Robust Stabilizing Continuous-Time Controllers for Periodic Orbits of Hybrid Systems: Application to Bipedal Robots

Kaveh Akbari Hamed, Brian G. Buss, and Jessy W. Grizzle

Abstract—This paper presents a systematic approach for the design of continuous-time controllers to robustly and exponentially stabilize periodic orbits of hybrid dynamical systems. A parameterized family of continuous-time controllers is assumed so that (1) a periodic orbit is induced for the hybrid system, and (2) the orbit is invariant under the choice of controller parameters. Properties of the Poincaré map and its first- and second-order derivatives are used to translate the problem of exponential stabilization of the periodic orbit into a set of Bilinear Matrix Inequalities (BMIs). A BMI optimization problem is then set up to tune the parameters of the continuous-time controller so that the Jacobian of the Poincaré map has its eigenvalues in the unit circle. It is also shown how robustness against uncertainty in the switching condition of the hybrid system can be incorporated into the design problem. The power of this approach is illustrated by finding robust and stabilizing continuous-time feedback laws for walking gaits of two underactuated 3D bipedal robots.

I. INTRODUCTION

This paper addresses the problem of designing continuous-time controllers to robustly and exponentially stabilize periodic orbits of hybrid dynamical systems. Hybrid systems exhibit characteristics of both continuous-time and discrete-time dynamical systems and are used to model a large range of processes [1]-[4] including power systems [5] and mechanical systems subject to impacts [6]-[22]. Our motivation is to design robust stabilizing continuous-time controllers for 3D bipedal robots with high degrees of underactuation, but the results we present apply to non-hybrid as well as hybrid systems [23]-[25].

The most basic tool to investigate the stability of hybrid periodic orbits is the method of Poincaré sections [23]-[25], [3], [6]. In this approach, the evolution of the system on the Poincaré section, a hypersurface transversal to the periodic orbit, is described by a discrete-time system referred to as the Poincaré return map. In general, there is no closed-form expression for the Poincaré map, and this complicates the design of continuous-time controllers. Hence, stabilization of periodic orbits for hybrid systems is often achieved with multilevel feedback control architectures, in which continuous-time control laws are employed at the lower levels of the control scheme to create the periodic orbit. As the lower-level controllers may not ensure exponential stability of the orbit, a set of adjustable parameters is introduced to the continuous-time controllers. These parameters are then updated by higher-level event-based controllers when state trajectories cross the Poincaré section [26], [19], [13], [27], [28]. The event-based controllers are designed to render the Jacobian of the Poincaré map around the fixed point a Hurwitz matrix.

One drawback of achieving stability via event-based controllers is the potentially large delay between the occurrence of a disturbance and the event-based control effort. Alternative approaches attempt to achieve stability at the first level. Reference [19] made use of a nonlinear optimization problem to minimize the spectral radius of the Jacobian of the Poincaré map for simultaneous design of periodic orbits and continuous-time controllers. Diehl et al. [29] introduced a smoothed version of the spectral radius and a nonlinear optimization problem to generate maximally stable periodic orbits. This approach was employed to design parameters and optimal control inputs of a fully actuated bipedal robot with 2 degrees of freedom (DOF). Both methods require recomputation of the Jacobian matrix at each iteration of the optimization. For mechanical systems with many degrees of freedom and underactuation (such as the 3D bipedal robot ATRIAS [27], which has 13 DOF and 6 actuators), the cost of numerically computing the Poincaré map and its Jacobian make these methods impractical.

The contribution of this paper is to present a method based on sensitivity analysis and bilinear matrix inequalities (BMIs) to design continuous-time controllers that provide robust exponential stability of a given periodic orbit without relying on event-based controllers. The approach assumes that a family of parameterized continuous-time controllers has been designed so that (1) the periodic orbit is an integral curve of the closed-loop system and (2) the orbit is invariant under the choice of parameters in the controllers. By investigating the properties of the Poincaré map and its first- and second-order derivatives, a sensitivity analysis is presented. On the basis of the sensitivity analysis, the problems of robust and exponential stability are translated into a set of BMIs. A BMI optimization problem is then set up to tune the parameters of the continuous-time controllers. Finally, this approach is illustrated to design continuous-time controllers for two underactuated 3D bipedal robots with 8 and 13 DOF, respectively.

