FORMAL GLUEING OF MODULE CATEGORIES

BHARGAV BHATT

Fix a noetherian scheme X, and a closed subscheme Z with complement U. Our goal is to explain a result of Artin that describes how coherent sheaves on X can be constructed (uniquely) from coherent sheaves on the formal completion of X along Z, and those on U with a suitable compatibility on the overlap. In fact, the main result is a general (i.e., non-noetherian) local version, which we will state once we have the following definition in place.

Definition 0.1. Given a ring A and an element $f \in A$, a ring map $\phi : A \rightarrow B$ is said to be f-adically faithfully flat if ϕ is flat, and $\phi/f : A/fA \rightarrow B/fB$ is faithfully flat. The map $\phi : A \rightarrow B$ is said to be an f-adic neighbourhood if it is f-adically faithfully flat, and the induced map $A/fA \rightarrow B/fB$ is an isomorphism.

We let $\text{Mod}(A)$ denote the abelian category of A-modules over a ring A, while $\text{Mod}_{fg}(A)$ denotes the subcategory of finitely generated A-modules. The main result is:

Theorem 0.2. Let A be a ring, and let $f \in A$. Let $\phi : A \rightarrow B$ be an f-adic neighbourhood. Then the natural map

$$\mathcal{F} : \text{Mod}(A) \rightarrow \text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)$$

is an equivalence.

The category $\text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)$ appearing on the right side of the expression in Theorem 0.2 is the category of triples (M_1, M_2, ψ) where M_1 is an A_f-module, M_2 is a B-module, and $\psi : M_1 \otimes_{A_f} B_f \simeq M_2 \otimes_B B_f$ is a B_f-isomorphism. The natural map referred to in Theorem 0.2 is defined by $\mathcal{F}(M) = (M_f, M_B, \text{can})$ where $\text{can} : M_f \otimes_{A_f} B_f \simeq M_B \otimes_B B_f$ is the natural isomorphism. We generally refer to objects of this category as “glueing data.” The motivation behind this terminology is topological and explained in Remark 0.5.

A useful special case of Theorem 0.2 is when A is noetherian, and B is a completion of A at an element f. The completion $A \rightarrow B$ is flat by basic theorems in noetherian ring theory, and the functor $M \mapsto M \otimes_A B$ can be identified with the f-adic completion functor when M is finitely generated. Thus, we obtain:

Corollary 0.3. Let A be a noetherian ring, let $f \in A$ be an element, and let \hat{A} be the f-adic completion of A. Then the obvious functors (localisation and completion) define an equivalence

$$\text{Mod}_{fg}(A) \simeq \text{Mod}_{fg}(A_f) \times_{\text{Mod}_{fg}(A_f)} \text{Mod}_{fg}(\hat{A})$$

Remark 0.4. The equivalence of Theorem 0.2 preserves the obvious \otimes-structure on either side. Thus, it defines equivalences of various categories built out of the pair $(\text{Mod}(A), \otimes)$, such as the category of A-algebras.

Remark 0.5. Theorem 0.2 may be regarded as an algebraic analogue of the following trivial theorem from topology: given a manifold X with a closed submanifold Z having complement U, specifying a sheaf on X is the same as specifying a sheaf on U, a sheaf on an unspecified tubular neighbourhood T of Z in X, and an isomorphism between the two resulting sheaves along $T \cap U$. The lack of tubular neighbourhoods in algebraic geometry forces us to work with formal neighbourhoods instead, rendering the proof a little more complicated.

Remark 0.6. We suspect that Theorem 0.2 follows formally from the existence of a good model structure for the flat topology. Specifically, if one has a model structure where open immersions are cofibrations, then the square

$$\begin{array}{ccc}
\text{Spec}(B_f) & \longrightarrow & \text{Spec}(B) \\
\downarrow & & \downarrow \\
\text{Spec}(A_f) & \longrightarrow & \text{Spec}(A)
\end{array}$$

will be a homotopy pushout square. Evaluating the fpqc-stack $\text{Mod}(-)$ on this pushout diagram would then allow us to deduce Theorem 0.2 from usual fpqc-descent.
1. Generalities

Fix a ring A and an element f.

