answer (see Remark 5.5.4). Smith
had originally hoped that “weakly positive” could be taken to mean nef. We give some examples in
the sequel to show that this cannot be the case. However, first, we prove some positive results.

5.5.1 Positive results

We first examine Question 5.5.1 in the case of positive twists. It is clear that being ample is a
sufficiently positive condition for the required vanishing statement to be true: Frobenius twisting
can be realised by pulling back along a finite morphism and has the effect of changing L by L⊗p,
whence Serre vanishing shows the desired result. It is natural to wonder if the result passes to
the closure of the ample cone, i.e., the nef cone. We show in Example 5.5.8 that this is not the
case: there exist non-torsion degree 0 line bundles on surfaces whose middle cohomology cannot
be killed by finite covers. On the other hand, Corollary 5.2.4 coupled with the fact that torsion line
bundles can be replaced with O on passage to a finite cover ensures that Question 5.5.1 has a positve
answer for torsion line bundles. The necessity of the non-torsion requirement and the observation
that torsion line bundles are semiample suggested that the following Proposition might be true.

Proposition 5.5.2. Let X be a proper variety over a field of characteristic p, and let L be a semi-
ample line bundle on X . For any i > 0, there exists a finite surjective morphism π : Y → X such
that the induced map H i(X,L) → H i(Y, π∗L) is 0.

Proof. As L is a semiample bundle, there exists some positive integer m such that L⊗m is globally
generated. If we fix a basis s1, . . . , sk forH0(X,L⊗m), then the cyclic covering trick (see [Laz04a,
Proposition 4.1.3]) ensures that there’s a finite flat cover π : X̃ → X such that π∗(si) admits anm-th
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root in H0(X̃, π∗L) and, consequently, π∗L is globally generated. In particular, as semiamplitude
is preserved under pullbacks, we may replace X with X̃ and assume that L arises as the pullback of
an ample bundle M under a proper surjective morphism f : X → S. Furthermore, once f : X → S
is fixed, to show the required vanishing statement, we may always replace L by L⊗pj

for j � 0
because the Frobenius morphism FX : X → X is finite surjective with F ∗

XL = L⊗p. Now the
projection formula for f implies that Rf∗(L⊗pj

) = Rf∗OX ⊗L
S M⊗pj

. Using Theorem 5.0.1, we
may find a finite surjective morphism π : Y → X such that, with g = f ◦π, we have a factorisation
Rf∗(L⊗pj

) → g∗f
∗(L⊗pj

) → Rg∗π∗(L⊗pj
) of the natural map π∗ : Rf∗(L⊗pj

) → Rg∗π∗(L⊗pj
).

Applying H i(S,−) to the composite morphism gives us the desired morphism. Thus, to show the
required statement, it suffices to show that H i(S, g∗π∗(L⊗pj

)) = 0 for j � 0. By the projection
formula, we have

H i(S, g∗π∗(L⊗pj
)) = H i(S, g∗g∗(M⊗pj

)) = H i(S, g∗OY ⊗M⊗pj
)

As M is ample, this group vanishes by Serre vanishing for j � 0, as required.

Based on Proposition 5.5.2, one might expect that semiamplitude is a positive enough property
for Question 5.5.1 to have an affirmative answer for the case of negative twists as well. We show
in Example 5.5.9 that this is not the case; the key feature of that example is that the semiample
line bundle defines a map that’s not generically finite. In fact, this feature is essentially the only
obstruction: if L is both semiample and big, then Question 5.5.1 has an affirmative answer even for
negative twists of L.

Proposition 5.5.3. Let X be a proper variety over a field of characteristic p, and let L be a semi-
ample and big line bundle on X . For any i < dim(X), we can find a finite surjective morphism
π : Y → X such that the induced map H i(X,L−1) → H i(Y, π∗L−1) is 0

Proof. We first describe the idea informally. Using Proposition 5.3.1 and arguments similar to those
in the proof of Proposition 5.5.2, we will reduce to the case that L is actually ample on X . In this
case, we give a direct proof using Proposition 5.4.2; the details follow.

Fix an integer i < dim(X). As L is big, there is nothing to show for i = 0 and, thus, we
may assume i > 0. As in the proof of Proposition 5.5.2, at the expense of replacing X by a finite
flat cover, we may assume that L arises as the pullback of an ample line bundle M under a proper
surjective morphism f : X → S. As bigness is preserved under passage to finite flat covers, we
may continue to assume that L is big. In particular, the map f is forced to be an alteration. By
Proposition 5.3.1, we can find a diagram

Y
π //

a

��

g

  A
AA

AA
AA

A X

f

��
S′

h // S

with π and h finite surjective, such that we have a factorisation H i(X,L−1) s→ H i(S′, h∗M−1) a∗→
H i(Y, π∗L−1) of π∗ for some map s. Moreover, given a finite cover b : S′′ → S, we can form the
diagram

Y ×S′ S′′
pr1 //

pr2
��

Y
g

��@
@@

@@
@@

@

a

��

π // X

f

��
S′′

b // S′
h // S
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This means that at the level of cohomology, we have a commutative diagram

H i(X,L−1)
(π◦pr1)∗//

s

��

H i(Y ×S′ S′′, (π ◦ pr1)∗L−1)

H i(S′, h∗M−1) b∗ // H i(S′′, b∗h∗M−1)

pr∗2

OO

Thus, it suffices to show that H i(S′, h∗M−1) can be killed by finite covers of S′. As h is a finite
morphism, the bundle h∗M is ample. That f was an alteration forces dim(S′) = dim(X) and,
therefore, 0 < i < dim(S′). In other words, we are reduced to verifying the claim in the theorem
under the additional assumption that L is ample.

As we are free to replace X by a Frobenius twist (which increases the positivity of L), we may
assume that L has the property that Hj(X,L ⊗ ωX) = 0 for all j > 0, where ωX is the dualising
sheaf on X . Now choose a finite surjective morphism π : Y → X satisfying the conclusion of
Proposition 5.4.2. With d = dim(X), the trace map induces the following morphism of triangles in
Db(Coh(X)):

π∗ωY [d] //

a

��

π∗ω
•
Y

//

b
��

s
zz

τ>−dπ∗ω
•
Y

//

c=0
��

π∗ωY [d+ 1]

��
ωX [d] // ω•X // τ>−dω

•
X

// ωX [d+ 1].

Here s is a map that whose existence is ensured by the equation c = 0 (but s is not necessarily
unique). Tensoring this diagram with L, using the flatness of L, and using the projection formula
gives us the following morphism of triangles:

π∗(ωY ⊗ π∗L)[d] //

aL

��

π∗(ω•Y ⊗ π∗L) //

bL
��

sLuu

τ>−dπ∗(ω•Y ⊗ π∗L) //

cL=0

��

π∗(ωY ⊗ π∗L)[d+ 1]

��
ωX ⊗ L[d] // ω•X ⊗ L // τ>−dω

•
X ⊗ L // ωX ⊗ L[d+ 1].

The commutativity of the above diagram and existence of sL shows that for any integer i, the image
of the natural trace map

H−i(bL) : H−i(Y, ω•Y ⊗ π∗L) → H−i(X,ω•X ⊗ L)

lies in the image of the natural map

Hd−i(X,ωX ⊗ L) = H−i(X,ωX ⊗ L[d]) → H−i(X,ω•X ⊗ L).

Now choose i such that 0 < i < d. By assumption, the source of the preceding map is then trivial.
Hence, we find that the map H−i(bL) is also 0. Dualising, it follows that

π∗ : H i(X,L−1) → H i(Y, π∗L−1)

is trivial, as desired.

Remark 5.5.4. Consider the special case of Proposition 5.5.3 when L is ample. We treated this
case directly in the second half of the proof above using Proposition 5.4.2. It is possible to replace
this part of the proof by a reference to [HH92, Theorem 1.2], the main geometric theorem of that
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paper. We have not adopted this approach as we feel that the proof given above using Proposition
5.4.2 is cleaner than the algebraic approach of [HH92] which involves developing a theory of graded
integral closures (see [HH92, §4]) and reducing to a local algebra theorem.

Remark 5.5.5. Proposition 5.5.3 can be viewed as a weaker version of Kawamata-Viehweg van-
ishing in characteristic p up to finite covers. The natural way to approach this question is to ask for
liftability to the 2-truncated Witt vector ring W2(k) by smooth varieties up to finite covers, and then
quote Deligne-Illusie [DI87]. In fact, thanks to Proposition 5.3.1, it would suffice to show that any
variety can be dominated by a smooth one that lifts to W2(k). Unfortunately, we do not know the
answer to this.

5.5.2 Counterexamples

This section is dedicated to providing the examples promised earlier. Our first example is that of a
degree 0 line bundle M on a curve C whose top cohomology cannot be killed by finite covers of C.
This shows that the semiamplitude hypothesis in Proposition 5.5.2 cannot be weakened to a nefness
hypothesis.

Example 5.5.6. Fix a curve C of genus g(C) ≥ 2 over an uncountable field k of characteristic p,
and let M be a very general degree 0 line bundle on C. We will show that H1(C,M) cannot be
killed by finite covers. If not, by normalising if necessary, we have a finite flat map f : C ′ → C
such that f∗ : H1(C,M) → H1(C ′, f∗M) is the 0 map. Furthermore, by replacing C ′ with a cover
if necessary, we may even assume that the extension of function fields induced by f is normal.
Tensoring the exact sequence

0 → OC → f∗OC′
q→ Q → 0

with M and using the projection formula tells us that H0(C,M⊗Q) 6= 0 or, equivalently, that M−1

occurs as a subsheaf of Q. We will analyse the Harder-Narasimhan filtration of f∗OC′ to show that
this cannot happen if M is chosen to be very general. We refer the reader to [Laz04b, §6.4.A] for
generalities on the Harder-Narasimhan filtration.

A theorem of Lazarsfeld from the Appendix of [PS00] implies that Q∨ is a nef vector bundle,
i.e., for any subbundle E ↪→ f∗OC , the quotient q(E)∨ of Q∨ is nef. The bundle E, thus being
an extension of the antinef vector bundle q(E) by a subsheaf of OC , has non-positive degree. This
implies that the maximal slope occuring in the Harder-Narasimhan filtration for f∗OC′ is 0. Thus,
as OC is a maximal degree subbundle of f∗OC , we have an exact sequence of semistable degree 0
vector bundles

0 → OC → Fil0(f∗OC′) → Fil0(Q) → 0.

As the full subcategory Vect(C)ss0 of Coh(C) spanned by semistable degree 0 vector bundles is
an abelian category with simples corresponding to stable vector bundles, any stable vector bundle
occuring as a Jordan-Hölder constituent (i.e., a simple subquotient) of Fil0(Q) ∈ Vect(C)ss0 also
occurs in Fil0(f∗OC′). In particular, the line bundle M−1 occurs in Fil0(f∗OC′). The latter vector
bundle inherits an algebra structure from f∗OC′ and, therefore, corresponds to a curve g : C ′′ →
C with g∗OC′′ = Fil0(f∗OC′). The fact that Vect(C)ss0 is artinian and noetherian as an abelian
category implies that only finitely many degree 0 line bundles occur in g∗OC′′ . Moreover, as f was
generically normal, so is g. Thus, our desired result will now follow if we show that the collection
of generically normal finite flat g : C ′′ → C with deg(g∗OC′′) = 0 is countable.

As g is generically normal, it can be factored as C ′′ h→ C̃
F→ C with h generically étale, and F

is purely inseparable. As any purely inseparable map is dominated by some power of the Frobenius
map, there are only countably many possibilities for F . On the other hand, deg(g∗OC′′) = 0 implies
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that deg(h∗OC′′) = 0. By Riemann-Roch, it follows that χ(C ′′) = deg(h)χ(C̃). As h is generically
étale, Riemann-Hurwitz then applies to say that h is finite étale. As F is purely inseparable, it
induces an isomorphism π1(F ) : π1(C̃) '→ π1(C). In particular, by the finite generation of the
étale fundamental group (proven by lifting the curve and the cover to characteristic 0, for example),
there are only countably many possibilities for h. Thus, there are only countably many possiblities
for the pair (F, h) and, therefore, for g, proving the claim.

Remark 5.5.7. Example 5.5.6 requires us to work with very general line bundles. Thus, it does not
answer the following question: does the conclusion of Proposition 5.5.2 hold for nef line bundles
provided the base field is Fp? We do not know the answer to this. A natural place to look for a
counterexample would be the surfaces and threefolds considered in [Tot09].

Using Example 5.5.6, we can easily produce an example of a nef line bundle L on a surface
X whose middle cohomology cannot be killed by passage to finite covers. In fact, the bundle
constructed has degree 0 and can thus be viewed as the inverse of a nef bundle as well; this dual per-
spective negatively answers Question 5.5.1 for the case of positive or negative twists when “weakly
positive” is taken to mean nef.

Example 5.5.8. Let (C,M) be as in Example 5.5.6. Then L = M�OC = pr∗1M is a nef line bundle
on X = C ×C with pr∗1 : H1(C,M) '→ H1(X, pr∗1M) = H1(X,L). We claim that there does not
exist a finite surjective morphism π : Y → X inducing the 0 map π∗ : H1(X,L) → H1(Y, π∗L).
If π was such a map, then choosing a multisection of pr1 ◦ π and normalising it gives a finite flat
morphism f : C ′ → C inducing the 0 map on H1(C,M). However, as shown in Example 5.5.6,
this cannot happen.

Our next example is that of a semiample line bundle L on a surface X such that the middle
cohomology of L−1 cannot be killed by finite covers. Thus, it negatively answers Question 5.5.1
for the case of negative twists when “weakly positive” is taken to mean even semiample, not just
nef.

Example 5.5.9. Consider the bundle L = O(2) � O = pr∗1O(2) on X = P1 × P1 over a field
k. This is a semiample bundle with H1(X,L−1) = H1(P1,O(−2)) ⊗ H0(P1,O) = k. We
claim that there is no finite surjective morphism g : Y → X inducing the 0 map H1(X,L−1) →
H1(Y, π∗L−1). If there were such a map g, then pr1 ◦ g : Y → P1 is an alteration inducing the
0 map on H1(P1,O(−2)). Choosing a multisection of pr1 ◦ g and normalising it gives a finite flat
morphism f : C → P1 inducing the 0 map on H1(P1,O(−2)). However, this cannot happen: the
morphism of exact sequences

0 // O(−2) //

��

O //

��

O0 ⊕ O∞ //

��

0

0 // f∗f
∗O(−2) // f∗O // f∗Of−1(0) ⊕ f∗Of−1(∞)

// 0

gives us a morphism of exact sequences

k = H0(P1,O) � � //

'
��

H0(P1,O0 ⊕ O∞) a // //

b
��

H1(P1,O(−2)) = k

d
��

k = H0(C,O) � � c // H0(C,Of−1(0) ⊕ Of−1(∞)) // H1(C, f∗O(−2))
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The surjectivity of a gives that dim(H0(P1,O0 ⊕O∞)) = 2, while the injectivity of b ensures that
dim(im(b)) = 2. As dim(im(c)) = 1, it follows that im(b) strictly contains im(c), and therefore,
dim(im(d)) = 1 which is what we wanted.

Finally, we conclude by giving an example showing that the conclusion of Proposition 5.5.3 fails
for nef and big line bundles; we invite the reader to contrast this with the situation in characteristic
0 or even the liftable case (see Remark 5.5.5). The example builds on the one in Example 5.5.6,

Example 5.5.10. Let (C,M) be as in Example 5.5.6, and let L be an ample line bundle on C. Let
E = L⊕M, let X = P(E), and let π : X → C be the natural projection. With Oπ(1) denoting the
Serre line bundle on X , we will show the following:

• The line bundle Oπ(1) is nef.

• The line bundle Oπ(1) is big.

• The group H1(X,Oπ(1)) is non-zero, and cannot be annihilated by finite covers of X .

We will first verify that Oπ(1) is nef. Using the Barton-Kleiman criterion (see [Laz04b, Propo-
sition 6.1.18]), it suffices to show that for any quotient E � N with N invertible, we must have
deg(N) ≥ 0. This claim follows from the formula

Hom(E,N) = Hom(L,N)⊕Hom(M,N)

and the fact that neither line bundle L nor M admits a map to a line bundle with negative degree.
We now verify bigness of Oπ(1). By definition, this amounts to showing that h0(X,Oπ(n))

grows quadratically in n (we follow the usual convention that h0(X,F) = dim(H0(X,F)) for a
coherent sheaf F on X). Standard calculations about projective space bundles show that

π∗Oπ(n) ' Rπ∗Oπ(n) ' Symn(E)

for n > 0. The Leray spectral sequence for π then gives us that

H0(X,Oπ(n)) = H0(C,Symn(E)) = H0(C,⊕i+j=nLi ⊗Mj).

Since L is ample and M has degree 0, the Riemann-Roch estimate tells us that H0(C,Li ⊗ Mj)
grows like i (for big enough i). Hence, we find

h0(X,Oπ(n)) =
∑
i+j=n

h0(C,Li ⊗Mj) ∼ 1 + 2 + · · ·+ n =
n(n− 1)

2
,

thereby verifying the bigness of O(1).
To show the last claim, note that the Leray spectral sequence also shows that

H1(X,Oπ(1)) = H1(C,E) = H1(C,L)⊕H1(C,M).

In particular, this group is non-zero since the second factor is so. Moreover, the natural projection
E � M defines a section s : C → X of π such that s∗Oπ(1) ' M. Hence, we find that s∗

induces a map H1(X,Oπ(1)) → H1(C,M) which is simply the projection on the second factor
under the preceding isomorphism. In particular, if there was a finite cover π : Y → X such that
π∗(H1(X,Oπ(1)) = 0, then restricting Y to s : C → X , we would obtain a finite cover of C
annihilating H1(C,M), contradicting what we proved in Example 5.5.6.
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5.6 Application: Some more global examples

In §4.2.3, we discussed a few examples of projective varieties satisfying Condition 1.0.2. The key
feature of all those examples was that they were toric varieties. Our goal in this section is to add a
non-toric example to this list: the complete Flag variety.