Some of the results in this paper (namely, those illustrating exponential stabilization of periodic orbits for the 8 DOF bipedal robot) were already presented without mathematical
proof in [30]. This paper extends the analysis to a broader class of systems and illustrates how to simultaneously optimize the continuous-time controller for robustness and exponential stability. In particular, motivated by the problem of stable walking on uneven ground, the sensitivity analysis is extended to model robustness of the orbit against uncertainty in the switching condition of the hybrid system. Furthermore, the approach is extended to hybrid systems with multiple continuous-time phases. Proofs of the key theorems are provided. Finally, the paper extends the earlier results for full-state stability as well as stability modulo yaw for 3D bipedal robots.

This paper is organized as follows. Section II presents the formal definitions related to hybrid systems and the Poincaré map. Required conditions on the periodic orbit and family of parameterized continuous-time controllers are presented to set up the sensitivity analysis. Two families of continuous-time controllers satisfying the required conditions are presented. Section III presents the BMI conditions to formulate an optimization problem to guarantee exponential stability. Section IV extends the sensitivity analysis to form the modified BMI optimization problem for robust stability. Section V extends the analytical results to hybrid systems with multiple continuous-time phases. In Section VI, we illustrate the method to design robust and stabilizing continuous-time controllers for two underactuated bipedal robots. Section VII contains concluding remarks.

II. SENSITIVITY ANALYSIS FOR STABILIZATION OF HYBRID PERIODIC ORBITS

The objective of this section is to present the sensitivity analysis for exponential stabilization of periodic orbits for hybrid systems. The results of this section will be utilized in Sections III and IV to set up the BMI optimization problems. We consider a hybrid system with one continuous-time phase as follows

\[
\Sigma: \begin{cases}
\dot{x} = f(x, \xi) + g(x, \xi) u, & x^− \notin S \\
 x^+ = \Delta(x^−), & x^− \in S,
\end{cases}
\]

in which \(x \in \mathcal{X} \) and \(\mathcal{X} \subset \mathbb{R}^{n+1} \) denote the vector of state variables and \(n+1 \)-dimensional state manifold, respectively. The continuous-time control input is represented by \(u \in \mathcal{U} \), where \(\mathcal{U} \subset \mathbb{R}^m \) is an open set of admissible control values. In addition, \(f : \mathcal{X} \to \mathcal{T}\mathcal{X} \) and columns of \(g \) are smooth (i.e., \(C^\infty \)) vector fields, in which \(T\mathcal{X} \) represents the tangent bundle of the state manifold \(\mathcal{X} \). The switching hypersurface \(S \) is the \(n \)-dimensional manifold

\[
S := \{ x \in \mathcal{X} | s(x) = 0 \},
\]

on which the state solutions undergo a sudden jump according to the re-initialization rule \(x^+ = \Delta(x^-) \). Here, \(s : \mathcal{X} \to \mathbb{R} \) is a real-valued and \(C^\infty \) switching function which satisfies \(\partial_x s(x) \neq 0 \) for all \(x \in S \). Moreover, \(\Delta : S \to \mathcal{X} \) denotes the \(C^\infty \) reset map. \(x^-(t) := \lim_{\tau \to t^-} x(\tau) \) and \(x^+(t) := \lim_{\tau \to t^+} x(\tau) \) represent the left and right limits of the state trajectory \(x(t) \), respectively.

A. Closed-Loop Hybrid Model

In this subsection, we assume that the continuous-time controller can be expressed as the following parameterized feedback law

\[
u = \Gamma(x, \xi),
\]

in which \(\xi := (\xi_1, \ldots, \xi_p)^T \in \Xi \) and \(\Xi \subset \mathbb{R}^p \) represent the finite-dimensional parameter vector and set of admissible parameters, respectively, for some positive integer \(p \). Moreover, \(\Gamma : \mathcal{X} \times \Xi \to \mathcal{U} \) is a \(C^\infty \) map and \(\"T" \) denotes the matrix transpose. By employing the continuous-time feedback law (3), the closed-loop hybrid model is parameterized as follows

\[
\Sigma^\xi : \begin{cases}
\dot{x} = f^\xi(x, \xi) + g(x, \xi) u, & x^− \notin S \\
 x^+ = \Delta(x^−, \xi), & x^− \in S,
\end{cases}
\]

