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Abstract.  This paper describes a method to enhance the performance 
of a unification-style bottom-up chart parser by means of top-down filter- 
ing techniques. The filter developed consists of a syntactic module which 
prevents the construction of redundant edges in the chart by ensuring 
that a proposed edge in the chart can really be syntactically combined 
with neighboring edges later, and a semantic module which ensures that 
the semantic information in a proposed edge in the chart is compatible 
with semantic information in other edges. 

1 I n t r o d u c t i o n  

Chart parsers used in natural language processing parse an input sentence by 
building up a data structure called the chart. A chart is a network of vertices 
representing points in the sentence which are linked by edges which represent 
constituents of the sentence. In a unification-style chart parser [5] the chart is 
augmented step by step by adding pieces of description according to the gram- 
mar. Each partial description added remains in the chart and serves to constrain 
the possibilities for further augmentation. In LINK, a bottom-up unification-style 
chart parser described by Lytinen [3], a directed acyclic graph (DAG) is built to 
represent the analysis of a sentence. Edges built by LINK are labeled by DAGs 
incorporating syntactic as well as semantic information. New edges are added to 
the chart by applying unification rules. This guarantees that the new constituent 
added to the parse has the necessary syntactic and semantic features. We present 
a way of integrating bottom-up parsing with top-down parsing, both in terms of 
syntax and semantics. Our approach can be described as bottom-up parsing with 
top-down filtering. We modified LINK using this approach. Similar approaches 
have been variously called in the literature a "filter" [1] and an "oracle" [4]. 

2 N e c e s s i t y  F o r  T o p - d o w n  F i l t e r i n g  M e t h o d s  

In a top-down parser, parsing is rule-driven while in a bottom-up parser, parsing 
is data-driven. Thus in a top-down chart parser an active edge in the chart is 
sought to be expanded with all rules in the grammar which have the current 
symbol as the left-hand side, causing the parser to be over-productive in edge 
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construction. In a bottom-up parser on the other hand only complete edges are 
combined, by the application of rules whose right hand sides correspond to the 
completed edges. A bottom-up parser is also over-productive because it will build 
some useless edges that cannot be combined with edges lying to the left or to 
the right. So top-down filtering is effective in a bottom-up parser by reducing 
the production of useless edges by checking whether the edge that is sought to 
be built has any chance of combining with an adjacent edge to form part of a 
larger edge. Making use of top-down information about the semantic context as 
well can help to reduce redundancy by anticipating and blocking out unlikely 
choices. 

3 I m p l e m e n t i n g  t h e  F i l t e r  

Ordinarily, LINK traverses the input sentence from left to right, building up 
possible edges as it does so. At the outset, during the initialisation of the chart, 
link-building is a strictly left-to-right process. After chart initialisation (after 
all word-level, i.e. primitive, edges have been built), phrase-level edges will be 
attempted to be built, guided by the heuristic that edges will be first sought to be 
constructed out of previously unused edges. (Thus phrase-level edge construction 
may not always occur strictly from left to right.) 

3.1 Syntactic Component of  the Filter 

Char t  In i t ia l i sa t ion.  The objective of initialising the chart is to build edges 
around each word in the input sentence. For each word of the input sentence, 
LINK was made to look up its corresponding lexical entry in the LINK lexicon 
to check for possible syntactic ambiguity, ambiguity being defined here as the 
existence of multiple definitions belonging to different syntactic categories. If 
no syntactic ambiguity is detected for the candidate word, LINK is allowed to 
proceed to build edge(s) around the word in the ordinary way. On the other 
hand, if syntactic ambiguity is detected, then for each candidate syntactic cat- 
egory a check is made on the chart constructed so far to determine whether 
a valid left-adjacent predecessor exists. The edge is constructed only if such a 
left-predecessor exists. 

Constructing the Comple te  Char t .  The objective is to build progressively 
larger edges, combining words into phrases and phrases into increasingly larger 
phrases until an edge is ultimately constructed which spans across the entire 
sentence and corresponds to a complete parse. Link construction is an iterative 
process that continues until the parse is complete or until there are no further 
edges in the chart that can be constructed. At each step of the iterative process, 
the chart is examined from left to right to check if there is a constituent sequence 
of edges that unify with the right-hand-side of a grammar rule. For the first 
sequence so obtained, it is checked whether there exists any left-adjacent phrase 
contiguous to the candidate phrase for which the edge is being sought to be 
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built that corresponds to a syntactic category which is a valid predecessor of the 
syntactic category of the proposed candidate edge. The attempt to build the edge 
is abandoned if such a left-adjacent phrase does not exist. If such a left-adjacent 
phrase does exist, a similar check is carried out for right-adjacency. However, 
as in general it is not guaranteed that a complete non-primitive right-adjacent 
edge will exist (because of the left-to-right nature of the parsing process) the 
right-adjacency check is limited to checking the existence of only valid right- 
adjacent words (i.e. primitive edges) and not valid right-adjacent phrases (i.e. 
non-primitive edges). A edge will be finally built if and only if both the left- 
adjacency and right-adjacency checks are successful. 

3.2 Semantic  Component  of  the  Fi l ter  

The task of the semantic filter is to perform word-sense disambiguation early 
on in the parse in order to prevent construction of edges in the chart which 
correspond to word-senses which are apparently irrelevant in the given context. 
This is expected to lead to considerable savings as word-sense ambiguity is a big 
source of parsing inefficiency in most large applications; for example, Waltz [6] 
estimates that in English, on the average, each word has as many as 3.7 different 
s e n s e s .  

