
Syntactic and Semantic Filtering in a Chart
Parser

Sayan Bhattacharyya 1 and Steven L. Lytinen 2

University of Michigan, Dept. of Electrical Engineering & Computer Science,
Ann Arbor, MI 48109, USA

2 DePaul University, Dept. of Computer Science, 243 S. Wabash,
Chicago, IL 60604, USA

Abstract. This paper describes a method to enhance the performance
of a unification-style bottom-up chart parser by means of top-down filter-
ing techniques. The filter developed consists of a syntactic module which
prevents the construction of redundant edges in the chart by ensuring
that a proposed edge in the chart can really be syntactically combined
with neighboring edges later, and a semantic module which ensures that
the semantic information in a proposed edge in the chart is compatible
with semantic information in other edges.

1 I n t r o d u c t i o n

Chart parsers used in natural language processing parse an input sentence by
building up a data structure called the chart. A chart is a network of vertices
representing points in the sentence which are linked by edges which represent
constituents of the sentence. In a unification-style chart parser [5] the chart is
augmented step by step by adding pieces of description according to the gram-
mar. Each partial description added remains in the chart and serves to constrain
the possibilities for further augmentation. In LINK, a bottom-up unification-style
chart parser described by Lytinen [3], a directed acyclic graph (DAG) is built to
represent the analysis of a sentence. Edges built by LINK are labeled by DAGs
incorporating syntactic as well as semantic information. New edges are added to
the chart by applying unification rules. This guarantees that the new constituent
added to the parse has the necessary syntactic and semantic features. We present
a way of integrating bottom-up parsing with top-down parsing, both in terms of
syntax and semantics. Our approach can be described as bottom-up parsing with
top-down filtering. We modified LINK using this approach. Similar approaches
have been variously called in the literature a "filter" [1] and an "oracle" [4].

2 N e c e s s i t y F o r T o p - d o w n F i l t e r i n g M e t h o d s

In a top-down parser, parsing is rule-driven while in a bottom-up parser, parsing
is data-driven. Thus in a top-down chart parser an active edge in the chart is
sought to be expanded with all rules in the grammar which have the current
symbol as the left-hand side, causing the parser to be over-productive in edge

466

construction. In a bottom-up parser on the other hand only complete edges are
combined, by the application of rules whose right hand sides correspond to the
completed edges. A bottom-up parser is also over-productive because it will build
some useless edges that cannot be combined with edges lying to the left or to
the right. So top-down filtering is effective in a bottom-up parser by reducing
the production of useless edges by checking whether the edge that is sought to
be built has any chance of combining with an adjacent edge to form part of a
larger edge. Making use of top-down information about the semantic context as
well can help to reduce redundancy by anticipating and blocking out unlikely
choices.

3 I m p l e m e n t i n g t h e F i l t e r

Ordinarily, LINK traverses the input sentence from left to right, building up
possible edges as it does so. At the outset, during the initialisation of the chart,
link-building is a strictly left-to-right process. After chart initialisation (after
all word-level, i.e. primitive, edges have been built), phrase-level edges will be
attempted to be built, guided by the heuristic that edges will be first sought to be
constructed out of previously unused edges. (Thus phrase-level edge construction
may not always occur strictly from left to right.)

3.1 Syntactic Component of the Filter

Char t In i t ia l i sa t ion. The objective of initialising the chart is to build edges
around each word in the input sentence. For each word of the input sentence,
LINK was made to look up its corresponding lexical entry in the LINK lexicon
to check for possible syntactic ambiguity, ambiguity being defined here as the
existence of multiple definitions belonging to different syntactic categories. If
no syntactic ambiguity is detected for the candidate word, LINK is allowed to
proceed to build edge(s) around the word in the ordinary way. On the other
hand, if syntactic ambiguity is detected, then for each candidate syntactic cat-
egory a check is made on the chart constructed so far to determine whether
a valid left-adjacent predecessor exists. The edge is constructed only if such a
left-predecessor exists.