Definition 1.1. An A-module M said to be an f^∞-torsion A-module if for each $m \in M$, there exists an $n > 0$ such that $f^n m = 0$. The full subcategory of $\text{Mod}(A)$ spanned by f^∞-torsion modules is denoted $\text{Mod}(A)[f^\infty]$, while the subcategory spanned by f^n-torsion modules is denoted $\text{Mod}(A)[f^n]$.

We first reformulate the definition of f-adic faithful flatness in terms of the category $\text{Mod}(A)[f^\infty]$.

Lemma 1.2. Fix a ring map $\phi : A \to B$. Then the following are equivalent

1. The map ϕ is f-adically flat.
2. The map ϕ is flat, and the map $\text{Spec}(B/fB) \to \text{Spec}(A/fA)$ is surjective.
3. The map ϕ is flat, and the functor $M \mapsto M \otimes_A B$ is faithful on $\text{Mod}(A)[f]$.
4. The map ϕ is flat, and the functor $M \mapsto M \otimes_A B$ is faithful on $\text{Mod}(A)[f^\infty]$.

Proof. (1) and (2) being equivalent is standard, while the equivalence of either with (3) follows by identifying f-torsion A-modules with A/f-modules, and using that

$$M \otimes_A B = M \otimes_{A/f} A/f \otimes_A B = M \otimes_{A/f} B/fB$$

for f-torsion A-modules M. The rest follows by devissage and the fact that $M \mapsto M \otimes_A B$ commutes with filtered colimits and is exact. \qed

Next, we prove a series of lemmas which tell us that the category $\text{Mod}(A)[f^\infty]$ is insensitive to passing to an f-adic neighbourhood. First, we need a nice presentation.

Lemma 1.3. Any module $M \in \text{Mod}(A)[f^\infty]$ admits a resolution $K. \to M$ with each K_i a direct sum of copies of A/f^n for n variable.

Proof. For any $M \in \text{Mod}(A)[f^\infty]$, there is a canonical surjection

$$\bigoplus_{m \in M} A/f^n \to M \to 0$$

where n_m is the smallest positive integer such that $f^n m \cdot m = 0$. The kernel of the preceding surjection is also an f^∞-torsion module. Proceeding inductively, we construct a canonical resolution of M by A-modules which are direct sums of copies of A/f^n for variable n, as desired. \qed

Next, we show that passing to f-adic neighbourhoods does not change f^∞-torsion modules.

Lemma 1.4. Let $\phi : A \to B$ be an f-adic neighbourhood. For any module $M \in \text{Mod}(A)[f^\infty]$, the natural map $M \mapsto M \otimes_A B$ is an isomorphism.

Proof. First assume that $M \in \text{Mod}(A)[f]$. In this case, M is an A/f-module. Hence, we have an isomorphism

$$M \otimes_A B \simeq M \otimes_{A/f} B/fB \simeq M \otimes_{A/f} A/fA \simeq M$$

proving the claim. The general case follows by devissage. Indeed, using the isomorphism $A/fA \simeq B/fB$ and the flatness of $A \to B$, one shows that $A/f^n A \simeq B/f^n B$ for all $n \geq 0$. By the same argument as above, it follows that for any A/f^n-module M, the natural map $M \mapsto M \otimes_A B$ is bijective. Since any $M \in \text{Mod}(A)[f^\infty]$ can be written as a filtered colimit of A/f^n-modules for variable n, the claim follows from the fact that tensor products commute with colimits. \qed

We can now show that the category $\text{Mod}(A)[f^\infty]$ does not change on passing to an f-adic neighbourhood.

Lemma 1.5. Let $\phi : A \to B$ be an f-adic neighbourhood. Then the functor $M \mapsto M \otimes_A B$ defines an equivalence $\text{Mod}(A)[f^\infty] \to \text{Mod}(B)[f^\infty]$.