We first record an elementary criterion to test when a finite morphism is “split” in the sense of
Condition 1.0.2.

Lemma 5.6.1. Let X be a Gorenstein projective scheme of equidimension n over a field k, and let
π : Y → X be a proper morphism. Then the existence of a section of OX → Rπ∗OY is equivalent
to the injectivity of Hn(X,ωX) → Hn(Y, π∗ωX)

Proof. By the projection formula and the flatness of ωX , we have Hn(Y, π∗ωX) = Hn(X,ωX ⊗
Rπ∗OY ). Thus, the injectivity of Hn(X,ωX) → Hn(Y, π∗ωX) is equivalent to the injectivity of

Hn(X,ωX) → Hn(X,ωX ⊗ Rπ∗OY ).

This map is the map on Hn induced by the natural map ωX → ωX ⊗ Rπ∗OY . Serre duality (see
Chapter 2) tells us that this injectivity is equivalent to the surjectivity of

Hom(Rπ∗OY ⊗ ωX , ωX) → Hom(ωX , ωX).

Since ωX is invertible, the preceding surjectivity is equivalent to the surjectivity of

(π∗)∨ = ev1 : Hom(Rπ∗OY ,OX) → Hom(OX ,OX)

induced by the natural map OX → Rπ∗OY . On the other hand, the surjectivity of this map is also
clearly equivalent to OX → Rπ∗OY admitting a section; the claim follows.

We now record a criterion that allows us to pass from subvarieties satisfying Condition 1.0.2 to
the entire variety. The criterion is formulated in terms the existence of nice resolutions of dualising
sheaves.

Proposition 5.6.2. Let X be a Gorenstein projective variety of equidimension n over a field k of
positive characteristic p. Let i : Z ↪→ X be a closed equidimensional subvariety that is itself
Gorenstein, and let c be the codimension dim(X)− dim(Z). Assume that there exists a resolution
of ωZ of the following form:

[ωX = Ec → Ec−1 → · · · → E0] ' ωZ

where, for each 0 ≤ i < c, the sheaf Ei is an iterated extension of inverses of semiample and big
line bundles. If Z satisfies Condition 1.0.2, then so does X .

Proof. We will verify Condition 1.0.1. Let α ∈ Hn−c(X,ωZ) ' Hn−c(Z, ωZ) be a generator
(under Serre duality). Let f : Y → X be an alteration. By assumption on Z, we know that f∗(α)
is not zero in Hn−c(Y, f∗ωZ). Given the natural map Lf∗ωZ → f∗ωZ , we find that the pullback
Lf∗α ∈ Hn−c(Y,Lf∗ωZ) is also non-zero. Note that this holds for any alteration f : Y → X; this
observation will be applied later in the proof to a different map.

Pulling back the given resolution for ωZ to Y , we obtain a resolution

[f∗ωX = f∗Ec → f∗Ec−1 → · · · → f∗E0] ' Lf∗ωZ
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The hypercohomology spectral sequence associated to the stupid filtration of this complex takes the
form:

E1,q
p (Y → X) : Hq(Y, f∗Ep) ⇒ Hq−p(Y,Lf∗ωZ)

We will trace the behaviour of the class Lf∗α ∈ Hn−c(Y,Lf∗ωZ) through the spectral sequence.
The terms contributing to this group in the spectral sequence are Hq(Y, f∗Ep) with q − p = n− c.
Since dim(Y ) = n, the contributing terms Hq(Y, f∗Ep) have q < n whenever p < c. We will
first show by applying Proposition 5.5.3 that these numerics imply that Lf∗α has to be non-zero in
Hn(Y, f∗E0), and then we will explain why this is enough to prove the claim.

Since the bundles Ei are assumed to be iterated extensions of inverses of semiample and big
line bundles for i < c, the same is true for the pullbacks f∗Ei. Proposition 5.5.3 then allows us to
produce a finite surjective morphism g : Y ′ → Y such that Hj(Y, f∗Ei) → Hj(Y ′, g∗f∗Ei) is 0
for j < n (and i < c still). Since we know that L(f ◦ g)∗α is non-zero by the earlier argument,
it follows that the image of Lf∗α has to be non-zero in Hn(Y, f∗E0) = Hn(Y, f∗ωX) under the
natural coboundary map Hn−c(Y,Lf∗ωZ) → Hn(Y, f∗ωX).

Now note that we also have a analogous spectral sequence

E1,q
p (X → X) : Hq(X,Ep) ⇒ Hq−p(X,ωZ)

and a morphism of spectral sequences E1,q
p (X → X) → E1,q

p (Y → X) by pulling back classes.
This gives rise to the commutative square

k ' Hn−c(X,ωZ)
δX //

a

��

Hn(X,ωX) ' k

b
��

Hn−c(Y,Lf∗ωZ)
δY // Hn(Y, f∗ωX)

We have just verified that δY ◦ a is non-zero and, hence, injective. A diagram chase then implies
that δX is injective and, hence, bijective. Another diagram chase then implies that b is injective. By
Proposition 5.6.1, we are done.

Remark 5.6.3. Consider the special case of Proposition 5.6.2 where all the line bundles occuring
in the Ei are antiample. Since X is Gorenstein, one may be tempted to say that the given proof of
Proposition 5.6.2 goes through without using Proposition 5.5.3 as we can simply use Frobenius to
kill cohomology after dualising. However, this is false: we applied Proposition 5.5.3 to finite covers
Y → X rather than X itself, and there is no reason we can suppose that Y is Gorenstein. If we
alter Y to a Gorenstein (or even regular) scheme, then we lose ampleness, and are once again in a
position where we need to use Proposition 5.5.3.

Remark 5.6.4. The assumptions in Proposition 5.6.2 are extremely strong. Consider the special
case where Z ↪→ X is a divisor. In this case, the natural resolution (and, in fact, the only available
one) to consider is:

[ωX → ωX(Z)] ' ωZ

The assumptions of Proposition 5.6.2 will be satisfied precisely when ω−1
X (−Z) is semiample and

big. This implies that ω−1
X is also big. In particular, X is birationally Fano.

Proposition 5.6.2 looks slightly bizarre at first glance. However, it is a useful argument in
inductive proofs whenever one wants to translate the property of having Condition 1.0.2 from a
subvariety to the total space. Here is a typical application:
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Proposition 5.6.5. Let V be a vector space of dimension d over a field k, and let Flag(V ) be the
moduli space of complete flags (0 = F0 ⊂ F1 ⊂ · · ·Fd−1 ⊂ Fd = V ) in V . Then Flag(V ) satisfies
Condition 1.0.2.

Proof. We work by induction on the dimension d. The case d = 0 being trivial, we may assume that
Flag(W ) satisfies Condition 1.0.2 for any vector space W of dimension ≤ d − 1. If we let P(V )
denote the projective space of hyperplanes in V , then there is a natural morphism π : Flag(V ) →
P(V ) given by sending a complete flag (0 = F0 ⊂ F1 ⊂ · · ·Fd−1 ⊂ Fd = V ) to the hyperplane
(Fd−1 ⊂ V ). The morphism π can easily be checked to be projective and smooth. Let W ⊂ V be
a fixed hyperplane, and let b ∈ P(V )(k) be the corresponding point. The fibre π−1(b) is identified
with Flag(W ). We will apply Proposition 5.6.2 with Z = Flag(W ) and X = Flag(V ) to get the
desired result.

The structure sheaf κ(b) of the point b : Spec(k) ↪→ P(V ) can be realised as the zero locus of a
section of O(1)⊕(d−1) by thinking of b as the intersection of (d−1) hyperplanes in general position.
This gives us a Koszul resolution

[O(−(d− 1)) ' ∧d−1(O(−1)⊕(d−1)) → · · · → O(−1)⊕(d−1) → O] ' κ(b).

Twisting by O(−1), we find a resolution

[ωP(V ) → Md−2 → · · · → M1 → M0] ' κ(b)

with each Mi a direct sum of inverses of ample line bundles with degrees between 1 and d − 2.
Pulling this data back along π, we find a resolution

[π∗ωP(V ) → π∗Md−2 → · · · → π∗M1 → π∗M0] ' π∗κ(b) = OZ .

Twisting by the relative dualising sheaf ωπ, we find

[ωπ ⊗ π∗ωP(V ) → ωπ ⊗ π∗Md−2 → · · · → ωπ ⊗ π∗M1 → ωπ ⊗ π∗M0] ' ωπ|Z .

Since π is smooth, we identify ωX ' ωπ ⊗ π∗ωP(V ), and ωZ ' ωπ|Z . Thus, we obtain a resolution

[ωX → ωπ ⊗ π∗Md−2 → · · · → ωπ ⊗ π∗M1 → ωπ ⊗ π∗M0] ' ωZ

with Mi as above. Standard calculations with flag varieties (see Lemma 5.6.6) now show that the
terms ωπ ⊗ π∗Mi are direct sums of inverses of semiample and big line bundles. In particular, this
resolution has the form required in Propositon 5.6.2. Hence, we win by induction.

We needed to calculate the positivity of certain natural line bundles on the flag variety in Propo-
sition 5.6.5. Since we were unable to find a satisfactory reference, we carry out the calculation
here.

Lemma 5.6.6. Let V be an n-dimensional vector space over a field k, let π : Flag(V ) → P(V )
be the natural morphism. For all i > 0 and all n, the line bundles ωπ ⊗ π∗O(−i) are inverses of
semiample and big line bundles.

Proof. For n = 2, the map π is an isomorphism, and the claim is obvious. Assume n ≥ 3. Let

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V ⊗ OFlag(V )
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be the universal flag on Flag(V ) with dim(Vi) = i. For each i ≥ 1, let Li = Vi/Vi−1 be the
associated line bundle. The tangent bundle of Flag(V ) admits a filtration whose pieces are of the
form

Hom(Vi,Li+1) ' V∨i ⊗ Li+1

for 1 ≤ i ≤ n− 1. This filtration gives us the formula

ω−1
Flag(V ) ' ⊗n−1

i=1 (det(Vi)−1 ⊗ det(Li+1)i).

Since each Vi is filtered with pieces of the form Lj for 1 ≤ j ≤ i, we find

ω−1
Flag(V ) ' ⊗n−1

i=1 (L−1
1 ⊗ L−1

2 ⊗ · · · ⊗ L−1
i ⊗ Lii+1).

Collecting terms, we find
ω−1

Flag(V ) ' (⊗n−1
i=1 L2i−n

i )⊗ Ln−1
n .

The inverse Mj of the line bundle ωπ ⊗ π∗O(−j) can be written as

Mj ' ω−1
π ⊗ π∗O(j) ' ω−1

Flag(V ) ⊗ π∗(ωP(V ) ⊗ O(j)).

Using the formula for ω−1
Flag(V ) we arrived at earlier, and the fact that π is defined by the tautological

quotient OFlag(V ) ⊗ V � Ln, we can simplify the preceding formula to get

Mj ' (⊗n−1
i=1 L2i−n

i )⊗ Ln−1
n ⊗ L−n+j

n ' (⊗n−1
i=1 L2i−n

i )⊗ Lj−1
n .

Our goal is to show that Mj is semiample and big for j > 0. Being the pullback of a very ample
line bundle, the factor L

j−1
n is semiample and effective for j > 0. Hence, it suffices to show that

N := ⊗2i−n
i=1 L2i−n

i

is semiample and big. Since we have assumed that n ≥ 3, the center c = bn−1
2 c is strictly positive.

We may then write
N ' ⊗ck=1(Ln−k ⊗ L−1

k )⊗(n−2k).

Schubert calculus (see [Ful97, §10.2, Proposition 3]) tells us that the line bundles La ⊗ L−1
b are

ample when a > b. In particular, all the factors in the preceding factorisation of N are ample.
Since c ≥ 1, this factorisation is also non-empty. It follows then that N is an ample line bundle, as
desired.

Remark 5.6.7. Proposition 5.6.5 can be improved slightly to say that ωπ ⊗ π∗O(−i) is actually
the inverse of an ample line bundle. This claim follows directly from the homogeneity of Flag(V ).
Indeed, let L be a semiample and big line bundle on a projective variety X that is homogeneous for
a connected group G. Let f : X → PN denote the map defined by a suitably large power of L. If
L was not ample, then there would be a proper curve C ⊂ X that is contracted by f . By the rigidity
lemma (see [MFK94, Proposition 6.1]), the same is true for any curve algebraically equivalent to C.
However, sinceX is homogeneous, translates ofC underG actually coverX . SinceG is connected,
all translates of C are algebraically equivalent to C. It follows then that dim(im(f)) < dim(X)
contradicting the bigness of L.

Remark 5.6.8. Proposition 5.6.5 asserts thatG/B satisfies Condition 1.0.2 whenG = GL(V ), and
B ⊂ G is the standard Borel subgroup. Similar arguments to the ones given above should also work
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when G is the orthogonal group associated to a quadratic form (V, q), though we have not checked
that. In fact, it seems entirely plausible that the above arguments can be made to show that Condition
1.0.2 is verified by G/B for any algebraic group G. The idea would be to show that Condition 1.0.2
is satisfied by Bott-Samelson variety X for G (see [BS55]). As X admits a proper birational map
π : X → G/B satisfying OG/B ' Rπ∗OX , the validity of Condition 1.0.2 for X implies that for
G/B. To show it for X , one would use that X comes equipped with a natural structure an explicit
iterated P1-bundle with sections X = Xn → Xn−1 → · · · → X1 ' P1 → X0 ' ∗.

As a corollary, we obtain a further family of examples.

Corollary 5.6.9. Let V be a finite dimensional vector space, and let X be a partial Flag variety for
V . Then X satisfies Condition 1.0.2. In particular, all Grassmanians Gr(k, n) satisfy Condition
1.0.2.

Proof. There is a natural morphism π : Flag(V ) → X given by remembering the corresponding
flag. It can be checked that π is a smooth projective morphism whose fibres are iterated fibrations
of projective spaces. In particular, Rπ∗OFlag(V ) ' π∗OFlag(V ) ' OX . The result now follows from
Lemma 3.1.3.

Remark 5.6.10. Proposition 5.6.5 and Corollary 5.6.9 imply, in particular, that a (partial) flag vari-
ety is Frobenius split. The proof presented above seems to be qualitatively different proof than the
standard proofs.
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Chapter 6

Some results on group schemes

All group schemes occuring in this chapter are commutative; all the cohomology groups occuring
in this chapter are computed in the fppf topology unless otherwise specified. Our primary goal is to
prove the following theorems on the cohomology of group schemes:

Theorem 6.0.1. Let S be a noetherian excellent scheme, and let G be a finite flat commutative
group scheme over S. Then classes in Hn(S,G) can be killed by finite surjective maps for n > 0.

Theorem 6.0.2. Let S be a noetherian excellent scheme, and let A be an abelian scheme over S.
Then classes in Hn(S,A) can be killed by proper surjective maps for n > 0.

We stress that there are no assumptions on the residue characteristics of the base scheme S in
Theorems 6.0.1 and 6.0.2. The plan for this chapter is as follows. In §6.1 we recall an observation
originally due to Gabber concerning the local structure of the étale topology. Using this observation,
we prove Theorem 6.0.1 in §6.2, and Theorem 6.0.2 in §6.3. Next, in §6.4, we explain how to use
Theorem 6.0.1 to give a new and more conceptual proof of Theorem 5.0.1, the main theorem of
Chapter 5; this was the primary motivation for most results in this chapter. We close in §6.5 by
giving an example illustrating the necessity of “proper” in Theorem 6.0.2.

6.1 An observation of Gabber

In this section we recall an observation due to Gabber concerning the étale topology. The utility of
this observation to us is that it permits reduction of étale cohomological considerations to those in
finite flat cohomology and those in Zariski cohomology.

Lemma 6.1.1 (Gabber, [Hoo82, Lemma 5]). Let f : U → X be a surjective étale morphism
of affine schemes. Then there exists a finite flat map g : X ′ → X , and a Zariski open cover
{Ui ↪→ X ′} such that the natural map tiUi → X factors through U → X .

For the convenience of the reader, we sketch a proof.

Sketch of proof. We first explain how to deal with the local case. Assume that X = Spec(A) is the
spectrum of a local ring A, and U = Spec(B) is the spectrum of a local étale A-algebra B. The
structure theorem for étale morphisms (see [Gro03, Exposé I, Théorème 7.6]) implies that B = Cm

where C = A[x]/(f(x)) with f(x) = xn + a1x
n−1 + · · ·+ an a monic polynomial, and m ⊂ C a

maximal ideal with f ′(x) /∈ m. We define

D = A[x1, · · · , xn]/(σi(x1, · · · , xn)− (−1)n−iai)
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where σ1, · · · , σn are the elementary symmetric polynomials in the xi’s. This ring is finite free over
A of rank n!, admits an action of Sn that is transitive on the maximal ideals, and formalises the
idea that the coefficients of f(x) can be written as elementary symmetric functions in its roots. In
particular, there is a natural morphismC → D sending x to x1. As bothC andD are finite free over
A, there is a maximal ideal m1 ⊂ D lying over m ⊂ C. Thus, there is a natural map a : B → Dm1 .
By the Sn-action, for every maximal ideal n ⊂ D, there is an automorphism D → D sending m1

to n. Composing such an automorphism with a, we see that for every maximal ideal n ⊂ D, the
structure map A → Dn factorises through A → B for some map B → Dn; the claim follows. In
general, one reduces to the local case by considering fibre products as in Proposition 5.2.1

Actually, we use a slight weakening of Gabber’s result – relaxing finite flat to finite surjective –
that remains true when the schemes under consideration are no longer assumed to be affine.

Lemma 6.1.2. Let f : U → X be a surjective étale morphism of schemes. Then there exists a
finite surjective map g : X ′ → X , and a Zariski open cover {Ui ↪→ X ′} such that the natural map
tiUi → X factors through U → X .