LINK maintains a semantic hierarchy consisting of IS-A relationships be- 
tween semantic categories. In order for the fillers of the slot of a certain seman- 
tic category to find something to unify with, either an entity belonging to the 
same semantic category of the slot filler, or an entity belonging to a descendant 
semantic category of the slot filler in the semantic hierarchy (not necessarily im- 
mediate descendant) must be present. Our strategy is to generate a table listing 
the valid semantic associates of every semantic category. The semantic asso- 
ciates of a semantic category would include all the slot-filler semantic categories 
for that semantic category and all the descendants of each slot-filler semantic 
category in the semantic hierarchy. Then, while parsing, as soon as an edge is 
sought to be built which would assign to an edge a particular semantic category, 
the table of valid semantic associates is looked up to determine if any valid se- 
mantic associate for that semantic category exists within the input sentence. If 
yes, the proposed edge is passed for construction (provided it is also passed by 
the syntactic component of the filter) and if not, the proposed edge is rejected. 
Thus a proposed edge must pass through both the syntactic and semantic filters 
before it is cleared for construction. 

For example, for the semantic hierarchy shown in Figure 1 and the following 
semantic category definition: 
PTRANS: 

( a c t o r )  ~ A N I M A T E  

the table of semantic associates generated will be: 
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Fig. 1. An example semantic hierarchy 

s e m a n t i c  c a t e g o r y  s e m a n t i c  a s s o c i a t e s  

PTEANS ANIMATE MAN 

MOVE ANIMATE MAN 
RUN ANIMATE MAN 

ANIMATE PTRANS MOVE RUN 

MAN PTRANS MOVE RUN 

As another example, consider the two sentences John sho t  some bucks and 
John spe n t  some bucks.  The word bucks is a source of ambiguity here. Syn- 
tactically, the two sentences are exactly alike, so that  the syntactic component 
of the filter cannot help resolve the ambiguity. In the grammar  that  we used for 
this sentence, the word sho t  had the semantic category PROPEL and the word 
spen t  had the semantic category ATRANS. The word bucks had the choice of 
two semantic categories, ANIMAL and MONEY, among which it was necessary to 
disambiguate. 

The semantic definitions of ATPANS, PROPEL, ANIMAL and MONEY were as 
follows: 

ATRANS: 

i~-& ( A C T I O N )  
(actor) ~ H U M A N  
( o b j e c t )  ~--. P H Y S - O B J  
( f r o m )  ~ H U M A N  

P R O P E L :  
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it-t~ ( A C T I O N )  
(objec%) = ANIMAL 

MONSY: 

is-~ (PHYS-OB/) 

ANIMAL: 

is-~ (ANIMATE) 

For our example grammar, the table of semantic associates had the following 
as entries for the semantic categories AIlIMAL and MOtlEY after stepwise construc- 
tion according to the aforementioned algorithm: 

[semant ic  c a t e g o r y [ s e m a n t i c  associa tes  [ 

ANIMAL 

MONEY 
PROPEL PHYS-STATEDIvIDE I POSSESSION ATRANS 

Note that ATRANS was not a valid semantic associate of ANIMAL and PROPEL 
was not a valid semantic associate of MONEY. Thus, the edge corresponding to 
MONEY will not be built in the first sentence as no valid semantic associate of 
MONEY is present in the first sentence. Similarly the edge corresponding to ANII~AL 
will not be built in the second sentence. 

Our method of semantic filtering is similar in some ways to some semantic 
disambiguation techniques described in the literature, such as the preference 
semantics used by Wilks [7] and the polaroid words technique described by Hirst 
[2]. 

4 P e r f o r m a n c e  I s s u e s  

We measured the performance of our system (LINK with the filter described) 
vis-a-vis that of LINK without filter by parsing a set of forty-eight sentences, 
with a grammar that had been expressly written for the domain. Figure 2 shows 
the comparative performance improvement obtained by using the syntactic com- 
ponent of the filter. In this figure the ratio of rules applied during the parse for 
the two methods and the ratio of time needed to parse a sentence by the two 
methods have been plotted against the number of words per sentence. It can be 
seen that performance improvement appears to increase the longer is the input 
sentence. Figure 3 and Figure 4 show how the semantic component of the filter 
leads to a further improvement in performance for those sentences which can 
be parsed after the addition of the semantic filter. These two figures show the 
results of parsing a subset of 24 sentences from our domain. 

Figure 3 compares the performance of the combined syntactic and semantic 
filter to that of the syntactic filter taken singly while Figure 4 separately com- 
pares the performance of the combined syntactic and semantic filter and the 
syntactic filter to the performance in the absence of any filter. 
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Fig.  2. (a) Plot of ratio of number of rules used by parser without filter to number of 
rule~ used with syntactic filter. (b) Plot of ratio of CPU time needed by parser without 
filter to CPU time needed with syntactic filter 
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Fig.  3. Plot of ratio of number of rules used by parser with only syntactic filter to 
number of rules used with both syntactic and semantic filter. 
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Fig. 4. Plot of ratio of number of rules used by parser with no filter to number of 
rules used by parser with both syntactic and semantic filters.(The plot of rule ratio 
improvement using syntactic filter only has also been shown for the sake of comparison) 
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