Proof. We first show full faithfulness. In fact, we will show that the natural map

$$\text{Hom}_A(M, N) \to \text{Hom}_B(M_B, N_B)$$
is an isomorphism if M or N is f^∞-torsion. When M is finitely presented, this follows from Lemma 1.4 once we observe that the formation of $\text{Hom}_A(M, N)$ commutes with flat base change on A. In general, we write M as a filtered colimit $\colim_i M_i$ where each M_i is finitely presented, and then use the following sequence of isomorphisms:

$$\text{Hom}_A(M, N) = \text{Hom}_A(\colim_i M_i, N) = \lim_i \text{Hom}_A(M_i, N) = \lim_i \text{Hom}_B(M_i, N_B) = \text{Hom}_B(\colim_i M_i, N_B) = \text{Hom}_B(M_B, N_B)$$

where the third equality uses the finitely presented case, while the last one uses the commutativity of $M \to M \otimes_A B$ with filtered colimits. In particular, the functor $\text{Mod}(A)[f^\infty] \to \text{Mod}(B)[f^\infty]$ is fully faithful.

For essential surjectivity, we simply note that for any $N \in \text{Mod}(B)[f^\infty]$, the natural map $N \otimes_A B \to N$ is an isomorphism by Lemma 1.4.

We can improve on the full faithfulness of Lemma 1.5 by showing that Ext-groups whose source lies in $\text{Mod}(A)[f^\infty]$ are insensitive to passing to f-adic neighbourhoods as well.

Lemma 1.6. Given $M \in \text{Mod}(A)[f^\infty]$ and $N \in \text{Mod}(A)$, the natural map

$$\text{Ext}^i_A(M, N) \to \text{Ext}^i_B(M_B, N_B)$$

is an isomorphism for all i.

Proof. We prove the statement by induction on i. The case $i = 0$ was proven in the course of Lemma 1.5. For larger i, using Lemma 1.3, one can immediately reduce to the case that $M = A/f^n$ for suitable n. In this case, we argue using a dimension shifting argument; the failure of f to be regular element of A forces us to introduce some derived notation. Let K denote the two-term complex

$$A \xrightarrow{f^n} A.$$

In the derived category $D(\text{Mod}(A))$, there is an exact triangle of the form

$$K \to A/f^n[-1] \to A[f^n][1] \to K[1]$$

where $A[f^n]$ is kernel of multiplication by f^n on A. Applying $\text{Ext}^i(-, N)$ then gives us a long exact sequence

$$\ldots \to \text{Ext}^{i-1}_A(A[f^n], N) \to \text{Ext}^{i+1}_A(A/f^n, N) \to \text{Ext}^i_A(K, N) \to \ldots$$

Induction on i then reduces us to verifying that $\text{Ext}^i_A(K, N) \simeq \text{Ext}^i_B(K_B, N_B)$ for all i. The definition of K gives us an exact triangle

$$A[-1] \to K \to A \xrightarrow{\delta} A$$

where the boundary map δ is identified with f^n, up to a sign. Using the projectivity of A, we see that $\text{Ext}^i_A(K, N) = 0$ for $i > 1$, and for $i \leq 1$ there is a short exact sequence

$$0 \to \text{Ext}^0_A(K, N) \to \text{Hom}(A, N) \xrightarrow{f^n} \text{Hom}(A, N) \to \text{Ext}^1_A(K, N) \to 0.$$

Hence, we may identify

$$\text{Ext}^0_A(K, N) = N[f^n] \quad \text{and} \quad \text{Ext}^1_A(K, N) = N/f^n N.$$

The formation of the groups $\text{Ext}^i_A(K, N)$ clearly commutes with base changing along $A \to B$. On the other hand, since $M \simeq M \otimes_A B$ for any f^n-torsion A-module (see Lemma 1.4), the right hand side of the preceding equalities does not change on base changing along $A \to B$. Thus, it follows that

$$\text{Ext}^i_A(K, N) \simeq \text{Ext}^i_B(K_B, N_B)$$

as desired. □

Lastly, we prove a couple of facts concerning the behaviour of f-torsionfree modules.

Lemma 1.7. Let M be an A-module without f-torsion, and let $\phi : A \to B$ be an f-adically flat ring map. An element $m \in M$ is divisible by f in the A-module M if and only if the same is true for $m \otimes 1 \in M \otimes_A B$ in the B-module $M \otimes_A B$.

3
Proof. By hypothesis, there is a short exact sequence
\[0 \to M \xrightarrow{f} M \to M/fM \to 0. \]
Assume \(m \in M \) is not divisible by \(f \). Thus, the corresponding element in \(M/fM \) is not zero. By the faithful flatness of \(A/fA \to B/fB \), the resulting element of \(M/fM \otimes_A B \simeq M \otimes_A B/(M \otimes_A B) \) is also non-zero, which implies the result. \(\square \)

Lemma 1.8. Let \(M \) be an \(A \)-module without \(f \)-torsion. Then the natural map \(M \to M_f \) is injective.