Proof. We can solve the problem locally on X by Lemma 6.1.1. This means that there exists a
Zariski open cover {Vi ↪→ X}, finite surjective maps Wi → Vi, and Zariski covers {Yij ↪→ Wi}
such that tYij → Vi factors throughts U ×X Vi → Vi. By Proposition 5.2.1, we may find a single
finite surjective map W → X such that W ×X Vi → Vi factors through Wi → Vi. Setting X ′ = W
and pulling back the covers {Yij →Wi} to W ×X Vi then solves the problem.

6.2 The theorem for finite flat commutative group schemes

In this section we prove Theorem 6.0.1. Roughly speaking, our strategy is to first use theorems of
Raynaud and Grothendieck to reduce to étale cohomology from flat cohomology, then use Gabber’s
observation from §6.1 to reduce to Zariski cohomology, and then solve the problem by hand. To
carry this program out, we now explain how to reduce the fppf cohomology of finite flat group
schemes to étale cohomology; it turns out that they are almost the same.

Proposition 6.2.1. Let S be the spectrum of a strictly henselian local ring, and let G be a finite flat
commutative group scheme over S. Then H i(S,G) = 0 for i > 1.

Proof. We first explain the idea informally. Using a theorem of Raynaud, we can embed G into
an abelian scheme, which allows us to express the cohomology of G in terms of that of abelian
schemes. As abelian schemes are smooth, a result of Grothendieck ensures that their fppf cohomol-
ogy coincides with their étale cohomology. As the latter vanishes when S is strictly henselian, we
obtain the desired conclusion.

Now for the details: by a theorem of Raynaud (see [BBM82, Théorème 3.1.1]), there exists
an abelian scheme A → S and an S-closed immersion G ↪→ A of group schemes. Let A/G
denote the quotient stack in the fppf topology. It is well known that A/G is an abelian scheme
over S, but we were unable to find a reference, so we give a proof. By a theorem of Michael
Artin (see [Art74, Corollary 6.3]), the quotient A/G is an algebraic stack. Since the action of G
on A is free, the quotient is actually a discrete algebraic stack. As explained in [LMB00, Corollary
10.4], it follows that A/G is actually an algebraic space. The fact that A and G are locally of
finite presentation implies the same is true for A/G. Moreover, the quotient A → A/G is flat by
construction. The Auslander-Buschbaum theorem then forces the geometric fibres of A/G→ S to
be regular. By the fibre-by-fibre smoothness criterion (see [Gro67, Théorème 17.5.1]), it follows
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that A/G → S is smooth. Since A → A/G is surjective, we also know that A/G → S is proper
with geometrically connected fibres. The group structure on A descends to give A/G the structure
of an abelian sheaf relative to S. Hence, we find that A/G is an algebraic space over S representing
a sheaf of abelian groups with the additional property that the structure morphism A/G → S is
a proper smooth morphism with geometrically connected fibres, i.e., the space A/G → S is an
abelian algebraic space. By a different theorem of Raynaud (see [FC90, Theorem 1.9]), it follows
that A/G is actually an abelian scheme over S. Hence, we have a short exact sequence

0 → G→ A→ A/G→ 0

of sheaves on the fppf site of S relating the finite flat commutative group scheme G to the abelian
schemes A and A/G. This gives rise to a long exact sequence

· · ·Hn−1(S,A/G) → Hn(S,G) → Hn(S,A) → · · ·

of cohomology groups. By Grothendieck’s theorem (see [Gro68b, Théorème 11.7]), fppf cohomol-
ogy coincides with étale cohomology when the coefficients are smooth group schemes. In particular,
this applies to A and A/G. As S is strictly henselian, it follows that H i(S,A) = H i(S,A/G) = 0
for i > 0. The claim about G now follows from the preceding exact sequence.

Next, we explain how to deal with Zariski cohomology with coefficients in a finite flat commu-
tative group scheme.

Proposition 6.2.2. Let S be a normal noetherian scheme, and letG→ S be a finite flat commutative
group scheme. Then Hn

Zar(S,G) = 0 for n > 0.

Proof. We may assume that S is connected. As constant sheaves on irreducible topological spaces
are acyclic, it will suffice to show that G restricts to a constant sheaf on the small Zariski site
of S, i.e., that the restriction maps G(S) → G(U) are bijective for any non-empty open subset
U ↪→ S. Injectivity follows from the density of U ↪→ S and the separatedness of G→ S. To show
surjectivity, we note that given a section U → G of G over U , we can simply take the scheme-
theoretic closure of U in G to obtain an integral closed subscheme S′ ↪→ G such that the projection
map S′ → S is finite and an isomorphism over U . By the normality of S, this forces S′ = S. Thus,
G restricts to the constant sheaf on G(S) as claimed.

We can now complete the proof of Theorem 6.0.1 by following the outline sketched earlier.

Proof of Theorem 6.0.1. Let S be a noetherian excellent Fp-scheme, let G → S be a finite flat
commutative group scheme. We need to show that classes in Hn(S,G) can be killed by finite
covers for S for n > 0. We deal with the n = 1 case on its own, and then proceed inductively.

For n = 1, note that classes in H1(S,G) are represented by fppf G-torsors T over S. By
faithfully flat descent for finite flat morphisms, such schemes T → S are also finite flat. Passing to
the total space of T trivialises the G-torsor T . Therefore, classes in H1(S,G) can be killed by finite
flat covers of S.

We now fix an integer n > 1 and a cohomology class α ∈ Hn(S,G). By Proposition 6.2.1, we
know that there exists an étale cover of S over which α trivialises. By Lemma 6.1.2, after replacing
S by a finite cover, may assume that there exists a Zariski cover U = {Ui ↪→ S} such that α|Ui is
Zariski locally trivial. The Cech spectral sequence for this cover is

Hp(U,Hq(G)) ⇒ Hp+q(S,G)

41



whereHq(G) is the Zariski presheaf V 7→ Hq(V,G). By construction, the classα comes from some
α′ ∈ Hn−q(U,Hq(G)) with q < n. The group Hn−q(U,Hq(G)) is the (n − q)-th cohomology
group of the standard Cech complex∏

i

Hq(Ui, G) →
∏
i<j

Hq(Uij , G) → . . .

By the inductive assumption and the fact that q < n, terms of this complex can be annihilated by
finite covers of the corresponding schemes. By Proposition 5.2.1, we may refine these finite covers
by one that comes from all of S. In other words, we can find a finite surjective cover S′ → S such
that α′|S′ = 0. After replacing S with S′, the Cech spectral sequence then implies that α comes
from some Hn−q′(U,Hq′(G)) with q′ < q. Proceeding in this manner, we can reduce the second
index q all the way down to 0, i.e., assume that the class α lies in the image of the map

Hn(U, G) → Hn(S,G).

Now we are reduced to the situation in Zariski cohomology that was tackled in Proposition 6.2.2.

Remark 6.2.3. The proof given above for Theorem 6.0.1 used the intermediary of abelian schemes
to make the connection between fppf cohomology and étale cohomology with coefficients in a finite
flat group commutative scheme G (see Proposition 6.2.1). When the coefficient group scheme G is
smooth (or equivalently étale), this reduction can easily be avoided. In particular, if one follows the
arguments we give in §6.4, then it is possible give a relatively elementary proof of Theorem 5.0.1
using the simple version with étale coefficients provided the base S is a field.

6.3 The theorem for abelian schemes

Our goal in this section is to prove Theorem 6.0.2. The arguments here essentially mirror those
for finite flat commutative group schemes presented in §6.2. The key difference is that annihilat-
ing Zariski cohomology requires more complicated constructions when the coefficients are abelian
schemes. We handle this by proving a generalisation of Weil’s extension lemma (see Proposition
6.3.3). This generalisation requires strong regularity assumptions on S and is one of the two places
in our proof of Theorem 6.0.2 that we need proper covers instead of finite ones; the other is the case
of H1.

We begin by recording an elementary criterion for a map to an abelian variety to be constant.

Lemma 6.3.1. Let A be an abelian variety over an algebraically closed field k, and let C be a
reduced variety over k. Fix an integer ` invertible on k. A map g : C → A is constant if and only if
it induces the 0 map H1

ét(A,Q`) → H1
ét(C,Q`).

Proof. It suffices to show that a map like g that induces the 0 map on H1 is trivial. As any k-variety
is covered by curves, it suffices to show that the map g is constant on all curves in C. Thus, we
reduce to the case that C is a curve. We may also clearly assume that C is normal, i.e., smooth. Let
C denote the canonical smooth projective model of C. Since A is proper, the map g factors through
a map g : C → A. Since C and C are normal, the map π1(C) → π1(C) is surjective. Hence, the
map H1

ét(C,Q`) → H1
ét(C,Q`) is injective. Thus, to answer the question, we may assume that

C = C is a smooth projective curve.
Let A ↪→ Pn be a closed immersion corresponding to a very ample line bundle L. The

map g : C → A will be constant if we can show that g∗L is not ample, i.e., has degree 0.
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As the `-adic cohomology of an abelian variety is generated1 in degree 1, the hypothesis on H1

implies that the map H2
ét(A,Q`) → H2(C,Q`) is also 0. In particular, g∗(c1L) = 0, where

c1(L) ∈ H2(A,Q`(1)) ' H2(A,Q`) is the first Chern class of the line bundle L. Since applying
g∗ commutes with taking the first Chern class, it follows that c1(g∗L) = 0, hence g∗L has degree 0
as desired.

Remark 6.3.2. If we were working over C, then part of Lemma 6.3.1 can be proven easily using
arguments from topology. As an abelian variety A is a K(π1(A), 1), homotopy classes of maps
X → A are in bijective correspondence with cohomology classes H1(X,π1(A)) for any CW com-
plex X . In particular, such a map is homotopic to a constant map if the induced map on H1’s is
0. One then needs to show that a map between projective varieties inducing the 0 map on (Betti)
cohomology is actually constant; this is essentially what is proven above.

We now prove the promised extension theorem for maps into abelian schemes.

Proposition 6.3.3. Let S be a regular connected excellent noetherian scheme, and let f : A→ S be
an abelian scheme. For any non-empty open j : U ↪→ S, the natural restriction mapA(S) → A(U)
is bijective2.

Proof. The bijectivity of A(S) → A(U) will follow by taking global sections if we can show that
the natural map of presheaves a : A → j∗(A|U ) is an isomorphism on the small Zariski site of
S. As both the source and the target of a are actually sheaves for the étale topology on S, we may
localise to assume that S is the spectrum of a strictly henselian local ring R. In this setting, we will
show that A(S) → A(U) is bijective using `-adic cohomology.

The injectivity of A(S) → A(U) follows from the fact that U ↪→ S is dense, and that A → S
is separated. To show surjectivity, by the valuative criterion of properness, we may assume that U
contains all the codimension 1 points, i.e, the complement S \ U has codimension at least 2 in S.
Let s : U → A be a section of A over U . By taking the normalised scheme-theoretic closure of U
in A, we obtain a proper birational map p : S′ → S that is an isomorphism over U , and an S-map
i : S′ → A extending the given section over U . The desired surjectivity claim will follow if we can
show that i is constant on the fibres of p. Since p∗OS′ = OS , it even suffices to show that i collapses
the reduced schemes underlying the fibres of p. As p is proper, by semicontinuity of dimension, it
suffices to show that i collapses the reduced special fibre S′s, where s ∈ S is the closed point. By
Lemma 6.3.1, it suffices to show that the induced map H1(As,Q`) → H1(S′s,Q`) is trivial for

1We were unable to find a reference that proves the generation in degree 1 directly. For completeness, we sketch
a proof. If the base field is the field C of complex numbers, then Artin’s comparison theorem [SGA73, Théorème
4.4, Exposé XI] reduces the calculation to the singular cohomology of the complex manifold A(C). Since A can be
uniformised, we see that A(C) ' (S1)2g as topological spaces, where g = dim(X). The Kunneth formula implies
that RΓ(A(C),Z) ' RΓ(S1,Z)⊗2g . As the cohomology of the circle is torsion free and concentrated in degrees 0 and
1, the claim follows. If the base field k has characteristic 0, we may replace it with a smaller algebraically closed field
that embeds into C using [Del77, Arcata, V, Corollaire 3.3], and then pass to C using [Del77, Arcata, V, Corollaire 3.3]
again, whence the desired claim follows. If k has positive characteristic p, then the main theorem of [Mum69] implies
that A lifts to a smooth projective morphism A → Spec(R), where R is a p-adic discrete valuation with residue field
k and fraction field K of characteristic 0. The proper and smooth base change theorems imply (see [Del77, Arcata, VI,
§4]) that Hi(AK ,Q`) ' Hi(Ak,Q`), and the claim now follows from the characteristic 0 version.

2Professor János Kollár pointed out to the author, after the present work was completed, that this claim also follows
from a theorem of Abhyankar as presented in [Kol96, §VI.1, Theorem 1.2]. Abhyankar’s theorem implies that for any
proper modification p : S′ → S with S noetherian regular excellent, the positive dimensional fibres of p contain non-
constant rational curves. Applying this theorem to the graph of a rational map defined by a section U → A over an open
U ⊂ S gives our desired claim as abelian varieties do not contain rational curves. We would like to thank Professor
Kollár for pointing this out. As the proof given above is different and simpler, we include it anyways.
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some integer ` invertible on S. Note that we have the following commutative diagram:

H1(A,Q`) //

��

H1(As,Q`)

��
H1(S′,Q`) // H1(S′s,Q`).

The horizontal maps are isomorphisms by the proper base change theorem in étale cohomology (see
[Del77, Arcata IV-1, Théorème 1.2]) as S is a strictly henselian local scheme. Hence, it suffices to
show that H1(A,Q`) → H1(S′,Q`) is 0. This will follow if we can show that π1(S′) → π1(A)
is the 0 map. As S′ is normal, we know that π1(U) � π1(S′) is surjective. Thus, it suffices to
show that π1(U) = 0. By Zariski-Nagata purity (see [Gro68a, Exposé X, Théorème 3.4]) and the
fact that U has codimension at least 2 in S, we know that π1(U) ' π1(S). Since S is the spectrum
of a strictly henselian regular local ring, we have that π1(S) = 0 and, therefore, π1(U) = 0 as
desired.

Remark 6.3.4. The main idea for the proof of Proposition 6.3.3 comes from topology. The stack
Ag of abelian varieties is an Eilenberg-Maclane space. Since an abelian variety is also an Eilenberg-
Maclane space, the total space Ug of the universal family Ug → Ag of abelian varieties is also an
Eilenberg-Maclane space. Proposition 6.3.3 can then be rephrased as asking if every map U → Ug
with a specified extension S → Ag extends to a map S → Ug provided S is smooth, and U ⊂ S
is a dense open subset. At the level of homotopy types, the answer would be yes if we could show
that the map π1(U) → π1(Ug) factors through a map π1(S) → π1(Ug). This is essentially what is
verified above using purity; Lemma 6.3.1 allows us to go from this homotopy-theoretic conclusion
to a geometric one.

Remark 6.3.5. Proposition 6.3.3 can be considered a generalisation of Weil’s extension lemma
when applied to abelian varieties. Recall that this lemma says that the domain of definition of
rational maps from a smooth variety to a group variety has pure codimension 1. In case the target is
proper, i.e., an abelian variety A, this reduces to the statement that A(X) ' A(U) for any smooth
variety X , and dense open U ↪→ X .

Remark 6.3.6. Our proof of Proposition 6.3.3 is an `-adic (or equivalently, topological) one. One
can given a more geometric and, perhaps more conceptual, proof in characteristic 0 as follows.
Assume that S is a smooth affine variety, and that U ↪→ S is a dense open subset with codimension
at least 2. Given a section s : U → A of A over U , one can modify s and use resolution of
singularities to obtain a smooth variety S′, a birational morphism p : S′ → S that is an isomorphism
over U , and a map i : S′ → A extending s over U . Since S is smooth, it has rational singularities.
In particular, we have OS ' Rp∗OS′ . It then follows that for any fibre F of p, the induced map
H i(A,OA) → H i(F,OF ) is 0. An analogue of the argument presented in Lemma 6.3.1 then
finishes the job (this uses characteristic 0 once again). An advantage of this argument is that it
works as long as S has rational singularities. It also suggests a question to which we do not know the
answer: if S is a scheme in positive characteristic satisfying some definition of rational singularities
(such as Condition 1.0.2, or F -rationality, or pseudorationality), does Proposition 6.3.3 hold for S?

Example 6.3.7. We give an example to show that the regularity condition on S cannot be weakened
too much in Proposition 6.3.3. Let (E, e) ⊂ P2 be an elliptic curve, and let S be the affine cone
on E with origin s. Note that S is a hypersurface singularity of dimension 2 with 0 dimensional
singular locus. In particular, it is normal. Let A = S ×E denote the constant abelian scheme on E
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over S. Then U = S \ {s} can be identified with the total space of the Gm-torsor O(−1)|E − 0(E)
over E. Thus, there exists a non-constant section of A(U). On the other hand, all sections S → A
are constant. Indeed, every point in S lies on an A1 containing s. As all maps A1 → E are
constant, the claim follows. Thus, we obtain an example of a normal hypersurface singularity S and
an abelian scheme A→ S such that the conclusion of Proposition 6.3.3 fails for S. Of course, S is
not a rational singularity, a fact supported by Remark 6.3.6.

Next, we point out how to use Proposition 6.3.3 to prove the version of Theorem 6.0.2 involving
Zariski cohomology under strong regularity assumptions on the base scheme S; the proof is trivial.

Corollary 6.3.8. Let S be a regular excellent noetherian scheme, and let f : A→ S be an abelian
scheme. Then Hn

Zar(S,A) = 0 for n > 0.

Proof. By Proposition 6.3.3, we know that A restricts to a constant sheaf on the small Zariski site
of each connected component of S. By the vanishing of the cohomology of a constant sheaf on an
irreducible topological space, the claim follows.