Constructing the Comple te Char t . The objective is to build progressively
larger edges, combining words into phrases and phrases into increasingly larger
phrases until an edge is ultimately constructed which spans across the entire
sentence and corresponds to a complete parse. Link construction is an iterative
process that continues until the parse is complete or until there are no further
edges in the chart that can be constructed. At each step of the iterative process,
the chart is examined from left to right to check if there is a constituent sequence
of edges that unify with the right-hand-side of a grammar rule. For the first
sequence so obtained, it is checked whether there exists any left-adjacent phrase
contiguous to the candidate phrase for which the edge is being sought to be

467

built that corresponds to a syntactic category which is a valid predecessor of the
syntactic category of the proposed candidate edge. The attempt to build the edge
is abandoned if such a left-adjacent phrase does not exist. If such a left-adjacent
phrase does exist, a similar check is carried out for right-adjacency. However,
as in general it is not guaranteed that a complete non-primitive right-adjacent
edge will exist (because of the left-to-right nature of the parsing process) the
right-adjacency check is limited to checking the existence of only valid right-
adjacent words (i.e. primitive edges) and not valid right-adjacent phrases (i.e.
non-primitive edges). A edge will be finally built if and only if both the left-
adjacency and right-adjacency checks are successful.

3.2 Semantic Component of the Fi l ter

The task of the semantic filter is to perform word-sense disambiguation early
on in the parse in order to prevent construction of edges in the chart which
correspond to word-senses which are apparently irrelevant in the given context.
This is expected to lead to considerable savings as word-sense ambiguity is a big
source of parsing inefficiency in most large applications; for example, Waltz [6]
estimates that in English, on the average, each word has as many as 3.7 different
s e n s e s .

LINK maintains a semantic hierarchy consisting of IS-A relationships be-
tween semantic categories. In order for the fillers of the slot of a certain seman-
tic category to find something to unify with, either an entity belonging to the
same semantic category of the slot filler, or an entity belonging to a descendant
semantic category of the slot filler in the semantic hierarchy (not necessarily im-
mediate descendant) must be present. Our strategy is to generate a table listing
the valid semantic associates of every semantic category. The semantic asso-
ciates of a semantic category would include all the slot-filler semantic categories
for that semantic category and all the descendants of each slot-filler semantic
category in the semantic hierarchy. Then, while parsing, as soon as an edge is
sought to be built which would assign to an edge a particular semantic category,
the table of valid semantic associates is looked up to determine if any valid se-
mantic associate for that semantic category exists within the input sentence. If
yes, the proposed edge is passed for construction (provided it is also passed by
the syntactic component of the filter) and if not, the proposed edge is rejected.
Thus a proposed edge must pass through both the syntactic and semantic filters
before it is cleared for construction.

For example, for the semantic hierarchy shown in Figure 1 and the following
semantic category definition:
PTRANS:

(a c t o r) ~ A N I M A T E

the table of semantic associates generated will be:

468

Fig. 1. An example semantic hierarchy

s e m a n t i c c a t e g o r y s e m a n t i c a s s o c i a t e s

PTEANS ANIMATE MAN

MOVE ANIMATE MAN
RUN ANIMATE MAN

ANIMATE PTRANS MOVE RUN

MAN PTRANS MOVE RUN

As another example, consider the two sentences John sho t some bucks and
John spe n t some bucks. The word bucks is a source of ambiguity here. Syn-
tactically, the two sentences are exactly alike, so that the syntactic component
of the filter cannot help resolve the ambiguity. In the grammar that we used for
this sentence, the word sho t had the semantic category PROPEL and the word
spen t had the semantic category ATRANS. The word bucks had the choice of
two semantic categories, ANIMAL and MONEY, among which it was necessary to
disambiguate.