Proof. The kernel of \(M \to M_f \) is spanned by elements \(m \in M \) satisfying \(f^n m = 0 \) for some \(n > 0 \). The hypothesis on \(M \) and an easy induction on \(n \) imply that \(m = 0 \). \(\square \)

2. THE FULL FAITHFULNESS

In this section, we establish the full faithfulness of the functor \(\mathcal{F} \) of Theorem 0.2. Like in the previous section, we fix the ring \(A \) and the element \(f \) under consideration. First, we show that an object in \(\text{Mod}(A)[f^\infty] \) is determined by the glueing data it determines.

Lemma 2.1. Let \(M \) be an \(f^\infty \)-torsion \(A \)-module. Let \(\phi : A \to B \) be an \(f \)-adic neighbourhood. Then the natural map
\[M \to M_f \times_{M_{B_f}} M_B \]
is an isomorphism.

Proof. The hypothesis implies that \(M_f = M_{B_f} = 0 \). It then suffices to check that \(M \simeq M_B \), which follows from Lemma 1.4. \(\square \)

Next, we show that an \(f \)-torsionfree module is determined by the glueing data it determines.

Lemma 2.2. Let \(M \) be an \(A \)-module without \(f \)-torsion, and let \(\phi : A \to B \) be an \(f \)-adically faithfully flat ring map. Then the natural map
\[M \to M_f \times_{M_{B_f}} M_B \]
is an isomorphism.

Proof. As \(M \) has no \(f \)-torsion, the same is true for \(M \otimes_A B \). Thus, the vertical maps in the diagram
\[
\begin{array}{c}
M \\
\downarrow \\
M_f \\
\downarrow \\
M_{B_f}
\end{array}
\to
\begin{array}{c}
M_B \\
\downarrow \\
M_{B_f}
\end{array}
\]
are injective. We may therefore view \(M \) as being an \(A \)-submodule of \(M_f \), and similarly for \(M_B \). It follows then that the map \(M \to M_f \times_{M_{B_f}} M_B \) is injective. For surjectivity, let \((x, y) \in M_f \times_{M_{B_f}} M_B \) be an element. Then there exists an \(n \) such that \(f^n x = m \in M \). The image of \(m \) in \(M_B \) agrees with \(f^n y \) as both these elements have the same image in \(M_{B_f} \). Thus, the element \(m \) is divisible by \(f^n \) in \(M_B \). By Lemma 1.7, the element \(m \in M \) is divisible by \(f^n \) in \(M \) itself. Thus, we may write \(m = f^n x' \). Since \(f \) acts invertibly on \(M_f \), it follows that \(x = x' \in M_f \), and thus the element \(x \in M_f \) actually comes from \(M \). One can then easily check that the image of \(x = x' \) in \(M_B \) agrees with \(y \) (as the same is true in \(M_{B_f} \)). Thus, the element \(x' \in M \) maps to \((x, y)\) as desired. \(\square \)

Combining the previous two cases, we verify that arbitrary modules are determined by their glueing data.

Lemma 2.3. Let \(M \) be an \(A \)-module, and let \(\phi : A \to B \) be an \(f \)-adic neighbourhood. Then the natural map
\[M \to M_f \times_{M_{B_f}} M_B \]
is an isomorphism.

4
Proof. Given an A-module M, let $T \subset M$ denote its f^∞-torsion. Then we have an exact sequence

$$0 \to T \to M \to N \to 0$$

with $N = M/T$ without f-torsion. It is also easy to see that the functor $M \mapsto M_f \times_{MB_f} MB$ is left exact, i.e., preserves finite limits. Thus, we may apply it to the preceding short exact sequence to obtain a commutative diagram

$$
\begin{array}{ccccccccc}
0 & \to & T & \to & M & \to & N & \to & 0 \\
\downarrow{a} & & \downarrow{b} & & \downarrow{c} & & \\
0 & \to & T_f \times_{TB_f} TB & \to & M_f \times_{MB_f} MB & \to & N_f \times_{NB_f} NB & \to & 0
\end{array}
$$

with exact rows. The map a is an isomorphism by Lemma 2.1, while the map c is an isomorphism by Lemma 2.2. An easy diagram chase then shows that b is also an isomorphism, as desired. \qed

Using the preceding results, we can prove the full faithfulness of \mathcal{F}.