We are now in a position to complete the proof of Theorem 6.0.2.

Proof of Theorem 6.0.2. Let S be a noetherian excellent scheme, and let A → S be an abelian
scheme. We will show that that cohomology classes in Hn(S,A) are killed by proper surjective
maps by induction on n provided n > 0. We may assume that S is integral.

For n = 1, classes in H1(S,A) are represented by étale A-torsors T over S. As T is an fppf
S-scheme, there exists a quasi-finite dominant morphism U → S such that T (U) is non-empty. By
picking an S-map U → T and taking the closure of the image, we obtain a proper surjective cover
S′ → S such that T (S′) is not empty. This implies that the cohomology class associated to T dies
on passage to S′, proving the claim.

We next proceed exactly as in the proof of Theorem 6.0.1 to reduce down to the case of Zariski
cohomology. The only difference is that the references to Proposition 6.2.1 are replaced by refer-
ences to Grothendieck’s theorem (see [Gro68b, Théorème 11.7]) which, in particular, implies that
cohomology classes in Hn(S,A) trivialise over an étale cover; we omit the details.

To show the claim for Zariski cohomology, assume first that S is of finite type over Z. In this
case, thanks to de Jong’s theorems from [dJ97], we can find a proper surjective cover of S with
regular total space. Passing to this cover and applying Corollary 6.3.8 then solves the problem. In
the case that S is no longer of finite type over Z, we reduce to the finite type case using approxima-
tion. Indeed, the data (S,A, α) comprising of the base scheme S, the abelian scheme A → S, and
a Zariski cohomology class α ∈ Hn

Zar(S,A) can be approximated by similar data with all schemes
involved of finite type over Z. Given such an approximating triple (S′, A′, α′) with S′ of finite
type over Z, we can find a proper surjective map S′′ → S′ killing α′ by the earlier argument. By
functoriality, the pullback S′′ ×S′ S → S is a proper surjective cover of S killing α.

6.4 The alternative proof of Theorem 5.0.1

Our goal in this section is to explain how to deduce Theorem 5.0.1 from Theorem 6.0.1 instead of
Proposition 5.2.2. We consider this a more conceptual proof of Theorem 5.0.1 as Proposition 5.2.2,
while elementary, uses clever cocycle manipulations at its core.

Proof of Theorem 5.0.1 using Theorem 6.0.1. We first assume that S = Spec(A) is affine. In this
case, it suffices to show that a class α ∈ Hn(X,OX) with n > 0 can be killed by finite surjective
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maps π : Y → X . As the map f is proper, we know that Hn(X,OX) is a finite A{Xp}-module,
whereA{Xp} is the non-commutative polynomial ring overA with one generatorXp satisfying the
commutation relation Xpr = rpXp. This implies that there exists some monic additive polynomial
g(Xp) ∈ A{Xp} annihilating α. As g is additive, we have a short exact sequence

0 → ker(g) → Ga → Ga → 0

of fppf sheaves of abelian groups on X . Since g is a monic polynomial, the sheaf ker(g) is repre-
sentable by a finite flat commutative group scheme. As g(α) = 0, we see that α lies in the image
of Hn(X, ker(g)) → Hn(X,Ga) ' Hn(X,OX), i.e., α comes from a cohomology class α′ with
coefficients in a finite flat commutative group scheme. By Theorem 6.0.1, there exists a finite sur-
jective map π : Y → X such that π∗(α′) = 0. By the functoriality of the constructions, it follows
that π∗ kills α. When S is no longer affine, we reduce to affine case treated above as in §5.2.

6.5 An example of a torsor not killed by finite covers

Theorem 6.0.2 allows us to construct proper covers annihilating cohomology classes with coeffi-
cients in an abelian scheme. Our goal in this section is to construct an example indicating why
“proper” cannot be replaced by “finite” in the preceding section. As a bonus, we get an example
illustrating the necessity of strong regularity assumptions on the base scheme in Theorem 6.3.8.

6.5.1 Construction

Fix an algebraically closed field k of characteristic 0, and an elliptic curve (E, 0) over k. We will
construct a scheme X essentially of finite type over k satisfying the following:

1. X is a semilocal, normal, connected, 2-dimensional affine scheme with two closed points x
and y. Let U = X − {x, y} be the twice-punctured spectrum; let Xx = Spec(OX,x) and
Xy = Spec(OX,y) be the corresponding local rings; let Ux = U ×X Xx and Uy = U ×X Xy

denote the corresponding punctured spectra; and let Ûx = Ux×Xx X̂x and Ûy = Uy ×Xy X̂y

denote the punctured spectra of the corresponding completions.

2. All maps Xx → E induce the trivial map π1(Ûx) → π1(E).

3. All maps Xy → E induce the trivial map π1(Ûy) → π1(E).

4. There exists a map f : U → E inducing surjective maps π1(Ûx) → π1(E) and π1(Ûy) →
π1(E) simultaneously.

We first explain the idea of the construction informally. The cone S considered in Example
6.3.7 had the property that sections of E on an open subscheme do not extend to the entire scheme.
Glueing two such cones away from the cone point gives an E-torsor of infinite order on a normal
scheme that does not die on passage to finite covers. The base scheme, however, is not separated. To
achieve separatedness, instead of glueing naively, we look at a finite étale quadratic cover of S. The
resulting scheme bares enough formal similarities with the non-separated example (namely, exactly
two closed points, each of which looks like the cone S) to make this construction work. The details
follow; we advise the reader willing to take the existence of X on faith to proceed to §6.5.2.

Let S the affine cone on E (considered in Example 6.3.7 with different notation), and let (S, s)
denote its local scheme at the origin. Note that S is a normal, Gorenstein, local 2-dimensional
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scheme essentially of finite type over k. By Noether normalisation, we can pick a finite map a :
S → Spec(A) where A is the local ring at the origin of A2

k. Since S is Cohen-Macaulay, the map f
is finite flat. In fact, we can even arrange for f to be totally ramified at the origin: ifE is represented
by the homogeneous form y2z = x3 + Axz2 +Bz3, then we simply choose a to be the map given
by the functions y and z. Let b : Spec(B) → Spec(A) be a finite étale cover of degree 2 with B
connected. We define X to be the fibre product via

X := S ×Spec(A) Spec(B)

��

// Spec(B)

b
��

S
a // Spec(A).

The scheme X is connected since b is étale at the origin while a is totally ramified. Moreover, being
finite étale over S forces X to be a semilocal, normal, connected, 2-dimensional affine scheme with
two closed points x and y. Note that sinceX → S is finite étale of degree 2, it is necessarily Galois.
Let Xx, Xy, Ux, etc. be as above, and let’s verify the desired properties.

First, we verify properties (2) and (3). The map Ûx → E induced by a map Xx → E factors
through the induced map X̂x → E by definition. Since X̂x is a complete noetherian local scheme
with algebraically closed residue field, its fundamental group vanishes, and hence the desired claim
follows for Xx. We argue exactly the same way for Xy.

For property (4), we first explain how to construct f . Consider the punctured spectrum S−{s}.
As explained in Examples 4.2.4 and 6.3.7, the scheme S − {s} can be realised as the complement
of the 0-section in the Zariski localisation along the 0-section of the total space of the line bundle
O(−1)|E → E. In particular, there exists a natural map f0 : S − {s} → E. Let f denote the
composition U → S − {s} → E. Note that f is invariant under the Galois group of X → S.

We will now verify that f has the desired properties. Note that since S − {s} is ind-open in
O(−1)|E and both schemes are normal, the induced map π1(S−{s}) → π1(O(−1)|E) is surjective.
Since we are working in characteristic 0, by homotopy invariance of the fundamental group for
normal schemes, we can identify π1(O(−1)|E) ' π1(E) via the natural projection. In particular,
f0 induces a surjective map π1(S − {s}) → π1(E). Moreover, the same calcuations also work
after completion. Hence, the induced map f̂0 : Ŝ − {s} → E also induces a surjective map on
fundamental groups. To pass to X , note that X → S is finite étale with no residue extension at the
closed points. Hence, the induced map X̂x → Ŝ is an isomorphism, and similarly for y. This allows
us to identify Ûx with Ŝ − {s} via the natural map, and similarly for y. The desired surjectivity
now follows from what we already checked for S.

6.5.2 Verification

Let X be the scheme constructed in §6.5.1. Let Vx = X − {y} and Vy = X − {y} denote the open
subschemes of X defined as the complement of each of the two closed points. Since x and y are the
only two closed points of X , the pair {Vx, Vy} defines a Zariski open cover of X with intersection
U = Vx ∩ Vy. Consider the associated Mayer-Vietoris sequence

· · ·H0(Vx, E)⊕H0(Vy, E)
β→ H0(U,E) δ→ H1(X,E) → · · · (6.1)

By assumption, we may pick a map f : U → E inducing surjective maps π1(Ûx) → π1(E) and
π1(Ûy) → π1(E). Viewing f as an element of H0(U,E), we define α = δ(f). We claim:
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Claim 6.5.1. The class α is not torsion. Moreover, for every finite cover f : Y → X , the pullback
f∗α is also not torsion. In particular, α does not die in a finite cover.

Proof. Assuming that α is not torsion, the existence of norms (see Proposition 6.5.2) implies the
rest. Thus, it suffices to verify that α = δ(f) is not torsion. By exact sequence (6.1), it suffices
to show that n · f /∈ im(β) for an integer n 6= 0. The class n · f is represented by the map
[n] ◦ f : U → E where [n] : E → E is the multiplication by n map on E. The assumption on
f implies that [n] ◦ f induces a map π1(Ûx) → π1(E) whose image has index n. On the other
hand, our assumptions on X also imply that any map lying in the image of β induces trivial map
π1(Ûx) → π1(E). Since π1(E) is torsion free and non-zero, the claim follows.

Lastly, we explain why the functors H i(−, A) admit “norm maps” when A is a group algebraic
space, and why this forces cohomology classes killed by finite covers to be torsion. These maps
were used above.

Proposition 6.5.2. Let A be any abelian fppf sheaf on the category of all k-schemes with k a field
of characteristic 0. Assume that A is represented by an algebraic space. For every finite surjective
morphism f : T → S of integral normal schemes, there exist norm maps f∗ : A(T ) → A(S)
satisfying the conditions listed in [SV96, Definition 4.1]. Moreover, the kernel of H i(S,A) →
H i(T,A) is necessarily torsion.

Proposition 6.5.2 is well-known, but we were unable to find a satisfactory reference. Hence, we
include the sketch of a proof.

Sketch of proof. We first explain the construction of norms. Assume that T → S induces a Ga-
lois extension of function fields with group G with cardinality n. By normality of S, we iden-
tify T/G ' S. Given a T -point a ∈ A(T ), we obtain a natural map T → Map(G,A) ' An

given by t 7→ (g 7→ a(g(t))). The group Sn = S#G acts on Map(G,A), and the preceding map
T → Map(G,A) is equivariant for the natural embeddingG→ Sn given by left translation. Taking
quotients as algebraic spaces, we arrive at a map b : S ' T/G→ An/Sn = Symn(A). The n-fold
multiplication map An → A is an Sn-equivariant map to an algebraic space. Hence, it factors as
An → Symn(A) → A. Composing the second map with b, we obtain a map S → A that we declare
to be the norm f∗(a) of a. In the case f : T → S does not induce a Galois extension of function
fields, one works in a Galois closure and then descend; we omit the details as they do not mattter in
the sequel. One can check that this constructions verifies the conditions required on the norm map
in [SV96, Definition 4.1].

For the last claim, note that a formal consequence of having norms is that for any finite surjective
morphism f : T → S as above, there exists a pushforward H i(f∗) : H i(T,A) → H i(S,A) such
that H i(f∗) ◦H i(f∗) = n. In particular, a non-torsion class in H i(S,A) will not die on passage to
finite covers if S is normal.

48



Chapter 7

Relation to existing work

Our goal in this chapter is to relate Condition 1.0.2 to certain other existing notions of rationality
in positive characteristic. The most important results are Theorems 7.1.4 and 7.2.5. The former
asserts that Condition 1.0.2 implies F -rationality, and that the converse holds in the Gorenstein
case; the latter asserts that Condition 1.0.2 implies pseudorationality. We also discuss the not-so-
tight connection with Frobenius-splittings in §7.3.

7.1 F -rationality

We first review the definition of F -rationality, and then compare it to Condition 1.0.2. All rings
occuring in this section contain Fp and are assumed to be F -finite, i.e., the absolute Frobenius map
on the ring is assumed to be a finite morphism.

7.1.1 Review of F -rational rings

F -rationality was a characteristic p analogue of the condition of rational singularities introduced by
Fedder and Watanabe in [FW89]. Originally defined in terms of tight closure, this notion was studied
by Karen Smith in [Smi94] and [Smi97b]. One of her main results was a local cohomological
characterisation of F -rationality which we, slightly idiosyncratically, take as our definition.

Definition 7.1.1. A noetherian excellent local Fp-algebra (R,m) of dimension d is F -rational if
it is Cohen-Macaulay, normal, and has the property that Hd

m(R) has no proper Frobenius-stable
submodules.

Remark 7.1.2. We briefly remind the reader of the Frobenius action on local cohomology. For a
local Fp-algebra (R,m), if F : Spec(R) → Spec(R) denotes the absolute Frobenius map, then
there is a natural pullback map F ∗ : RΓm(R) → RΓm(F∗R) ' F∗RΓm(R). This map can be
viewed as defining a p-linear endomorphism, called the Frobenius action, of RΓm(R). Under local
duality (and the assumption thatR is noetherian and admits a dualising complex), this action is dual
to the natural trace map TrF : F∗ω•R → ω•R. In particular, the condition that Hd

m(R) admits no
proper non-zero Frobenius-stable submodules is equivalent to the same conditon for the dualising
sheaf H−d(ω•R) ' ωR.

By work of Smith [Smi97b], Hara [Har98], and Mehta-Srinivas [MS97], a complex variety has
rational singularities if and only if its reductions to positive characteristic p (suitably defined by
taking spreads) have F -rational singularities for almost all primes p. In particular, this gives a lot of
examples of F -rational rings.
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We do not develop the theory of these rings in detail here, preferring to refer the reader to
the afore mentioned references. However, we do record a useful fact concerning the behaviour of
F -rationality with respect to localisation.

Proposition 7.1.3. Let (R,m) be an noetherian local Fp-algebra. Assume thatR admits a dualising
complex and is F -rational. Then the localisations Rp are F -rational for all prime ideals p ⊂ R.

Proof. The properties of being Cohen-Macaulay and normal localise. Thus, thanks to Remark 7.1.2,
we simply need to verify that for each prime ideal p ⊂ R, the corresponding dualising module ωRp

has no proper non-zero Frobenius stable submodules. The formula ωRp ' (ωR)p and the torsion
freeness of dualising sheaves allows us to view ωR as a submodule of ωRp in a manner compatabible
with Frobenius. In particular, any Frobenius stable submodule N ⊂ ωRp defines a Frobenius stable
submodule M = N ∩ ωR ⊂ ωR. Since ωR → ωRp is a localisation, the same is true for M → N .
In particular, if N ⊂ ωRp is proper and non-zero, the same is true for M ⊂ ωR, contradicting the
F -rationality of R.

7.1.2 Relation to F -rationality

In this subsection, we prove the following theorem relating F -rationality to Condition 1.0.2.

Theorem 7.1.4. Let (R,m) be a noetherian excellent local Fp-algebra admitting a dualising com-
plex. If R satisfies Condition 1.0.2, then R is F -rational. If R is Gorenstein, then the converse is
also true.

Proof. Both F -rationality and Condition 1.0.2 can be detected after completion. Thus, we may
assume that (R,m) is a complete noetherian local ring.

Assume that R satisfies Condition 1.0.2. We know by Remark 3.1.6 and Corollary 5.4.3 that R
is normal and Cohen-Macaulay. To show that R is F -rational, we use [Smi97b, Theorem 2.6] and
[Smi94, Theorem 5.4]. Together, these theorems imply that it is enough to check that for all ideals
I generated by a system of parameters, we have IS ∩ R = I for all finite extensions R → S. This
follows trivially from the definitions: Condition 1.0.2 implies that IS = I ⊕Q, where Q ∩R = 0.

For the converse direction, let R be an F -rational Gorenstein local ring of dimension d > 0.
Given a finite extension f : R→ S, we need to verify that evf : Hom(S,R) → R is surjective. By
the Gorenstein assumption, we can identify this map with Hom(S, ωR) → ωR. The image of this
last map is a Frobenius-stable submodule M ⊂ ωR. Moreover, since the formation of M commutes
with localisation, we know that M is generically non-zero. By Remark 7.1.2 and the definition of
F -rationality, it follows that M = ωR as desired.

Remark 7.1.5. We do not know if F -rational rings satisfy Condition 1.0.2 without a Gorenstein
hypothesis.

7.2 Pseudorationality

We first review the definition of pseudorationality, and thn compare it to Condition 1.0.2.

7.2.1 Review of pseudorationality

Pseudorationality was an older attempt at defining characteristic p analogue of rational singulari-
ties than F -rationality. It was defined by Lipman and Tessier in [LT81] in terms of certain good
properties enjoyed by rational singularities with respect to arbitrary modifications.
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Definition 7.2.1. A noetherian excellent local ring (R,m) of dimension d is pseudorational if it is
normal, Cohen-Macaulay, and has the following property: for all proper birational maps f : X →
Spec(R), the induced map Hd

m(R) → Hd
Z(X,OX) is injective, where Z is the inverse image of the

closed point.

Remark 7.2.2. We remind the reader of the definition of cohomology with supports: if Z ⊂ X is a
closed subset with complement U , then H i

Z(X,OX) is defined as the cohomology of a (homotopy)
kernel:

RΓZ(X,OX) = ker(RΓ(X,OX) → RΓ(U,OU )).