where the superscript “\(\xi \)" stands for the closed-loop dynamics and \(f^\xi(x, \xi) := f(x) + g(x, \xi) \Gamma(x, \xi) \) is the closed-loop vector field. For later purposes, the unique solution of the closed-loop ordinary differential equation (ODE) \(\dot{x} = f^\xi(x, \xi) \) with the initial condition \(x(0) = x_0 \) is represented by \(\varphi(t, x_0, \xi) \), where \(t \geq 0 \) belongs to the maximal interval of existence. Next, the time-to-reset function \(T : \mathcal{X} \times \Xi \to \mathbb{R}_{\geq 0} \) is defined as the first time at which the solution \(\varphi(t, x_0, \xi) \) intersects the switching manifold \(S \), i.e.,

\[
T(x_0, \xi) := \inf \{ t > 0 | \varphi(t, x_0, \xi) \in S \}.
\]

Remark 1 (Parameterized Reset Map): In the closed-loop hybrid model of (4), the reset map is also parameterized by \(\xi \). Our motivation for this is to extend the sensitivity approach for hybrid systems with multiple continuous-time phases in Section V. In particular, hybrid systems with multiple continuous-time phases can be expressed as hybrid systems with one continuous-time phase as in (4), in which the reset map \(\Delta \) represents the composition of the flows for the remaining continuous-time and discrete-time phases. Consequently, \(\Delta \) includes the parameters of the controllers employed during other phases (see Section V for more details).

B. Periodic Orbit Assumptions

Throughout this paper, we shall assume that the following assumptions are satisfied.

Assumption 1 (Invariant Periodic Orbit): There exists a period-one orbit \(\mathcal{O} \) for the parameterized closed-loop hybrid model (4) which is invariant under the choice of the parameter vector \(\xi \). This assumption can be expressed precisely as follows:

1) There exists a nominal initial condition \(x^*_0 \in \mathcal{X} \setminus S \) such that the solution of the ODE \(\dot{x} = f^\xi(x, \xi) \) with \(x(0) = x^*_0 \) is independent of \(\xi \), i.e., \(\partial_x \varphi^\xi(t, x^*_0, \xi) = 0 \) for all \(t \geq 0 \) and all \(\xi \in \Xi \), where \(\\\setminus \) represents the set difference. For later purposes, this invariant and nominal solution is denoted by

\[
\varphi^*(t) := \varphi(t, x^*_0, \xi), \quad t \geq 0.
\]

2) The time-to-reset function, evaluated at \(x = x^*_0 \), is bounded, that is,

\[
T(x^*_0, \xi) = T^* < \infty, \quad \forall \xi \in \Xi.
\]
3) The reset map \(\Delta \) satisfies the reset invariance condition
\[
\Delta(x^*_f, \xi) = x^*_0, \quad \forall \xi \in \Xi,
\]
i.e., \(\partial \Delta/\partial \xi (x^*_f, \xi) = 0 \) for all \(\xi \in \Xi \), where
\[
x^*_f := \varphi^*(T^*) \in S.
\]
The invariant periodic orbit \(\mathcal{O} \) is then given by
\[
\mathcal{O} := \{ x = \varphi^*(t) | 0 \leq t < T^* \}
\]
for which \(T^* \) is the fundamental period.

Assumption 1 states that \(\mathcal{O} \) is a periodic orbit of the closed-loop hybrid model (4) for all \(\xi \in \Xi \).

Assumption 2 (Transversality Condition): The period-one orbit \(\mathcal{O} \) in (9) is transversal to the switching manifold \(S \) in the sense that
\[
\partial s/\partial x (x^*_f, \xi) f^d(x^*_f, \xi) \neq 0.
\]

From Assumption 2, it can be concluded that the periodic orbit \(\mathcal{O} \) is not tangent to the switching manifold \(S \) at the point \(x = x^*_f \). In the next subsection, we will present two examples of continuous-time feedback laws satisfying Assumption 1.

C. Two Families of Parameterized and Continuous-Time Feedback Laws Satisfying the Invariance Assumption

This subsection presents two families of parameterized and continuous-time feedback laws satisfying the invariance condition in Assumption 1 for a given periodic orbit \(\mathcal{O} \). If the hybrid system includes just one continuous-time phase, the reset map \(\Delta \) in (4) is not parameterized by \(\xi \) and Item 3 of Assumption 1 is immediately satisfied. For the case of multiple continuous-time phases, Section V will present conditions under which Item 3 is met (see Part 1 of Theorem 4). Here, we check Item 1 for the examples and we assume that Item 3 is satisfied\(^2\). For this goal, we first present the following lemma.