Lemma 2.4. Let M and N be two A-modules, and let $\phi : A \to B$ be an f-adic neighbourhood. The natural map

$$a : \text{Hom}_A(M, N) \cong \text{Hom}_{A_f}(M_f, N_f) \times_{\text{Hom}_{B_f}(MB_f, NB_f)} \text{Hom}_B(MB, NB)$$

is an isomorphism. Thus, the functor \mathcal{F} is fully faithful.

Proof. The injectivity of a immediately follows from Lemma 2.3. Conversely, given maps $g_f : M_f \to N_f$ and $g_B : MB \to NB$ defining the same map over B_f, we obtain an induced map $g : M \to N$ via Lemma 2.3. Subtracting the map g induces from g_f and g_B, we may assume that both g_f and g_B induce the 0 map $M \to N$. It suffices to show that in this case g_f and g_B are both 0. However, this is clear since both M_f and MB are generated by M.

3. Essential surjectivity

We first recall the general definition of a fibre product of categories.

Definition 3.1. Given a diagram

$$
\begin{array}{ccc}
\mathcal{A} & \to & \mathcal{C} \\
\downarrow{\mathcal{B}} & & \\
\mathcal{C}
\end{array}
$$

of categories, we define the fibre product $\mathcal{A} \times_{\mathcal{C}} \mathcal{B}$ to be the category of triples (a, b, f) where $a \in \mathcal{A}$, $b \in \mathcal{B}$, and f is an isomorphism in \mathcal{C} between the images of a and b; morphisms are defined in the obvious way.

Remark 3.2. In the situation considered above, the fibre product $\mathcal{A} \times_{\mathcal{C}} \mathcal{B}$ inherits properties as well as structures present on \mathcal{A}, \mathcal{B}, and \mathcal{C} that are preserved by the functors. For example, if all three categories are abelian \otimes-categories with the functors being exact and \otimes-preserving, then the fibre product $\mathcal{A} \times_{\mathcal{C}} \mathcal{B}$ also inherits the structure of an abelian \otimes-category; this will be the case in the example we consider.

We place ourselves back in the situation of Theorem 0.2, i.e., we fix a ring A, an element $f \in A$, and an f-adic neighbourhood $\phi : A \to B$. Since both B and A_f are flat A-algebras, the fibre product $\text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)$ is an abelian category with a natural \otimes-structure. Moreover, base changing defines the functor

$$\mathcal{F} : \text{Mod}(A) \to \text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)$$

which is easily checked to preserve the \otimes-structure. We will show that \mathcal{F} is an equivalence; the full faithfulness was established in Lemma 2.4. First, we show that \mathcal{F} has nice colimit properties.

Lemma 3.3. The functor \mathcal{F} is exact and commutes with arbitrary colimits.

Proof. The exactness follows from the A-flatness of A_f and B, while the cocontinuity is a general fact about tensor products. \qed

Next, we verify that objects in the category of glueing data admit a nice presentation in terms of actual A-modules.
Lemma 3.4. Given an object \((M_1, M_2, \psi) \in \text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)\), there exists an \(A\)-module \(P\), an \(f^\infty\)-torsion \(A\)-module \(Q\), and a right exact sequence

\[\mathcal{F}(P) \to (M_1, M_2, \psi) \to \mathcal{F}(Q) \to 0 \]

in the category \(\text{Mod}(A_f) \times_{\text{Mod}(B_f)} \text{Mod}(B)\).