In the situation considered in Definition 7.2.1, one formally deduces that

RΓZ(X,OX) ' RΓm(Rf∗OX)

For applications, it is often convenient to work with the following dual formulation of pseudo-
rationality, also due to Lipman-Tessier [LT81]:

Theorem 7.2.3 (Lipman-Tessier). Let (R,m) be a normal, Cohen-Macaulay, excellent noetherian
local ring. Then S is pseudorational if and only if for all proper birational maps f : X → S, the
trace map induces an isomorphism f∗ωX ' ωS .

Proof. We may assume that S is connected. Fix a proper birational map f : X → S. The Leray
spectral sequence tells us that H0(S, f∗ωX) = H0(X,ωX). As dualising sheaves are torsion free
and rank 1, it follows that trace induces an isomorphism f∗ωX ' ωS if and only if trace induces a
surjection H0(X,ωX) → H0(S, ωS). Identifying H0(X,ωX) with H−d(X,ω•X), we see that trace
induces a surjection if and only if

Rf∗ω•X → ω•S

induces a surjection on H−d. By local duality, this last surjectivity is equivalent to the injectivity on
Hd of the map

RΓm(OS) → RΓm(Rf∗OX).

Since RΓm(Rf∗OX) ' RΓZ(X,OX) where Z = f−1({m}), the claim follows.

The preceding formulation of pseudorationality is useful in comparing it to other notions. For
example:

Proposition 7.2.4. Let (R,m) be a normal, Cohen-Macaulay, excellent noetherian local Q-algebra.
Then R is pseudorational if and only if S = Spec(R) has rational singularities.

Proof. For the forward direction, let f : X → S be a resolution of singularities. By Theorem 7.2.3,
pseduorationality of S implies that f∗ωX ' ωS via the trace map. The Grauert-Riemenschneider
vanishing theorem says that Rif∗ωX = 0 for i > 0. Thus, we see that the trace map induces
an isomorphism Rf∗ωX ' ωS . As S and X are both Cohen-Macaulay, their dualising sheaves
coincide with the dualising complexes (up to a shift). Hence, we find a canonical isomorphism

Rf∗ω•X ' ω•S .

Applying RHom(−, ω•S) and using Grothendieck duality gives us

Rf∗OX ' Rf∗RHom(ω•X , ω
•
X) ' RHom(Rf∗ω•X , ω

•
S) ' RHom(ω•S , ω

•
S) ' OS .

Thus, S has rational singularities.
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Conversely, assume that S has rational singularities. To show pseudorationality, by resolution of
singularities, it suffices to work with resolutions f : X → S. In this case, the preceding argument
is reversible.

7.2.2 Relation to pseudorationality

In this subsection, we show that Condition 1.0.2 is at least as strong as pseudorationality. Of course,
it is known by work of Karen Smith (see [Smi97b]) that even F -rational rings are pseudorational.
Hence, the theorem below follows by combining her theorem with Theorem 7.1.4. We give a direct
proof; our argument is inspired by that of Kovács [Kov00] as explained in Theorem 4.1.3.

Theorem 7.2.5. Let (R,m) be a noetherian excellent local Fp-algebra satisfying Condition 1.0.2.
Then R is pseudorational.

Proof. Let S = Spec(R). It suffices to verify the conditions mentioned in Theorem 7.2.3. The
normality of R follows from Remark 3.1.6; the excellence of R implies that it is analytically un-
ramified; the Cohen-Macaulayness ofR follows from Corollary 5.4.3. Thus, it suffices to verify that
for every proper birational map f : X → S, the trace map H0(X,ωX) → H0(S, ωS) is surjective.
By Theorem 5.0.2, we know that the map OS → Rf∗OS is split in D(Coh(S)). The choice of a
splitting defines the following diagram in D(Coh(S)):

OS // Rf∗OS // OS

with the composite map the identity. Let ω•X denotes the dualising complex of X normalised as
usual: ω•X ∈ D[−d,0](Coh(X)) with H−d(ω•X) ' ωX where ωX is the (usual) dualising sheaf
on X , and d = dim(X). Let ω•S be the analogous object on S. Applying RHom(−, ω•S) to the
preceding diagram and using Grothendieck duality, we obtain a diagram in D(Coh(S)) of the form

ω•S Rf∗ω•X
Trfoo ω•Soo

where Trf is the trace map, and the composite map is the identity. Note that because of our conven-
tions, we have a natural identification

H−d(Rf∗ω•X) ' H−d(Rf∗ωX [d]) ' f∗ωX .

Applying H−d to the preceding diagram therefore gives us a diagram in Coh(S) of the form

ωS f∗ωX
Trfoo ωSoo

where Trf is the corresponding trace map. Applying H0(S,−) and noting that H0(S, f∗ωX) =
H0(X,ωX) (by the Leray spectral sequence for f ) now implies the desired surjectivity.

Remark 7.2.6. The proof given above actually shows that if S satisfies Condition 1.0.2 and f :
X → S is any alteration, then the trace map H0(X,ωX) → H0(S, ωS) is surjective.

7.3 Frobenius splitting

The purpose of this section is review the notion of a “Frobenius splitting” in the sense of [MR85],
and explain its relation to Condition 1.0.2. The basic definition is:
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Definition 7.3.1. An Fp-scheme S is Frobenius-split if the map OS → F∗OS induced by the
absolute Frobenius map F : S → S is split in Coh(S).

We do not review the general theory of Frobenius-split varieties here, preferring to refer the
reader to the original paper [MR85] or more recent books such as [BK05]. We will restrict ourselves
to pointing out that there are strong parallels between the study of Frobenius-split varieties and the
study of schemes satisfying Condition 1.0.2: both conditions impose a certain kind of positivity
constraint when applied to projective varieties, neither condition is local on the scheme, and both
conditions end up defining singularities in positive characteristic that are closely related to singular-
ities classically studied over C using resolutions (for example, it is expected that the Frobenius-split
singularities over Fp are expected to be analogues of the log canonical singularities).

Our main result with regards to Frobenius-splitting is the following trivial observation:

Proposition 7.3.2. If S is a noetherian Fp-scheme satisfying Condition 1.0.2, then S is Frobenius
split.

Proof. This implication holds by definition when the Frobenius map F : S → S is a finite mor-
phism. In the general case, we use Proposition 3.1.4. To apply this proposition, we need to ver-
ify that F∗OS is a filtered colimit of coherent OS-algebras. Since S is noetherian, we may write
F∗OS = colim Fi, where Fi is a coherent OS-subsheaf of F∗OS . The algebra generated by each
Fi within F∗OS is then a coherent algebra (any local section f of F∗OS satisifes an equation of the
form Xp − g, where g is a local section of OS), and the union of all these subalgebras is F∗OS , as
desired.

We finish with an example illustrating that the converse to Proposition 7.3.2 fails in a rather
strong way. This example also illustrates the subtle arithmetic nature of a Frobenius-splitting.

Example 7.3.3. Let A be an ordinary abelian variety over an algebraically closed field k of positive
characteristic. We will show that A is Frobenus-split; note that Example 3.2.7 shows that ordinary
abelian varieties do not satisfy Condition 1.0.2. Since k is algebraically closed, we can (and do)
identify the absolute Frobenius onAwith its Frobenius map relative to k. To see thatA is Frobenius-
split, using Lemma 5.6.1, it suffices to show thatHn(A,ωA) → Hn(A,F ∗(ωA)) is injective, where
n = dim(A), ωA is the dualising line bundle on A, and F : A → A is the absolute Frobenius
morphism. Since A is an abelian variety, the dualising line bundle is trivial. Hence, it suffices to
show that the natural map F ∗(Hn) : Hn(A,OA) → Hn(A,OA) is injective. The cohomology
group Hn(A,OA) is identified with det(H1(A,OA)), functorially in A. Thus, it suffices to show
that F ∗(H1) : H1(A,OA) → H1(A,OA) is an isomorphism; this claim follows from the definition
of ordinarity.
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Chapter 8

Mixed characteristic

Fix a prime number p. In this chapter, we study mixed characteristic analogues of the positive
characteristic theorems proven in Chapter 5. Our main goal is to prove the following theorem on
the cohomology of proper morphisms, which may be considered as a mixed characteristic lift of
Corollary 5.2.4:

Theorem 8.0.1. Let f : X → S be a proper morphism of schemes with S affine and excellent. Then
there exists an alteration π : Y → X such π∗(H i(X,O)) ⊂ p(H i(X,O)).

A theorem of this type is interesting only when p is not invertible on S. In the case p = 0 on
S, Theorem 8.0.1 says that alterations kill the higher relative cohomology of the structure sheaf for
proper maps — a weaker version of Proposition 5.2.2. The techniques used in Chapter 5 depend
heavily on the use of Frobenius and, consequently, do not transfer over to the mixed characteristic
world. Our proof of Theorem 8.0.1 is geometric in nature and, in fact, can be used to give a new
proof of Theorem 5.0.1.

Our plan for this chapter is as follows. Theorem 8.0.1 is proven in §8.1: we discuss a reduction
to relative dimension 0 in §8.1.1, and then prove this case in §8.1.2. In §8.2, we explain how to
deduce the apparently stronger sounding Theorem 5.0.1 from Theorem 8.0.1.

8.1 The main theorem

To obtain an idea of the techniques involved in our proof of Theorem 8.0.1, consider the special
case where f has relative dimension 1. If S were reduced to a point, then a natural way to proceed
is as follows: replace X with its normalisation, identify the group H1(X,O) with the tangent space
to the Picard variety Pic0(X) at the origin, and prove that there exist maps of curves such that
the pullback on Picard varieties is divisible by p, at least at the expense of extending the ground
field. For a non-trivial family of curves, the preceding argument can be applied to solve the problem
over the generic point. Using the existence of compact moduli spaces of stable curves (or, even
better, stable maps), and some basic properties of the category of semiabelian schemes over normal
schemes, we can extend the generic solution to one over an alteration of S. This is not quite enough
as the alteration is no longer affine, but it does show that to prove the theorem for morphisms of
relative dimension 1 it suffices to deal with the case of relative dimension 0.

In the general case, de Jong’s theorems show that an arbitrary proper morphism f of relative
dimension d can be altered into a sequence of d iterated curve fibrations over an alteration of the
base. Thus, granting that the preceding argument works for curve fibrations, we inductively reduce
the general problem to that for proper morphisms of relative dimension 0, i.e., alterations. For this
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last case, we carefully fibre S itself by curves while preserving certain cohomological properties
and work by induction on dim(S).

In order to flesh out the preceding outline, we make the following definition:

Definition 8.1.1. Given a scheme S, we say that Condition Cd(S) is satisfied if S is excellent, and
the following is satisfied by each irreducible component Si of S: given a proper surjective morphism
f : X → Si of relative dimenson d with X integral, there exists an alteration π : Y → X such that,
with g = f ◦ π, we have π∗(Rif∗OX) ⊂ p(Rig∗OY ) for i > 0.

Proving Theorem 8.0.1 can be reformulated as verifying Condition Cd(S) for all excellent
schemes S. This verification is carried out in the sequel. More precisely, in §8.1.1, we will show
that the validity of C0(S) for all excellent base schemes S implies the same for Cd(S) for all integers
d and all excellent schemes S. We then proceed to verify Condition C0(S) in §8.1.2.

8.1.1 Reduction to the case of relative dimension 0

The objective of the present section is to show the relative dimension of maps considered in Theorem
8.0.1 can be brought down to 0 using suitable curve fibrations. The necessary technical help is
provided by the following result, essentially borrowed from [dJ97], on extending maps between
semistable curves.

Proposition 8.1.2. Fix an integral excellent base scheme B with generic point η. Assume we have
semistable curves φ : C → B and φ′η : C ′

η → η, and a B-morphism πη : C ′
η → C. If C ′

η

is geometrically irreducible, then we can alter B to extend πη to a map of semistable cures over
B, i.e., there exists an alteration B̃ → B such that C ′

η ×B B̃ extends to a semistable curve over
C̃ ′ → B̃ with C̃ ′ integral, and the map πη ×B B̃ extends to a B̃-map π̃ : C̃ ′ → C ×B B̃.

Proof. We may extend C ′
η to a proper B-scheme using the Nagata compactification theorem (see

[Con07, Theorem 4.1]). By taking the closure of the graph of the rational map defined from this
compactification to C by πη, we obtain a proper dominant morphism φ′ : C ′ → B of integral
schemes whose generic fibre is the geometrically irreducible curve φ′η : C ′

η → B, and a B-map
π : C ′ → C extending πη : C ′

η → C. The idea, borrowed from [dJ96, §4.18], is the following:
modify B to make the strict transform of C ′ → B flat, alter the result to get enough sections which
make the resulting datum generically a stable curve, use compactness of the moduli space of stable
curves to extend the generically stable curve to a stable curve after further alteration, and then use
stability and flatness to get a well-defined morphism from the resulting stable curve to the original
one extending the existing one over the generic point. Instead of rewriting the details here, we refer
the reader to [dJ97, Theorem 5.9] which directly applies to φ′ to essentially finish the proof; the
only thing to check is the integrality of C̃ ′ which follows from the irreducibility of the generic fibre
C ′
η ×B B̃.

Remark 8.1.3. Proposition 8.1.2, while sufficient for the application we have in mind, is woefully
inadequate in terms of the permissible generality. Johan de Jong’s techniques can, in fact, be used to
show something much better: for any flat projective morphism X → B, there exists an ind-proper
algebraic stack Mg(X) → B parametrising B-families of stable maps from genus g curves to X

In addition to constructing maps of semistable curves, we will also need to construct maps that
preserve sections. The following lemma says we can do so at a level of generality sufficient for our
purposes.
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Lemma 8.1.4. Fix an integral excellent base scheme B, two semistable curves φ1 : C1 → B and
φ2 : C2 → B, and a surjective B-map π : C2 → C1. Then any section of φ1 extends to a section of
φ2 after an alteration of B, i.e., given a section s : B → C1, there exists an alteration b : B̃ → B
such that the induced map B̃ → B → C1 factors through a map B̃ → C2.

Proof. Let η be the generic point of B, let s : B → C1 be the section of φ1 under consideration,
and let sη : η → C1 denote the restriction of s to the generic point. By the surjectivity of π, the map
πη : (C2)η → (C1)η is surjective. Thus, there exists a finite surjective morphism η′ → η such that
the induced map η′ → C1 factors through some map s′η : η′ → C2. If B′ denotes the normalisation
of B in η′ → η, then the map s′η spreads out to give a rational map B′ 99K C2. Taking the closure
of the graph of this rational map (over B) gives an alteration b : B̃ → B such that the induced map
B̃ → C1 factors through a map s̃2 : B̃ → C2, proving the claim.

Proposition 8.1.2 allows us to construct maps of semistable curves by constructing them gener-
ically. We now show how to construct the desired maps generically; the idea of this construction
belongs to class field theory.

Lemma 8.1.5. Let X be a proper curve over a field k. Then there exists a field extension k′ of k,
a proper smooth curve Y over k′ with geometrically irreducible components, and a finite flat map
π : Y → Xk′ such that the induced map π∗ : Pic(Xk′) → Pic(Y ) of sheaves of abelian groups is
divisible by p in Hom(Pic(X),Pic(Y )).

Proof. The statement to be proven is stable under taking finite covers of X , and can be proven
one connected component at a time. Thus, after picking a suitable finite extension k′ of k and
normalising Xk′ , we may assume that X is a smooth projective geometrically connected curve of
genus ≥ 1 with a rational point x0 ∈ X(k). The point x defines the Abel-Jacobi map X →
Pic0(X) ⊂ Pic(X) via x 7→ O([x]) ⊗ O(−[x0]). Riemann-Roch implies that this map is a closed
immersion. We set π : Y → X to be the normalised inverse image ofX under the multiplication by
p map [p] : Pic(X) → Pic(X). It follows that the pullback π∗ : Pic(X) → Pic(Y ) factors through
multiplication by p on Pic(X) and is therefore divisible by p.

Lemma 8.1.5 allows us to construct covers of semistable curves that generically induce a map
divisible by p on cohomology. We now show how to globalise this construction; this forms one of
the primary ingredients of our proof of Theorem 8.0.1.

Proposition 8.1.6. Let φ : X → T be a projective family of semistable curves with T integral and
excellent. Then there exists a diagram

X̃
π //

φ̃
��

X

φ

��
T̃

ψ // T

satisfying the following:

1. The scheme T̃ is integral, and the map ψ is an alteration.

2. φ̃ is a projective family of semistable curves, and the map π is proper and surjective.

3. The pullback map ψ∗R1φ∗OX → R1φ̃∗OX̃ is divisible by p in Hom(ψ∗R1φ∗OX ,R1φ̃∗OX̃).
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Proof. For any family φ : X → T of projective semistable curves, there is a natural identification
of R1φ∗OX with the normal bundle of the zero section of the semiabelian scheme Pic0(X/T ) →
T . Moreover, given another semistable curve φ̃ : X̃ → T and a morphism of semistable curves
π : X̃ → X over T , the induced map R1(π) : R1φ∗OX → R1φ̃∗OX̃ can be identified as the map on
the corresponding normal bundles at 0 induced by the natural morphism Pic0(π) : Pic0(X/T ) →
Pic0(X̃/T ). As multiplication by n on smooth commutative group schemes induces multiplication
by n on the normal bundles at 0, it follows that if Pic0(π) is divisible by p, so is R1(π). Given
that the formation of R1φ∗OX commutes with arbitrary base change on T , it now suffices to show
the following: there exists an alteration ψ : T̃ → T and a morphism of semistable curves π :
X̃ → X ×T T̃ over T̃ such that the induced map Pic0(π) is divisible by p. Our strategy will be to
construction a solution to this problem generically on T , and then use Proposition 8.1.2 and some
elementary properties of semiabelian schemes to globalise.