Lemma 1 (Invariant Solution of the ODE): Consider the solution of the ODE \(\dot{x} = f^d(x, \xi) \) with \(x(0) = x_0 \). Then, \(\partial f^d/\partial \xi (t, x_0, \xi) = 0 \) for all \(t \geq 0 \) if and only if
\[
\frac{\partial f^d}{\partial \xi}(x, \xi) \big|_{x = \varphi(t, x_0, \xi)} = 0, \quad \forall t \geq 0.
\]

Proof: See Appendix A. \(\blacksquare \)

From Lemma 1, one can immediately conclude that Item 1 of Assumption 1 is equivalent to
\[
\frac{\partial f^d}{\partial \xi}(x, \xi) \big|_{x \in \mathcal{O}} = \frac{\partial g}{\partial \xi}(f(x) + g(x) \Gamma(x, \xi)) \big|_{x \in \mathcal{O}}
\]
\[
= g(x) \frac{\partial \Gamma}{\partial \xi}(x, \xi) \big|_{x \in \mathcal{O}}
\]
\[
= 0,
\]
where
\[
\mathcal{O} := \{ x = \varphi^*(t) | 0 \leq t \leq T^* \} = \mathcal{O} \cup \{ x^*_f \}
\]
\(^1\)Here, we assume that the solutions of the hybrid system (4) are right continuous.
\(^2\)Since the orbit is given here, Item 2 is satisfied in the sense that the fundamental period of the orbit is bounded.

denotes the set closure of \(\mathcal{O} \). Next to present the families of controllers, we assume that there is a \(C^\infty \) feedback law \(\Gamma^*(x) \), referred to as the feedforward term, which generates the nominal trajectory \(\varphi^*(t) \) in the sense that \(\varphi^*(t) \) is the unique solution of \(\dot{x} = f(x) + g(x) \Gamma^*(x) \). Suppose further that the following assumption is satisfied.

Assumption 3 (Phasing Variable): Corresponding to the periodic orbit \(\mathcal{O} \), there exists a real-valued and \(C^\infty \) function \(\theta : \mathcal{X} \rightarrow \mathbb{R} \), referred to as the phasing variable, which is strictly monotonic (i.e., strictly increasing or decreasing) on the orbit \(\mathcal{O} \), that is,
\[
\dot{\theta}(x) = \frac{\partial \theta}{\partial x}(f(x, \xi)) \neq 0, \quad \forall x \in \mathcal{O}.
\]

Under Assumption 3, the desired evolution of the state variables on the orbit \(\mathcal{O} \) can be expressed in terms of the phasing variable \(\theta \) rather than the time variable \(t \). In particular, let \(\Theta(t) \) represent the time evolution of the phasing variable on \(\overline{\mathcal{O}} \). Then, one can define the desired evolution of the state variables on \(\overline{\mathcal{O}} \) in terms of \(\theta \) as follows
\[
x_d(\theta) := \varphi^*(t) \big|_{t = \Theta^{-1}(\theta)},
\]
in which \(t = \Theta^{-1}(\theta) \) denotes the inverse of the function \(\theta = \Theta(t) \).

Example 1 (Feedforward and Linear State Feedback Law): The first family of parameterized continuous-time controllers can be expressed as
\[
\Gamma(x, \xi) := \Gamma^*(x) - K(x - x_d(\theta)),
\]
where \(K \in \mathbb{R}^{m \times (n+1)} \) represents a controller gain matrix to be determined. Here, one can assume that the parameter vector \(\xi \) includes the elements of the gain matrix \(K \), i.e., \(\xi := \text{vec}(K) \in \mathbb{R}^p \), in which \(\text{vec}() \) is the vectorization operator and \(p := m(n+1) \). It can be easily shown that \(\partial \Gamma/\partial \xi (x, \xi) = 0 \) for all \(x \in \mathcal{O} \) and \(\xi \in \Xi \). Hence, from (11), the feedback law (13) preserves the orbit \(\mathcal{O} \) for all \(\xi \in \Xi \).