The semantic definitions of ATPANS, PROPEL, ANIMAL and MONEY were as
follows:

ATRANS:

i~-& (A C T I O N)
(actor) ~ H U M A N
(o b j e c t) ~--. P H Y S - O B J
(f r o m) ~ H U M A N

P R O P E L :

469

it-t~ (A C T I O N)
(objec%) = ANIMAL

MONSY:

is-~ (PHYS-OB/)

ANIMAL:

is-~ (ANIMATE)

For our example grammar, the table of semantic associates had the following
as entries for the semantic categories AIlIMAL and MOtlEY after stepwise construc-
tion according to the aforementioned algorithm:

[semant ic c a t e g o r y [s e m a n t i c associa tes [

ANIMAL

MONEY
PROPEL PHYS-STATEDIvIDE I POSSESSION ATRANS

Note that ATRANS was not a valid semantic associate of ANIMAL and PROPEL
was not a valid semantic associate of MONEY. Thus, the edge corresponding to
MONEY will not be built in the first sentence as no valid semantic associate of
MONEY is present in the first sentence. Similarly the edge corresponding to ANII~AL
will not be built in the second sentence.

Our method of semantic filtering is similar in some ways to some semantic
disambiguation techniques described in the literature, such as the preference
semantics used by Wilks [7] and the polaroid words technique described by Hirst
[2].

4 P e r f o r m a n c e I s s u e s

We measured the performance of our system (LINK with the filter described)
vis-a-vis that of LINK without filter by parsing a set of forty-eight sentences,
with a grammar that had been expressly written for the domain. Figure 2 shows
the comparative performance improvement obtained by using the syntactic com-
ponent of the filter. In this figure the ratio of rules applied during the parse for
the two methods and the ratio of time needed to parse a sentence by the two
methods have been plotted against the number of words per sentence. It can be
seen that performance improvement appears to increase the longer is the input
sentence. Figure 3 and Figure 4 show how the semantic component of the filter
leads to a further improvement in performance for those sentences which can
be parsed after the addition of the semantic filter. These two figures show the
results of parsing a subset of 24 sentences from our domain.

Figure 3 compares the performance of the combined syntactic and semantic
filter to that of the syntactic filter taken singly while Figure 4 separately com-
pares the performance of the combined syntactic and semantic filter and the
syntactic filter to the performance in the absence of any filter.

470

I0,

II.

6 '

4"

7 ~ 0.4~:1~ .P 9 ~ le.,v2. O.On

0 8"

6

4 �84

$ I 15 20

a

$ 10 U 20

Fig. 2. (a) Plot of ratio of number of rules used by parser without filter to number of
rule~ used with syntactic filter. (b) Plot of ratio of CPU time needed by parser without
filter to CPU time needed with syntactic filter

4 -

y - 1 . 1 4 4 0 -~ ~ 2 2 7 6 c - 2 x R ^ 2 - 0 . 0 1 5

m

a

m

a

I m , m : J e B

.

15

I
i

0 q i

~ k g g m

Fig. 3. Plot of ratio of number of rules used by parser with only syntactic filter to
number of rules used with both syntactic and semantic filter.

I 0 -

471

y ffi - 0 . 7 . 4 $ ~ + 0 .20949x R^2 ffi 0 .222

y f f i - 0 . 3 0 0 8 7 + 0 . 1 7 3 7 0 x Jg '~2=0 .169~

~ . �9 moo

Semtemce lengeb

Fig. 4. Plot of ratio of number of rules used by parser with no filter to number of
rules used by parser with both syntactic and semantic filters.(The plot of rule ratio
improvement using syntactic filter only has also been shown for the sake of comparison)

References

1. Grishmaxt, R.: Computational Linguistics. Cambridge University Press, Cambridge
(1986)

2. Hirst, G.: Semantic Interpretation and the Resolution of Ambiguity. Cambridge
University Press, Cambridge (1987)

3. Lytinen, S.L.: A unification-based integrated natural language processing system.
Computers Math. Applic. Vol. 23, no 6-9 (1992)

4. Pratt, V.: Lingol, a progress report. Advance Papers 4th Intl. Joint Conf. Artificial
Intelligence 422-8 (1973).

5. Shieber, S.: An Introduction to Unification-Based Approaches to Grammar.
Lawrence Eflbaum Associates, Hillsdale, NJ (1986).

6. Waltz, D.: Semantic Structures. Lawrence Erlbaum Associates, Hilldale, N.J. (1989)
7. Wilks, Y.: Preference Semantics. in E. Keenan, ed, Formal Semantics of Natural

Language. Cambridge University Press, Cambridge (1975)