Let η denote the generic point of T . By Lemma 8.1.5, we can find a finite extension η′ → η, and
a proper smooth curve Yη′ → η′ with geometrically irreducible components such that the induced
map Pic0(Xη′) → Pic0(Yη′) is divisible by p. After replacing the map X → T with its base
change along the normalisation of T in η′ → η, we may assume that η′ = η. The situation so far is
summarised in the diagram

tiYηi = Yη

��

// X

��
η // T

where the Yηi are the (necessarily) geometrically irreducible components of Yη. As each of the Yηi
is smooth as well, we may apply Proposition 8.1.2 to extend each Yηi to a semistable curve Yi → Ti
where Ti → T is some alteration of T , such that the map Yηi → X extends to a map Yi → X .
Setting T̃ to be a dominating irreducible component of the fibre product of all the Ti over T , and
setting X̃ to be the disjoint of Yi ×Ti T̃ , we find the following: an alteration T̃ → T , a semistable
curve X̃ → T̃ extending Yη ×T T̃ , and a map π̃ : X̃ → X extending the existing one over the
generic point. We will now check the required divisibility.

As explained earlier, it suffices to show that the resulting map Pic0(X×T T̃ /T̃ ) → Pic0(X̃/T̃ )
is divisible by p. This divisibility holds generically on T̃ by construction. To extend this divisibility
to all of T̃ , note that the group schemes occuring as Pic0 of a semistable curve are all semiabelian.
The normality of T̃ implies that restriction to the generic point is a fully faithful functor from the
category of semiabelian schemes over T̃ to the analogous category over its generic point (see [FC90,
Chapter I, Proposition 2.7]). In particular, the generic divisibility by p ensures the global divisibility
by p, proving the existence of X̃ with the desired properties.

Recall that we set out to reduce Theorem 8.0.1 to verifying Condition C0(S). Proposition 8.1.6
allows us to make the cohomology of the fibres of a curve fibration divisible by p on passage to
alterations, while de Jong’s theorems allow us to alter an arbitrary proper dominant morphism into
a sequence of curve fibrations over an alteration of the base. We can combine these two ingredients
to make the promised reduction in relative dimension.

Proposition 8.1.7. Let S be an excellent scheme such that Condition C0(S) is satisfied. Then Cd(S)
is satisfied for all d ≥ 0.

Proof. As Condition Cd(S) is defined in terms of the irreducible components of S, we may assume
that S is integral itself. Fix integers d, i > 0, an integral scheme X , and a proper surjective mor-
phism f : X → S of relative dimension d. By Corollary 5.10 of [dJ97], after replacing X by an
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alteration, we may assume that f : X → S factors as follows:

X
f

��@
@@

@@
@@

φ
��
T

f ′ // S

Here φ is a projective semistable curve, and f ′ is a proper surjective morphism of integral excellent
schemes of relative dimension d−1. Also, at the expense of altering T further, we may assume that
φ has a section s : T → X . The fact that φ is a semistable curve gives us the formula OT ' φ∗OX .
Using the section s and the Leray spectral sequence, we find an exact sequence

0 → Rif ′∗OT → Rif∗OX → Ri−1f ′∗R
1φ∗OX → 0

that is naturally split by the section s. Our strategy will be to prove divisibility for Rif∗OX by
working with the two edge pieces occuring in the exact sequence above. In more detail, we apply
the inductive hypothesis to choose an alteration π′ : T ′ → T such that, with g′ = f ′ ◦ π′, we have
π′∗(Rif ′∗OT ) ⊂ p(Rig′∗OT ′). The base change of φ and s along π′ define for us a diagram

X ′ = X ×T T ′
pr1 //

φ′

��

X
f

��?
??

??
??

?

φ

��
T ′

π′ //

s′

DD

T
f ′ //

s

BB

S

The commutativity of the preceding diagram gives rise to a morphism of exact sequences

0 // Rif ′∗OT
//

π′∗

��

Rif∗OX

s∗
tt

//

pr∗2
��

Ri−1f ′∗R
1φ∗OX

R1pr∗2
��

// 0

0 // Rig′∗OT ′
// Ri(f ◦ pr1)∗OX′ //

s′∗
ss

Ri−1g′∗R
1φ′∗OX′

// 0

compatible with the exhibited splittings. The map φ′ is a semistable curve with a section s′. Apply-
ing Proposition 8.1.6 and using Lemma 8.1.4, we can find a commutative diagram

X ′′ a //

φ′′

��

X ′ = X ×T T ′
pr1 //

φ′

��

X
f

��?
??

??
??

?

φ

��
T ′′

π′′ //

s′′

CC

T ′
π′ //

s′

DD

T
f ′ //

s

BB

S

where π′′ is an alteration, φ′′ is a semistable curve, a is an alteration, s′′ is a section of φ′′ (compatible
with s′ and s thanks to the commutativity of the picture), such that a∗R1φ′∗OX′ → R1φ′′∗OX′′ is
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divisible by p. Setting g′′ = g′ ◦ π′′, it follows that we can make a diagram of exact sequences

0 // Rif ′∗OT
//

π′∗

��

Rif∗OX

s∗
ss

//

pr∗2
��

Ri−1f ′∗R
1φ∗OX

R1pr∗2
��

// 0

0 // Rig′∗OT ′
//

π′′∗

��

Ri(f ◦ pr1)∗OX′

s′∗
ss

//

a∗

��

Ri−1g′∗R
1φ′∗OX′

//

R1a∗

��

0

0 // Rig′′∗OT ′′
// Ri(f ◦ pr1 ◦ a)∗OX′′ //

s′′∗
ss

Ri−1g′′∗R
1φ′′∗OX′′

// 0

which is compatible with the exhibited splittings of each sequence. As R1a∗ is divisible by p, it
follows that the image of right vertical composition is divisible by p. The image of the left vertical
composition is divisible by p by construction of π′. By compatibility of the morphism of exact
sequences with the exhibitted splittings, it follows that the image of the middle vertical composition
is also divisible by p. Replacing X ′′ be an irreducible component dominating X then proves the
claim.

8.1.2 The case of relative dimension 0

In this section we will verify Condition C0(S) for all excellent schemes S. After unwrapping the
definitions and making some preliminary reductions, one reduces to showing the following: given
an alteration f : X → S with S affine and a cohomology class α ∈ H i(X,O), there exists an
alteration π : Y → X such that p | π∗(α). If α arose as the pullback of a class under a morphism
X → X with X proper over an affine base of dimension dim(S) − 1, then we may conclude
by induction using Proposition 8.1.7. The proof below will show that, at the expense of certain
technical but manageable modifications, this method can be pushed through. Our main result is:

Proposition 8.1.8. The Condition C0(S) is satisfied by all excellent schemes S.

Our proof of Proposition 8.1.8 will consist of a series of reductions which massage S until it
becomes a geometrically accessible object (see Lemma 8.1.15 for the final outcome of these “easy”
reductions).

Warning 8.1.9. For conceptual clarity, we often commit the following abuse of mathematics in the
sequel: when proving a statement of the form that Cd(S) is satisfied for all integers d and a particular
scheme S, we ignore the restrictions on integrality and relative dimension imposed by Condition
Cd(S) while making certain constructions; the reader can check that in each case the statement to be
proven follows from our constructions by taking suitable irreducible components (see Lemma 8.1.10
for an example). We strongly believe that this abuse, while easily fixable, enhances readability.

We first observe that the problem is Zariski local on S.

Lemma 8.1.10. The Condition Cd(S) is local on S for the Zariski topology, i.e., if {Ui ↪→ X} is a
Zariski open cover of X , then Cd(S) is satisfied if and only if Cd(Ui) is satisfied for all i.

Proof. We will first show that Cd(S) implies Cd(U) for any open j : U → S. By Nagata compact-
ification (see [Con07, Theorem 4.1]), given any alteration f : X → U , we can find an alteration
f : X → S extending f over U . As j : U → S is flat, we have that j∗Rif∗OX = Rif∗OX .
By assumption, we can find an alteration π : Y → X such that, with g = f ◦ π, we have
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π∗Rif∗OX ⊂ p(Rig∗OY ). Restricting to U and using flat base change for g produces the desired
result.

Conversely, assume there exists a cover {Ui ↪→ X} such that Cd(Ui) is true. Given an alteration
f : X → S, define fi : XUi → Ui to be the natural map. The assumption implies that we can find
alterations πi : Yi → XUi such that, with gi = fi ◦ πi, we have π∗i (R

jfi∗OXUi
) ⊂ p(Rjgi∗OYi)

for each i. By Proposition 5.2.1, we can find π : Y → X such that π ×S Ui factors through πi. As
taking higher pushforwards commutes with restricting to open subsets, we see that π∗(Rjf∗OX) ⊂
Rjg∗OY is a subsheaf that is locally inside p(Rjg∗OY ). As containments between two subsheaves
of a given sheaf can be detected locally, the claim follows.

Next, we show how to localise for the topology of finite covers.

Lemma 8.1.11. The Condition Cd(S) is local on S for the topology of finite covers, i.e., if g : S′ →
S is finite surjective, then Cd(S) is satisfied if and only if Cd(S′) is satisfied.

Proof. For the forward direction, we use the fact that a proper surjective map f : X → S′ defines
a proper surjective map g ◦ f : X → S of the same relative dimension. For the converse direction,
we use that given a proper surjective map f : Y → S, the base change Y ×S S′ → Y is a finite
surjective map with the additional property that Y ×S S′ admits a proper surjective map to S′ of the
same relative dimension as f . We omit the details.

Combining the preceding observations, we show how to pass to quasifinite covers.

Lemma 8.1.12. If g : S′ → S is quasifinite and surjective and Cd(S) is satisfied, then Cd(S′) is
satisfied.

Proof. By Zariski’s main theorem (Théorème 8.12.6 of [Gro66]), we can factor g as S′
j→ S′

g→ S
with j an open immersion, and g finite surjective. Lemma 8.1.11 implies that Cd(S′) is satisfied.
The first half of the proof of Lemma 8.1.10 then shows that Cd(S′) is also satisfied, as desired.

Finally, we show how to étale localise:

Lemma 8.1.13. The Condition Cd(S) is étale local on S, i.e., if g : S′ → S is a surjective étale
morphism, then Cd(S) is satisfied if and only if Cd(S′) is satisfied.

Proof. If Cd(S) is satisfied, then Cd(S′) is also satisfied by Lemma 8.1.12. For the converse direc-
tion, using Lemma 8.1.10, we may assume that S and S′ are both local schemes. By Lemma 6.1.2,
we can find a diagram

tiUi //

h
��

T

π

��
S′

g // S

such that π is finite surjective, tUi → T forms a Zariski cover, and h is some map. The commu-
tativity of the diagram forces h to be quasifinite, while the locality of S′ forces h to be surjective.
Since we are assuming that Cd(S′) is satisfied, Lemma 8.1.12 now implies that Cd(tiUi) is satisfied.
Using Lemma 8.1.10, we deduce that Cd(T ) is satisfied. Lemma 8.1.11 then allows us to conclude
that Cd(S) is satisfied, as desired.

Having étale localised, we prove an approximation result.

Lemma 8.1.14. The Condition Cd(S) is satisfied by all affine excellent schemes S if it is satisfied
by all affine schemes S of finite type over Z.

60



Proof. By Proposition 8.1.7, we may restrict ourselves to d = 0 (the resulting simplification is
purely notational). Assume that Cd(S) is satisfied whenever S is of finite type over Z. Let S′

be an arbitrary excellent affine scheme, and let f : X ′ → S′ be a proper morphism. Given a
cohomology class α′ ∈ H i(X ′,OX′), the quadruple (X ′, S′, f ′, α′) is defined by a finite amount
of algebraic data. Consequently, it can be obtained from a similar quadruple (X,S, f, α) along a
base change S′ → S where S has finite type over Z. By assumption, there exists an alteration
π : Y → X such that π∗α is divisible by p. It follows then that a dominating irreducible component
of π′ : Y ×S S′ → X ′ provides the desired alteration.

Next, we complete at p.

Lemma 8.1.15. The Condition Cd(S) is satisfied by all affine excellent schemes S if it is satisfied
by all affine schemes S of finite type over the Witt vector ring W(Fp).

Proof. We first explain the idea informally. Using Lemmas 8.1.14 and 8.1.13, we easily reduce
to verifying C0(S) for S of finite type over the strict henselisation Rsh, where R = Z(p) is the

localisation of Z at p. To deduce the statement over Rsh from that over R̂sh = W(Fp), we use
Popescu’s approximation theorem which allows us to write R̂sh is an inductive limit of smoothRsh-
algebras. The crucial point here is that any smooth Rsh-algebra with non-empty special fibre has an
Rsh-valued point; the details of this argument now follow.

By Proposition 8.1.7 and Lemma 8.1.14, it suffices to show that C0(S) is satisfied whenever S is
affine and of finite type over Z. As there is nothing to show when p ∈ O∗

S , Nagata compactification
(see [Con07, Theorem 4.1]) easily reduces us to verifying C0(S) for S affine and of finite type over
R = Z(p), the localisation of Z at p. By Lemma 8.1.13 and a limit argument, we reduce to verifying
C0(S) for S affine and of finite type over Rsh. Let S be such a scheme, and let f : X → S be
an alteration of S. As the groups H i(X,OX) are finite OS-modules, in order to make the groups
H i(X,O) divisible by p, it suffices to work one class at a time. Let α ∈ H i(X,OX) with i > 0
be a cohomology class of degree i > 0. By assumption, we know there exists an alteration π̂ :
Ŷ → XdRsh such that p|π̂∗(α), where R̂sh ' W(Fp) is the p-adic completion of Rsh. By the main

theorem of [Pop85], we know that the completion Rsh → R̂sh is an ind-smooth morphism, i.e.,
we can write R̂sh = colimRi, where Rsh → Ri is finite type and smooth. Furthermore, since
Rsh → R̂sh has a non-empty special fibre, the same is true for Rsh → Ri for each i. By virtue
of everything being of finite presentation, there exists an index i and an alteration πi : Yi → XRi

giving π̂ over R̂sh such that p|π∗i (α). As Rsh → Ri is smooth with non-empty special fibre, we
can cut Ri with appropriately chosen hyperplane sections to find a quotient Ri → T such that the
composite Rsh → Ri → T is finite étale. Since Rsh is strictly henselian and T is local, it follows
that Rsh ' T . The fibre πi ×Ri T is then easily seen to do the job.

We have reduced the proof of Theorem 8.0.1 to showing Condition C0(S) for affine schemes S
of finite type over B = Spec(W(Fp)). Given an alteration of such an S, the non-quasi-finite locus
of the alteration is a closed subset Z ⊂ S of codimension ≥ 2 that is often called the center of
the alteration. Our strategy for proving Theorem 8.0.1 is to construct, at the expense of localising a
little on S, a partial compactification S ↪→ S with S proper over a lower dimensional base such that
Z remains closed in S. This last condition ensures that the alteration in question can be extended
to an alteration of S without changing the center. As the center has not changed, the cohomology
of the newly created alteration maps onto that of the older alteration, thereby paving the way for
an inductive argument via Proposition 8.1.7. The precise properties needed to carry out the above
argument are ensured by the presentation lemma that follows.
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Lemma 8.1.16. Let B = Spec(W(Fp)) be the maximal unramified extension of Zp. Let Ŝ be a
local integral scheme, flat and essentially of finite type B with relative dimension ≥ 1. Assume that
the residue field of Ŝ at the closed point has positive characteristic. Given a closed subset Ẑ ⊂ Ŝ
of codimension ≥ 2, we can find a diagram of B-schemes of the form

s ∈ Z
iZ //

((QQQQQQQQQQQQQQ S

��@
@@

@@
@@

@
j // S

π

��

∂S

}}||
||

||
||

ioo

W

satisfying the following:

1. All the schemes in the diagram above are of finite type over B.

2. S is an integral scheme, iZ is a closed subscheme, s is a closed point, and the germ of iZ at
s agrees with Ẑ ⊂ Ŝ.

3. i is the inclusion of a Cartier divisor, and j is the open dense complement of i.

4. W is an integral affine scheme with dim(W ) = dim(S)− 1.

5. π is proper, π |S is affine, and both these maps have fibres of equidimension 1.

6. π |Z and π |∂S are finite. In particular, j(iZ(Z)) is closed in S.

Proof. We begin by choosing an ad hoc finite type model of Ẑ ↪→ Ŝ over B, i.e., we find a map
iY : Y → T and a point y ∈ Y satisfying the following: the map iY is a closed immersion of finite
type integral B-schemes with codimension ≥ 2, and the germ of iY at y is the given map Ẑ ↪→ Ŝ.
Next, we choose an ad hoc compactification T ↪→ T over B, i.e., T is a projective B-scheme
containing T as a dense open subscheme. By replacing T with the complement of a suitable ample
divisor missing the point y in the special fibre (and hence in all of T by properness), we may assume
that the complement ∂T is an ample divisor flat over B. We denote by Y the closure of Y in T , and
by ∂Y = Y −Y its boundary. As Y had codimension≥ 2, its closure Y also has codimension≥ 2,
while the boundary ∂Y has codimension ≥ 3 as Y is not contained in ∂T . Our goal is to modify
our choices of T and T to eventually find the required S and S.