Proof. Let \((M_1, M_2, \psi)\) be as above. For an \(x \in M_1\), let \(n_x\) be the minimal positive integer such that the image of \(f^{n_x} \cdot x\) in \(M_1 \otimes_{A_f} B_f \simeq M_2 \otimes_{B_f} B_f\) lifts to an element \(y_x\) in \(M_2\). The choice of such a lift \(y_x\) defines a morphism \(\mathcal{F}(A) \to (M_1, M_2, \psi)\) via \(f^{n_x} x\) on the first factor, and \(y_x\) on the second factor. Thus, after fixing a lift \(y_x\) of \(f^{n_x} x\) for each \(x \in M_1\), we obtain a morphism

\[\oplus_{x \in M_1} \mathcal{F}(A) \xrightarrow{T} (M_1, M_2, \psi). \]

The first component of this map is surjective because \(f\) is a unit in \(M_1\). Thus, the cokernel is of the form \((0, Q, 0)\) for some \(Q \in \text{Mod}(B)\). Moreover, since \(Q \otimes_{B_f} B_f = 0\), we have \(Q \in \text{Mod}(B)[f^\infty]\). By Lemma 1.5, it follows that \((0, Q, 0) \simeq \mathcal{F}(Q)\) where second term is defined by viewing \(Q\) as an \(A\)-module in the obvious way. Thus, we obtain an exact sequence

\[\oplus_{x \in M_1} \mathcal{F}(A) \xrightarrow{T} (M_1, M_2, \psi) \to \mathcal{F}(Q) \to 0. \]

Since the functor \(\mathcal{F}\) commutes with colimits (see Lemma 3.3), we can absorb the coproduct on the left to rewrite the above sequence as

\[\mathcal{F}(P) \to (M_1, M_2, \psi) \to \mathcal{F}(Q) \to 0 \]

with \(P \in \text{Mod}(A)\), and \(Q \in \text{Mod}(A)[f^\infty]\) as desired. \(\square\)

We need the following abstract fact about abelian categories to finish the proof.

Lemma 3.5. Let \(F : A \to B\) be an exact fully faithful functor between abelian categories \(A\) and \(B\), and let \(A' \subset A\) be a full abelian subcategory of \(A\). Assume that \(F\) induces an isomorphism \(\text{Ext}_A^1(a_1, a_2) \to \text{Ext}_B^1(F(a_1), F(a_2))\) when \(a_1 \in A'\) and \(a_2 \in A\) (where the \(\text{Ext}\) groups being considered are the Yoneda ones). Further, assume that for every object \(b \in B\), there exist objects \(a \in A\), and \(a' \in A' \subset A\), and a right exact sequence

\[F(a) \to b \to F(a') \to 0. \]

Then \(F\) is an equivalence.

Proof. It suffices to show that \(F\) is essentially surjective. Given \(b_0 \in B\), choose \(a_0 \in A\) and \(a'_0 \in A'\) and an exact sequence

\[0 \to b_1 \to F(a_0) \to b_0 \to F(a'_0) \to 0 \]

where \(b_1 \in B\) is the kernel of \(F(a_0) \to b_0\). Applying the same procedure to \(b_1\), we can find \(a_1 \in A\), \(a'_1 \in A'\), and an exact sequence

\[F(a_1) \to b_1 \to F(a'_1) \to 0. \]

Since the map \(b_1 \to F(a_0) \to b_0\) is 0, the same is true for the map \(F(a_1) \to b_1 \to F(a_0) \to b_0\). Thus, we obtain a sequence

\[F(a'_1) = b_1/F(a_1) \to F(a_0)/\text{im}(F(a_1)) \to b_0 \to F(a'_0) \to 0. \]

The object \(F(a_0)/\text{im}(F(a_1))\) is isomorphic to an object of the form \(F(a_2)\) for some \(a_2 \in A\) as the functor \(F\) is fully faithful and exact. Thus, we may rewrite the above sequence as

\[F(a'_1) \to F(a_2) \to b_0 \to F(a'_0) \to 0. \]

The same reasoning as above shows that \(F(a_2)/\text{im}(F(a'_1))\) is isomorphic to an object of the form \(F(a_3)\) for some \(a_3 \in A\). Thus, we obtain a short exact sequence

\[0 \to F(a_3) \to b_0 \to F(a'_0) \to 0 \]

which realises \(b_0\) as an extension of \(F(a'_0)\) by \(F(a_3)\). Since \(a'_0 \in A'\), we know that all such extensions lie in the essential image of \(F\) by assumption. Thus, so does \(b_0\), as desired. \(\square\)

We now observe that the proof is complete.

Proof of Theorem 0.2. Theorem 0.2 follows formally from Lemma 3.5, Lemma 3.4, Lemma 2.4, and Lemma 1.6. \(\square\)