A FLAT MAP THAT IS NOT A DIRECTED LIMIT OF FINITELY PRESENTED FLAT MAPS

BHARGAV BHATT

The goal of this note is to show:

Proposition 0.1. There exists a commutative ring A and a flat A-algebra B which cannot be written as a filtered colimit of finitely presented flat A-algebras. In fact, we may choose A to be a finite type \mathbb{Z}-algebra.

For the construction, fix a prime p, and let $A = \mathbb{F}_p[x_1, \ldots, x_n]$. Choose an absolute integral closure A^+ of A, i.e., A^+ is the normalization of A in an algebraic closure of its fraction field. Recall the following theorem [HH92, §6.7]:

Theorem 0.2 (Hochster-Huneke). The map $A \to A^+$ is flat.

To prove Proposition 0.1, it is enough to show:

Proposition 0.3. The A-algebra A^+ is not a filtered colimit of finitely presented flat A-algebras if $n \geq 3$.

Proof. We give an argument in the case $n = 3$, leaving the (obvious) generalization to the reader. It is enough to prove the analogous statement for the map $R \to R^+$, where R is the strict henselization of A at the origin (and is consequently a henselian regular local ring with residue field \mathbb{F}_p), and R^+ is its absolute integral closure.

Now choose an ordinary abelian surface X, L with X, L denote the preimage of X, L, and write Γ_2 for the induced finite surjective map. Since X and L are normal for \mathbb{Z}, there is a trace map $U \to \mathrm{Spec}(U)$ realizing a Noether normalization (see [Sta14, Tag 0571]). Part (b) was proven in [Bha12]; for the convenience of the reader, we recall the relevant argument.

Let $U \subset \mathrm{Spec}(S)$ be the punctured spectrum, so there are natural maps $X \leftarrow U \subset \mathrm{Spec}(S)$. The first map gives an identification $H^1(U, \mathcal{O}_U) \cong H^1(X, \mathcal{O}_X)$; by passing to the Witt vectors of the perfection and using the Artin-Schreier sequences, this gives an identification $H^1_{\et}(U, \mathbb{Z}_p) \cong H^1_{\et}(X, \mathbb{Z}_p)$. In particular, this group is a finite free \mathbb{Z}_p-module of rank 2 (since X is ordinary). Now assume that there exists some T as in (b) above. Let $V \subset \mathrm{Spec}(T)$ denote the preimage of U, and write $f : V \to U$ for the induced finite surjective map. Since U is normal, there is a trace map $f_\ast \mathbb{Z}_p \to \mathbb{Z}_p$ on U whose composition with the pullback $\mathbb{Z}_p \to f_\ast \mathbb{Z}_p$ is multiplication by $d = \deg(f)$. Passing to cohomology, and using that $H^1_{\et}(U, \mathbb{Z}_p)$ is non-torsion, then shows that $H^1_{\et}(V, \mathbb{Z}_p)$ is non-zero. Since $H^1_{\et}(V, \mathbb{Z}_p) \simeq \lim_{n\to\infty} H^1_{\et}(V, \mathbb{Z}/p^n)$ (as there is no $\lim_{n\to\infty}$ interference), the group $H^1(V_{\et}, \mathbb{Z}/p)$ must be non-zero. The Artin-Schreier sequence then shows $H^1(V, \mathcal{O}_V) \neq 0$. By excision, this gives $H^2_m(T) \neq 0$, where $m \in R$ is the maximal ideal. Thus, T cannot be finite flat as an R-module since $H^2_m(R) = 0$, proving (b). □

REFERENCES