Let d denote the relative dimension of T over B. By construction, this is the relative dimension
of Ŝ overB as well. The next step is to find a finite morphism φ : T → Pd such that φ(y) /∈ φ(∂T ).
We find such a map by repeatedly projecting. In slightly more detail, say we have a finite morphism
φ : T → PN for some N > d such that φ(y) /∈ φ(∂T ). Then φ(∂T ) is a closed subscheme of
codimension ≥ 2. Moreover, by the flatness of ∂T over B, the same is true in the special fibre
PN ×B Fp. By basic facts of projective geometry in the special fibre, we can find a line ` through
φ(y) that does not meet φ(∂T ). By the ampleness of ∂T , this line cannot entirely be contained
in φ(T ). Thus, we can find a point on it that is not contained in φ(T ). By projecting from this
point, we see that we can find a finite morphism φ : T → PN−1 such that φ(y) /∈ φ(∂T ). So
far the discussion was taking place in the special fibre. However, by choosing a lift of this point
to a B-point by smoothness of PN and using the properness of ∂T to transfer the non-intersection
condition from the special fibre to the total space, it follows that we can make this construction over
B. Continuing this way, we can find a finite morphism φ : T → Pd with the same property. As
φ(∂T ) is now a very ample Cartier divisor, its complement U ↪→ Pd is an open affine containing
φ(y). We may now replace T with φ−1(U) and Y with Y ∩ φ−1(U) (this does not change the
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closure as y ∈ Y ∩ φ−1(U) and Y is irreducible) to assume that we have produced the following:
an algebraisation iY : Y → T of Ẑ → Ŝ for some point y ∈ Y , a compactification T ↪→ T , and
a finite morphism φ : T → Pd such that T = φ−1(U) for some open affine U ∈ Pd that is the
complement of a very ample divisor H , flat over B.

Now we project once more to obtain the desired curve fibration. As explained earlier, the closure
Y has codimension ≥ 2 in T . Since we do not know that it is flat over B, the most we can say is
that its image φ(Y ) has codimension ≥ 1 in the special fibre Pd ×B Fp. On the other hand, we
know that ∂T was a B-flat divisor. Thus, its image φ(∂T ) also has codimension ≥ 1 in the special
fibre Pd ×B Fp. It follows that φ(Y ∪ ∂T ) has codimension ≥ 1 in the special fibre Pd ×B Fp.
By choosing a closed point not in this image inside U and lifting to a B-point as above, we find a
B-point p : B → U ⊂ Pd whose image does not intersect φ(Y ∪ ∂T ). Projecting from this point
gives rise to the following diagram:

Blφ−1(p)(T ) a //

��

Blφ−1(p)(T ) b //

��

Blp(Pd) c //

��

P(Tp(Pd)) ' Pd−1

T // T // Pd.

The horizontal maps enjoy the following properties: c is a P1-fibration (in the Zariski topology), b
is a finite surjective morphism, and a is an open immersion. In particular, the composite map cb is
a proper morphism with fibres of equidimension 1. As the map φ : T → Pd was chosen to ensure
that φ−1(U) = T , the composite map cba can be factored as

Blφ−1(p)(T ) → Blp(U) → Pd−1.

The first map in this composition is finite surjective as φ is so, while the second map is an affine
morphism with fibres of equidimension 1 thanks to Lemma 8.1.17 below. It follows that the com-
posite map cba is an affine morphism with fibres of equidimension 1. Lastly, by our choice of p,
the map cb restricts to a finite map on Y and T (here we identify subschemes of T not intersectng
φ−1(p) with those of the blowup). As explained earlier, the boundary ∂Y has codimension ≥ 3
in T . This implies that its special fibre has codimension ≥ 2. Therefore, its image in Pd−1 has
codimension ≥ 1. It follows that we can find an open affine W ↪→ Pd−1 not meeting the image of
φ(∂Y ). Restricting the entire picture thus obtained to W , we find a diagram that looks like

y ∈ Y //

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Blφ−1(p)(T )W //

((QQQQQQQQQQQQQQ
Blφ−1(p)(T )W

π

��

∂TW
oo

xxqqqqqqqqqqqq

W.

Setting s = y, Z = Y , S = Blφ−1(p)(T )W , S = Blφ−1(p)(T )W , and ∂S = ∂TW implies the
claim.

In the proof of the preceding presentation lemma, an elementary fact concerning blowups was
used. This is recorded below.

Proposition 8.1.17. Fix an affine regular base scheme B. Let H ↪→ Pn×B be a divisor that is flat
and relatively ample over B, and let U be the complement. For any point p ∈ U(B), the blowup
map Blp(U) → P(Tp(Pn)) is an affine morphism with fibres of equidimension 1.
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Proof. Let b : Blp(Pn) → Pn be the blowup map, and let π : Blp(Pn) → P(Tp(Pn)) be the
morphism defined by projection. It is easy to see that π is a P1-bundle. In fact, it can be identified
with the projectivisation of the rank 2 vector bundle O(1)⊕ O on P(Tp(Pn)), with the exceptional
divisor corresponding to the zero section of O(1). As the ample divisor H was disjoint from the
center of the blowup, b∗(H) defines an ample divisor on the fibres of π. By semicontinuity, it
follows that for any vector bundle E ∈ Vect(Blp(Pn)), the higher pushforwardsRiπ∗E(nH) vanish
for i > 0 provided n is sufficiently large. By the regularity of all schemes in sight, it follows that
the same is true for any coherent sheaf. As Blp(U) ↪→ Blp(Pn) is the complement of b∗(H), it
follows by Serre’s affineness criterion that π|Blp(U) is affine. The claim about the fibre dimension
follows from the observation that, geometrically, the fibre of π|Blp(U) over a line ` passing through
p, viewed as a point [`] ∈ P(Tp(Pn)), is simply `∩U which is a non-empty affine curve in ` thanks
to the choice of p and the positivity of H

Before proceeding to the proof of Theorem 8.0.1, we record a cohomological consequence of
certain geometric hypotheses. The hypotheses in question are the kind ensured by Lemma 8.1.16,
while the consequences are those used in proof of Theorem 8.0.1.

Proposition 8.1.18. Fix a noetherian scheme X of finite Krull dimension. Let j : X ↪→ X be a
dense open immersion whose complement ∆ ⊂ X is affine and the support of a Cartier divisor.
Then H i(X,O) → H i(X,O) is surjective for all i > 0.

Proof. As ∆ ⊂ X is the support of a Cartier divisor, the complement j is an affine map. This
implies that

j∗OX ' Rj∗OX .

Now consider the exact sequence

0 → OX → j∗OX → Q → 0

where Q is defined to be the cokernel. As j∗OX ' Rj∗OX , the middle term in the preceding
sequence computes H i(X,O). By the associated long exact sequence on cohomology, to show the
claim, it suffices to show that H i(X,Q) = 0 for i > 0. By construction, we have a presentation

j∗OX = colimn OX(n∆).

Thus, we also have a presentation

Q = colimn OX(n∆)/OX .

This presentation defines a natural increasing filtration F •(Q) with

Fn(Q) = OX(n∆)/OX

for n ≥ 0. The associated graded pieces of this filtration are

grnF (Q) = OX(n∆)⊗ O∆.

In particular, these pieces are supported on ∆ which is an affine scheme by assumption. Conse-
quently, these pieces have no higher cohomology. By a standard devissage argument, it follows that
the sheaves Fn(Q) have no higher cohomology for any n. As cohomology commutes with filtered
colimits of sheaves on noetherian schemes of finite Krull dimension, it follows that Q has no higher
cohomology either, establishing the claim.
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We now have enough tools to finish proving Theorem 8.0.1.

Proof of main theorem. Our goal is to show that Condition C0(S) is satisfied by an induction on
dim(S). By Lemma 8.1.15 and Lemma 8.1.10, we may assume that Ŝ is a local integral scheme
that is essentially of finite type over B with a characteristic p residue field at the closed point. We
give an argument below in the case that Ŝ is flat over B. The only way this flatness fails to occur
is if Ŝ is an Fp-algebra. The reader can check that all our arguments go through in this case as
well, provided a few trivial modifications are made to Lemma 8.1.16. We prefer to not make these
modifications here for clarity of exposition.

We assume that Ŝ is flat over B. If dim(S) = 1, then any alteration of Ŝ is actually a finite
morphism. In this case, as there is no relative cohomology, there is nothing to show. We may
therefore assume that the relative dimension of Ŝ over B is at least 1.

With the assumptions as above, given an alteration f̂ : X̂ → Ŝ, we want to find an alteration
ĝ : Ŷ → X̂ such that ĝ∗(H i(X̂,O)) ⊂ p(H i(Ŷ ,O)). As f̂ is an alteration, the center Ẑ ⊂ Ŝ is
a closed subset of codimension ≥ 2 such that f̂ is finite away from Ẑ. Applying the conclusion of
Proposition 8.1.16, we can find a diagram

s ∈ Z
iZ //

((QQQQQQQQQQQQQQ S

��@
@@

@@
@@

@
j // S

π

��

∂S

}}||
||

||
||

ioo

W

satisfying the conditions guaranteed by Proposition 8.1.16. The next step is to extend the alteration
f̂ to an alteration f : X → S which gives f̂ as the germ at s and has center Z ⊂ S. This can
be accomplished as follows: normalising S − Z in the function field of X̂ gives rise to a finite
morphism X ′ → S−Z which agrees with f̂ over Ŝ− Ẑ. Glueing X ′ and X̂ along their fibres over
Ŝ − Ẑ (and spreading out a little) defines an alteration f

′
of an open subset U ⊂ S satisfying the

following:

• S − U ⊂ Z − (Z ∩ Ŝ), and therefore, s ∈ U .

• f
′

agrees with f̂ at s, and f
′

is finite on U − (Z ∩ U).

By Nagata compactification (see [Con07, Theorem 4.1]), we obtain an alteration f : X → S which
is finite away from Z and agrees with f̂ over Ŝ. Let f : X → S denote the restriction of f to S. We
summarise the preceding constructions by the following diagram:

X ×S Z //

fZ

��

X

f

��

jX // X

f
��

∆ = ∂S ×S X
iXoo

f∂S

��
s ∈ Z

iZ //

((RRRRRRRRRRRRRRR S

  A
AA

AA
AA

A
j // S

π

��

∂S

xxqqqqqqqqqqqq
ioo

W

Here the first row is obtained by base change from the second row via f . In particular, iX is the
inclusion of a Cartier divisor. As f is finite away from the closed set Z which does not meet ∂S,
it follows that f∂S is a finite morphism. In particular, the scheme ∂S ×S X is affine. Applying
Proposition 8.1.18 to the map iX , we find that H i(X,O) → H i(X,O) is surjective for i > 0. Since
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dim(W ) < dim(S), the inductive hypothesis and Proposition 8.1.7 ensure that Condition Cd(W )
is true for all d. As X → W is proper surjective, we can find an alteration g : Y → X such
that g∗(H i(X,O)) ⊂ p(H i(Y ,O)). It follows that a similar p-divisibility statement holds for the
alteration g : Y → X obtained by restricting g to X ↪→ X . Lastly, by flat base change, we know
that H i(X,O) generates H i(X̂,O) as a module over Γ(Ŝ,O). Thus, pulling back this alteration to
X̂ ↪→ X produces the desired alteration ĝ : Ŷ → X̂ .

Remark 8.1.19. One noteworthy feature of the proof of Proposition 8.1.8 is the following: while
trying to show C0(S) is satisfied, we use that Cd(S′) is satisfied for d > 0 and certain affine schemes
S′ with dim(S′) < dim(S). We are allowed to make such arguments thanks to Proposition 8.1.7 and
induction. However, this phenomenon explains why Proposition 8.1.7 appears before Proposition
8.1.8 in this paper, despite the relevant statements naturally preferring the opposite order.

Remark 8.1.20. Theorem 8.0.1, while ostensibly being a statement about coherent cohomology,
is actually motivic in that it admits obvious analogues for most natural cohomology theories such
as de Rham cohomology or étale cohomology. In the former case, we can use Theorem 8.0.1
and the Hodge-to-de Rham spectral sequence to reduce to proving a p-divisibility statement for
H i(X,Ωj

X/S) with j > 0. Choosing local representatives for differential forms and extracting p-th
roots out of the relevant functions can then be shown to solve the problem. In étale cohomology,
there is an even stronger statement: for any noetherian excellent scheme X , there exist finite covers
π : Y → X such that π∗(H i

ét(X,Zp)) ⊂ p(H i
ét(Y,Zp)) for any fixed i > 0; this statement follows

from Theorem 6.0.1 using the exact sequences of (continuous p-adic) étale sheaves

0 → Zp
p→ Zp → Z/p→ 0.

It seems reasonable to expect an analogous statement in crystalline cohomology holds as well.

Remark 8.1.21. The proof given above of Theorem 8.0.1 actually shows the following: given a
proper morphism f : X → S with S excellent, we can find an alteration π : Y → S such that, with
g = π ◦ f , we have:

1. π∗(R1f∗OX) ⊂ p(R1g∗OY ).

2. The map τ≥2Rf∗OX → τ≥2Rg∗OY is divisible by p as a morphism in D(Coh(S)).

The reason one has to truncate above 2 and not 1 in the second statement above is that divisibility
by p in a Hom-group imposes torsion conditions not visible when requiring individual classes to be
divisible by p. For instance, the second conclusion above implies that the p-torsion in Rif∗OX for
i ≥ 2 can be killed by alterations. We do not know how to prove an H1-analogue of this statement:
when S is affine, this analogue amounts to verifying that functions H0(X,OX/p) on the special
fibre of X lift to the functions H0(X,OX) on all of X provided we allow passage to alterations.

Finally, we record a global corollary of Theorem 8.0.1 that was already proven above.

Corollary 8.1.22. Let f : X → S be a proper morphism with S excellent. Then there exists an
alteration π : Y → X such that, with g = f ◦ π, we have π∗(Rif∗OX) ⊂ p(Rig∗OY ) for each
i > 0.

Proof. One can trace through our constructions to see we have already proven this. Alternately, this
follows by combining Theorem 8.0.1 and Lemma 8.1.10.
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8.2 A new proof of Theorem 5.0.1

Our goal in this section is to explain an alternative proof of Theorem 5.0.1, the main theorem of
Chapter 5, using Theorem 8.0.1. Recall that Theorem 5.0.1 asserts that, in positive characteristic,
the higher cohomology of proper maps can be killed by finite covers. Applying Theorem 8.0.1 in
positive characteristic only allows us to kill cohomology on passage to proper covers. The point of
the proof that follows, therefore, is that annihilation by proper covers implies annihilation by finite
covers for coherent cohomology. We refer the reader to §6.5 for an example with étale cohomology
with coefficients in an abelian variety where such an implication fails.

Proof of Theorem 5.0.1 using Theorem 8.0.1. Let f : X → S be a proper map. We first explain the
idea informally. Using Corollary 8.1.22, we find a proper surjective map Y → X annihilating the
cohomology of f ; next, we find another proper surjective map Y ′′ → Y annihilating the relative
cohomology of Y → X; lastly, we check that the Stein factorisation of Y ′′ → X does the job.

In more detail, by repeatedly applying the conclusion of Corollary 8.0.1 and using Lemma
5.1.2 , we may find a proper surjective map π′ : Y ′ → X such that, with g′ = f ◦ π′, we have
that τ≥1Rf∗OX → τ≥1Rg∗OY is trivial. Applying a similar construction this time to the map
π′ : Y ′ → X , we find a map π[ : Y ′′ → Y ′ such that, with π′′ = π[◦π′, we have that τ≥1Rπ′∗OY →
τ≥1Rπ′′∗OY ′′ is 0. The picture obtained thus far is:

Y ′′ π[
//

π′′

!!C
CC

CC
CC

C Y ′

π′

��

g′

  A
AA

AA
AA

A

X
f // S.

The diagram restricted to X gives rise to the following morphism of exact triangles in D(Coh(X)):

OX

��

OX

��

// 0 //

��

OX [1]

��
π′∗OY ′

//

a

��

Rπ′∗OY ′ //

b
��

s

yy

QY ′/X //

c=0
��

π′∗OY ′ [1]

a[1]

��
π′′∗OY ′′

// Rπ′′∗OY ′′ // QY ′′/X // π′′∗OY ′′ [1].

Here the objects QY ′/X and QY ′′/X are defined as the (homotopy) cokernels of the corresponding
maps, the vertical arrows are the natural pullback maps, and the dotted arrow s is a chosen lifting of
b guaranteed by the condition c = 0. Applying Rf∗ to the above diagram, we find a factorisation:

Rf∗OX
h //

d

))SSSSSSSSSSSSSS Rf∗(π′′∗OY ′′)

R(f ◦ π′)∗OY ′ ' Rg′∗OY ′ .

e
55jjjjjjjjjjjjjjj

The map d induces the 0 map on τ≥1 by construction. It follows that the same is true for the map h.
On the other hand, the sheaf π′′∗OY ′′ is a coherent sheaf of algebras on X . Hence, it corresponds to
a finite morphism π : Y → X . In fact, π is simply the Stein factorisation of π′′. In particular, π is
surjective. It then follows that π : Y → X is a finite surjective morphism such that, with g = f ◦ π,
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the induced map τ≥1Rf∗OX → τ≥1Rg∗OY is 0, as desired.

Remark 8.2.1. There is an alternative and more conceptual explanation of the preceding reduction
from proper covers to finite covers in the case ofH1. Namely, let α ∈ H1(X,OX) be a cohomology
class, and let f : Y → X be a proper surjective map such that f∗α = 0. We may represent α as a
Ga-torsor T → X . The assumption on Y then says that there is an X-map Y → T . The image Y ′

of Y in T is both proper over X (as Y is so) and affine over X (as T is so). Consequently, Y ′ ↪→
T → X is a finite surjective morphism annihilating α. The key idea underlying this argument is that
the universal Ga-torsor ∗ → B(Ga) is an affine morphism. Hence, one can make this argument
work in arbitrary cohomological degree provided one is willing to work with higher stacks. Indeed,
then the relevant statement is simply that ∗ → K(Ga, n) is an affine morphism for all n ≥ 0, which
can be proven by induction on n.
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Chapter 9

Almost direct summands

Let V be a p-adic discrete valuation ring whose residue field k satisfies [k : kp] <∞; for example,
we could take V to be a finite extension of Zp. Our goal is to prove the following theorem:

Theorem 9.0.1. Let R be a smooth V -algebra, and let f : Spec(S) → Spec(R) be a finite surjec-
tive morphism with S normal. Assume that f is étale away from a simple normal crossings divisor
D ⊂ Spec(R). Then f∗ : R→ S is a direct summand as an R-module map.

This chapter is organised as follows. In §9.1, we go over the basics of almost ring theory, the
primary ingredient of the proof of Theorem 9.0.1. We then prove the theorem in §9.2.

9.1 Review of almost ring theory

Our proof uses almost ring theory as discovered by Tate in [Tat67], and developed by Faltings in
[Fal88] and [Fal02] with p-adic Hodge theoretic applications in mind. The book [GR03] provides a
more systematic treatment of almost ring theory, while [Ols09] provides a detailed and comprehen-
sible presentation of the arithmetic applications of Faltings’ ideas. We review below the aspects of
the theory most relevant to the proof of Theorem 9.0.1, deferring to the other sources for proofs.

9.1.1 Almost mathematics

Let V denote a valuation ring whose value group Λ is dense in Q, and let m ⊂ V be the maximal
ideal. Note that m is necessarily not finitely generated. For each α ∈ Λ, let mα be the (necessarily
principal) ideal of elements of valuation at least α, and let π denote a generator of m1.

Example 9.1.1. Let V denote a finite extension of Zp corresponding to a field extension Qp → K.
We let V denote the integral closure of V in an infinitely ramified extension L of K. Then V is a
valuation ring whose value group is dense in Q and, consequently, almost ring theory applies. The
two main examples for us will be the cases when L is a totally ramified Zp-extension of K, or when
L = K is the algebraic closure of K.

The maximal ideal m can be thought of as the ideal of elements with positive valuation. As
the value group is dense, it follows that m2 = m. This observation implies that the category Σ of
m-torsion V -modules is a Serre subcategory of the abelian category V -Mod of V -modules. We
call modules in Σ almost zero modules. By general nonsense, we may form the quotient abelian
category

V
a-Mod := V -Mod/Σ
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of almost V -modules. We denote the localisation functor byM 7→Ma. With this notation, we have
the following description of maps in V a-Mod (see §2.2.4 of [GR03]):

HomV
a(Ma, Na) = HomV (m⊗V M,N)

Remark 9.1.2. The novelty of the theory of almost modules rests crucially on the density of Λ ⊂ Q.
If Λ ⊂ Q is not dense, then the category of m-torsion modules is not a Serre subcategory as it is
not closed under extensions. In the classical case that Λ ⊂ Q is discrete, the Serre closure of the
subcategory of m-torsion modules is simply the category of all torsion modules. The corresponding
quotient category then is simply the category of vector spaces over the fraction field of the discrete
valuation ring.

As Σ ⊂ V -Mod is closed under tensor products, the quotient V a-Mod inherits the structure of
an abelian ⊗-category with the quotient map V -Mod → V

a-Mod being a monoidal functor. This
formalism allows one to systematically define “almost analogs” of standard notions of ring theory
and, indeed, develop “almost algebraic geometry.” Informally, we may think of almost algebraic
geometry as the study of algebraic geometry over V where all the results hold up to m-torsion.
To see this program carried out in the appropriate level of generality, we suggest [GR03]. We
will adopt the more pragmatic stance of explaining the notions we need to precisely state Faltings’
almost purity theorem. We start with the following set of definitions, borrowed from [Ols09], which
allow us to define the fundamental notion of an almost étale morphism:

Definition 9.1.3. Let A be a V -algebra, and let M be an A-module. We say that

1. M is almost projective if ExtiA(M,N) is almost zero for all A-modules N and i > 0.

2. M is almost flat if TorAi (M,N) is almost zero for all A-modules N and i > 0.

3. M is almost faithfully flat if it is almost flat and if for any A-modules N1 and N2, the natural
map

HomR(N1, N2) → HomR(N1 ⊗M,N2 ⊗M)

has an almost zero kernel.

4. M is almost finitely generated if for every α ∈ Λ+, there exists a finitely generatedA-module
Nα and a πα-isomorphism Nα 'M , i.e., there are maps φα : Nα →M and ψα : M → Nα

such that φα ◦ ψα = πα ◦ id and ψα ◦ φα = πα ◦ id.

Remark 9.1.4. The properties defined in Definition 9.1.3 are all invariant under almost isomor-
phisms and, consequently, depend only on the almost isomorphism class Ma ∈ V

a-Mod. This is
clear for flatness and projectivity by the exactness of the localisation functor V -Mod → V

a-Mod.
The issue of finite generation is more delicate, and we refer the interested reader to §2.3 of [GR03]
for a detailed discussion. We will content ourselves by pointing out that the rather artificial looking
definition given above applies to say that m ⊂ V is an almost finitely generated V -module.

Remark 9.1.5. The ⊗-structure on V a-Mod gives rise, by adjointness, to an internal Hom functor
denoted alHom. For given V -modules M and N , this functor can also be defined as

alHom(Ma, Na) = HomV (M,N)a

Then one can show that a module M is almost projective if and only if alHom(Ma, ·) is an exact
functor. Similarly, a module M is almost flat if and only if Ma ⊗ · is an exact functor.
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Remark 9.1.6. As all the properties defined in Definition 9.1.3 are invariant under almost isomor-
phisms, it is tempting to define notions such as almost projectivity purely in terms of the internal
homological algebra of the abelian category V a-Mod, i.e., in terms of the internal Ext functors.
However, this approach suffers from two serious defects. First, as the category V

a-Mod lacks
enough projectives (the generating object V a is not projective), one is forced to resort to a Yoneda
definition of the Ext groups which is clumsy to work with. More seriously, as the Yoneda definition
pays no attention to the⊗-structure, the resulting theory does not interact well with the⊗-structure.

Once we have access to a good theory of flatness and finite generation, one can copy the standard
notions in algebraic geometry to arrive at the fundamental notion of an almost étale morphism.

Definition 9.1.7. A morphism A→ B of V -algebras is called an almost étale covering if

1. B is almost finitely generated, almost faithfully flat, and almost projective as an A-module.

2. B is almost finitely generated and almost projective as a B ⊗A B-module.

Example 9.1.8. We discuss the first non-trivial example of an almost étale morphism as discov-
ered by Tate in his study [Tat67] of p-divisible groups. Our exposition follows that of Faltings
(see [Fal88, Theorem1.2]). Let V be a finite extension of Zp, and fix a tower V = V0 ⊂ V1 ⊂
· · · ⊂ Vn ⊂ . . . of extensions (normalisations in finite extensions of the fraction field) such that
Ω1
Vn+1/Vn

has Vn+1/p as a quotient for each n. One can produce such a tower starting with a to-
tally ramified Zp-extension of V which, in turn, can be produced using local class field theory.
Set V∞ = colimn Vn. Then V∞ is a valuation ring whose value group is dense in Q and, conse-
quently, almost ring theory applies. One of the key ideas in Tate’s work is that V∞ behaves like the
maximal extension of V unramified in characteristic 0 provided one works in the almost category.
More precisely, given a finite extension V → W , we set Wn to be normalisation of W ⊗V Vn, and
W∞ = colimnWn. Then Tate showed (in different language) that V∞ → W∞ is an almost étale
extension (see [Tat67, §3.2, Proposition 9]). This fact can be regarded as the 1-dimensional case
of Faltings’ almost purity theorem discussed below (except that Faltings allows imperfect residue
fields), and implies that the absolute integral closure V + of V is an ind-almost étale extension of
V∞. Tate uses this description to compute the Galois cohomology of the p-adic completion V̂ + of
V + (after inverting p). These calculations form the basis for most later theorems in p-adic Hodge
theory.

Finally, we record a fact concerning the almost analog of finite flat morphisms that is used in
the proof of Theorem 9.0.1.

Lemma 9.1.9. Let f : A → B be an inclusion of V -algebras. Assume that f makes B an almost
projective and almost faithfully flat A-module. Then the cokernel coker(f) is an almost projective
A-module.

Proof. For any three A-modules M , N , and K, we have an isomorphism of functors

RHom(M ⊗L N,K) ' RHom(M,RHom(N,K)).

It follows then that if M and N are almost projective, so is M ⊗L N . If, in addition, one of M or
N is also almost flat, then it follows that M ⊗ N is almost projective. In particular, in the case at
hand, B ⊗A B is almost projective. Now note that we have an exact sequence

0 → A→ B → coker(f) → 0.
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Tensoring this over A with B gives new exact sequence

0 → B → B ⊗A B → coker(f)⊗A B → 0.

The multiplication map on B splits this exact sequence. Thus, coker(f)⊗A B is a direct summand
of the almost projective A-module B⊗AB and, consequently, almost projective itself. At this point
we can simply invoke [GR03, Lemma 4.1.5] and be done.

9.1.2 Faltings’ purity theorem

We now state the version of Faltings’ almost purity theorem most relevant to Theorem 9.0.1: the
case of good reduction with ramification supported along a simple normal crossings divisor. There
exist more general statements in the literature, and we refer the reader to [Fal02, §2b] for the most
general known statement formulated in the language of toroidal geometry.

Let V be a p-adic discrete valuation ring whose residue field k satisfies [k : kp] <∞. Let K be
the fraction field of V , and let V be the normalisation of V in a fixed algebraic closure of its fraction
field. We will work with almost ring theory over V . LetR be a smooth V -algebra such thatR⊗V V
is a domain. Assume we are given a presentation as an étale morphism V [T1, · · · , Td] → R. We
define

Rn = V [T
1
n!
i ]⊗V [Ti] R.

By construction, we have natural maps Rn → Rm for n ≤ m, and we set R∞ = colimnRn.
Note that R → Rn is a finite flat morphism, and consequently, R → R∞ is ind-finite flat and,
consequently, faithfully flat. It is also ind-unramified away from the divisor defined by the function
pT1 · · ·Td. The purity theorem says that R → R∞ is the maximal extension of R with this last
property provided one works in the almost category, similar to the situation in Example 9.1.8.

Theorem 9.1.10 (Faltings). Let f : R → S be the normalisation of R in a finite extension of its
fraction field. Assume that the induced map f⊗RR[ 1

pT1···Td
] is étale. If Sn denotes the normalisation

of S ⊗R Rn, and S∞ = colimn Sn, then the induced map R∞ → S∞ is an almost étale covering.

Remark 9.1.11. Theorem 9.1.10 can be thought of as a mixed characteristic analog of Abhyankar’s
lemma without tameness restrictions. Recall that Abhyankar’s lemma says (see [Gro03, Exposé
XIII, Proposition 5.2]) that for any regular local ring R, the maximal extension of R[T1, · · · , Td]
tamely ramified along the divisor associated to T1 · · ·Td may be obtained by adjoining all n-power
roots of the Ti’s, where n runs through integers invertible on R. The purity theorem does away with
the tameness restrictions at the expense of only almost describing the maximal extension ramified
along a normal crossings divisor (in mixed characteristic).

Remark 9.1.12. We will indicate how Theorem 9.1.10 is applied to p-adic Hodge theory focussing
on the simplest possible case. Assume V is a finite extension of Zp. Let X be a smooth V -scheme.
One goal of p-adic Hodge theory is to relate the p-adic étale cohomology groups H∗

ét(XK ,Zp) to
the de Rham cohomology of X . Assume for simplicity that X = Spec(R) is affine, and XK is a
K(G, 1), i.e., for any local system F on XK , we have an identification

H i
ét(XK ,F) ' H i(π1(XK),F(RK))

where R is the maximal extension of R unramified in characteristic 0. Thus, we reduce ourselves
to relating the de Rham cohomology of X to the cohomology of the group π1(XK) of continuous
automorphisms of R over RV . In this setting, we will sketch the following:
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1. A relation betweenH i
ét(XK ,Zp) ' H i(π1(XK),Zp) andH i(π1(XK), R̂), where R̂ denotes

the p-adic completion.

2. A de Rham approach to calculating H i(π1(XK), R̂).

The relation betweenH i
ét(XK ,Zp) ' H i(π1(XK),Zp) andH i(π1(XK), R̂): There is a natural

extension of scalars map map H i
ét(XK ,Zp) ⊗Zp V̂ → H i(π1(XK), R̂). This map turns out to be

an almost isomorphism. Faltings shows this by globalising the right hand side to a cohomology
theory H∗(−) on smooth V -schemes in such a way that the preceding map extends to a natural

transformation H∗
ét(−,Zp) ⊗Zp V̂ → H∗(−) of functors. Moreover, Faltings then equips the

theory H∗(−) with Poincare duality and various other geometric structures (such as Chern classes
and cup products). He then proceeds to show that aforementioned natural transformation preserves
these additional geometric structures. It then formally follows that the natural transformation is an
equivalence of functors, analogous to how Weil cohomology theories are uniquely determined once
the coefficients are pinned down.

The computation of H i(π1(XK), R̂): By mimicking the constructions above after shrinking R
a little if necessary, we may produce an explicit extension RV → R∞ (essentially by extracting p-
power roots of well-chosen units) that is the maximal extension of RV unramified in characteristic
0 provided one works in the almost category, i.e, there is a natural map R∞ → R that is an almost
étale covering. The group of continuous automorphisms of R over R∞ is a normal subgroup H of
π1(XK) by construction. We let ∆∞ denote the quotient π1(XK)/H . We may then consider the
Hochschild-Serre spectral sequence

Hp(∆∞,H
q(H, R̂)) ⇒ Hp+q(π1(XK), R̂).

As the mapR∞ → R is ind-almost étale, we obtain an almost isomorphismH0(H, R̂) ' H∗(H, R̂).
Identifying the left hand side with R̂∞, we see that the above spectral sequence almost degenerates
to give an almost isomorphism of algebras

H∗(∆∞, R̂∞) ' H∗(π1(XK), R̂).

As the extension RV → R∞ is explicitly constructed by extracting p-power roots of a system of
units, we may Galois equivariantly identify ∆∞ with Zp(1)d. The cohomology algebra on the left
is then easily identified with an explicit exterior algebra which, in turn, may be related to de Rham
cohomology of X by some further computations with differentials. The algebra on the right, as
explained above, is essentially étale cohomology of XK . Thus, we obtain the sought-after Hodge
theoretic relation.

9.2 Proof of Theorem 9.0.1

Our goal in this section is to prove Theorem 9.0.1. Correspondingly, let V be as in Theorem 9.0.1,
and let V be the normalisation of V in a fixed algebraic closure of its fraction field. One of the
main ideas informing the construction of almost ring theory is that the passage from algebraic
geometry over V to almost algebraic geometry over V is fairly faithful. The following lemma
is one manifestation of this idea, and crucial in our proof.
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Lemma 9.2.1. Let R be a flat V -algebra essentially of finite type, R∞ a flat V -algebra, and let
R → R∞ be a faithfully flat map lying over the natural map V → V . If M is an R-module such
that M ⊗R R∞ is zero in V a-Mod, then M = 0.

Proof. We may assume that R and R∞ are local rings, the map R → R∞ is a local map, and that
R/pR 6= 0. Let x ∈ M be a non-zero element. The assumption that M ⊗R R∞ is almost zero
implies that mR∞ ⊂ Ann(x⊗ 1). Thus, the ideal Ann(x⊗ 1) contains arbitrarily small p-powers.
On the other hand, by the flatness of R → R∞, we see that Ann(x ⊗ 1) = Ann(x) ⊗R R∞. As
Ann(x) is an ideal in R, the smallest power of p it contains is bounded above 0 since x 6= 0. By
faithful flatness of R∞ over V , scaling by elements of R∞ cannot decrease the power of p. Thus,
the smallest power of p occuring in Ann(x ⊗R 1) is bounded above 0 as well, contradicting the
earlier conclusion that mR∞ ⊂ Ann(x⊗ 1).

We are now in a position to prove Theorem 9.0.1.

Proof of Theorem 9.0.1. Our goal is to show that the exact sequence

0 → R→ S → Q → 0 (9.1)

is split, where Q is defined to be the cokernel. The obstruction to the existence of a splitting is
an element ob(f) ∈ Ext1R(Q, R). We will show this class almost vanishes after a suitable big
extension, and then appeal to Lemma 9.2.1.

The assumptions in the theorem imply that there exists an étale morphism V [T1, · · · , Td] → R
such thatR→ S is étale overR[ 1

pT1···Td
]. Using this presentation, we define ringsRn, Sn, R∞, and

S∞ as in §9.1.2. In particular, R → R∞ is ind-finite flat. The picture over R∞ can be summarised
as:

0 // R∞ // S ⊗R R∞

��

// Q⊗R R∞

��

// 0

0 // R∞ // S∞ // Q∞ // 0.

Here the first row is obtained by tensoring the exact sequence (9.1) with R∞, while Q∞ is the cok-
ernel of R∞ → S∞. Theorem 9.1.10 implies that the map R∞ → S∞ is an almost étale covering.
By Lemma 9.1.9, the quotient Q∞ is an almost projective R∞-module. Hence, the second exact
sequence is almost zero when viewed as an element of Ext1R∞(Q∞, R∞). By the commutativity of
the diagram, the first exact sequence then defines an almost zero element of Ext1R∞(Q⊗RR∞, R∞).
On the other hand, by the flatness of R→ R∞, we also know that this element is simply ob(f)⊗ 1
under the natural isomorphism Ext1R(Q, R) ⊗R R∞ ' Ext1R∞(Q ⊗R R∞, R∞). By Lemma 9.2.1
applied to the submodule of Ext1R(Q, R) generated by ob(f), we see that ob(f) = 0, as desired.
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plexe de de Rham. Invent. Math., 89(2):247–270, 1987.

[dJ96] A. J. de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci.
Publ. Math., (83):51–93, 1996.

[dJ97] A. J. de Jong. Families of curves and alterations. Ann. Inst. Fourier (Grenoble),
47(2):599–621, 1997.

75



[Fal88] Gerd Faltings. p-adic Hodge theory. J. Amer. Math. Soc., 1(1):255–299, 1988.

[Fal02] Gerd Faltings. Almost étale extensions. Astérisque, (279):185–270, 2002. Coho-
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et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math., (28):255,
1966.
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de Lefschetz locaux et globaux (SGA 2). North-Holland Publishing Co., Amster-
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