Example 2 (Input-Output Linearizing Feedback Law): For the second family of continuous-time controllers, a parameterized output function \(y(x, \xi) \) with the property \(\dim(y) = \dim(u) = m \) is defined as follows
\[
y(x, \xi) := H (x - x_d(\theta)),
\]
in which \(H \in \mathbb{R}^{m \times (n+1)} \) is the output matrix to be determined, \(\xi := \text{vec}(H) \in \mathbb{R}^p \), and \(p := m(n+1) \). The output function \(y(x, \xi) \) in (14) vanishes on the orbit \(\overline{\mathcal{O}} \) and we assume that \(\Xi \) is defined as an open subset of \(\mathbb{R}^p \) such that \(y(x, \xi) \) has uniform vector relative degree \(r \) with respect to \(u \) on an open neighborhood of \(\overline{\mathcal{O}} \) for all \(\xi \in \Xi \). The input-output linearizing controller takes the form
\[
\Gamma(x, \xi) := - \left(L_g L_f^{-1} y(x, \xi) \right)^{-1} L_f y(x, \xi)
\]
\[
- \left(L_g L_f^{-1} y(x, \xi) \right)^{-1} \sum_{i=0}^{r-1} k_i L_f y(x, \xi)
\]
where \(k_i, i = 0, 1, \ldots, r - 1 \) are constant scalars such that the polynomial \(s^r + k_{r-1} s^{r-1} + \cdots + k_0 = 0 \) is Hurwitz.
Employing the feedback law (15) results in the following output dynamics
\[y(r) + k_{r-1} y(r-1) + \cdots + k_0 y = 0, \] for which the origin \((y, y, \ldots, y(r-1)) = (0, 0, \ldots, 0) \) is exponentially stable. Next, we show that \(\frac{\partial P}{\partial x}(x, \xi) = 0 \) for all \(x \in \mathcal{O} \) and \(\xi \in \Xi \). To do this, we define the parameterized zero dynamics manifold corresponding to the output \(y(x, \xi) \) as follows
\[\mathcal{Z} := \{ x \in \mathcal{X} | y(x, \xi) = L_f y(x, \xi) = \cdots = L_{r-1}^{-1} y(x, \xi) = 0 \}. \]
The decoupling matrix \(L_f L_f y(x, \xi) \) has full rank and is square on an open neighborhood of \(\mathcal{O} \), and hence, the control driving \(y(x, \xi) \) to zero is unique on each zero dynamics manifold [31, pp. 226]. Furthermore, the orbit \(\mathcal{O} \) is common to all of the various manifolds. Hence, the control restricted to the orbit is independent of \(\xi \).

D. Poincaré Return Map and Sensitivity Analysis

The objective of this subsection is to present the Poincaré return map and sensitivity analysis for exponential stabilization of the periodic orbit \(\mathcal{O} \) for the closed-loop hybrid model (4). Here, the Poincaré section is taken as the switching manifold \(S \) and the Poincaré return map is defined as \(P: \mathcal{X} \times \Xi \rightarrow \mathcal{X} \) by
\[P(x, \xi) := \varphi(T(\Delta(x, \xi), \Delta(x, \xi), \xi)) \] which results in the following discrete-time system
\[x[k+1] = P(x[k], \xi), \quad k = 0, 1, \ldots. \]
According to Assumption 1 and construction procedure (17), \(x_r \) is a fixed point of the Poincaré map \(P \) for all \(\xi \in \Xi \), i.e.,
\[P(x_r, \xi) = x_r, \quad \forall \xi \in \Xi. \]

One immediate consequence of (19) is that
\[\frac{\partial P}{\partial x}(x_r, \xi) = 0, \quad \forall \xi \in \Xi, \]
and hence, an event-based control action cannot be employed to modify the stability property of the periodic orbit \(\mathcal{O} \) [26, 7, Chap. 4]. Linearization of the discrete-time system (18) around the fixed point \(x_r \) then results in
\[\delta x[k+1] = \frac{\partial P}{\partial x}(x_r, \xi) \delta x[k], \quad k = 0, 1, \ldots, \]
in which \(\delta x[k] := x[k] - x_r \). In order to exponentially stabilize the periodic orbit \(\mathcal{O} \), we would like to tune the constant parameter vector \(\xi \) such that the Jacobian matrix \(\frac{\partial P}{\partial x}(x_r, \xi) \), when restricted to the tangent space \(T_{x_r}S \), becomes Hurwitz. However, in general there is no closed-form expression for the Poincaré map \(P(x, \xi) \) nor for its Jacobian \(\frac{\partial P}{\partial x}(x_r, \xi) \). Therefore the Poincaré map is usually obtained by numerical integration of the closed-loop hybrid model (4), while the Jacobian matrix \(\frac{\partial P}{\partial x}(x_r, \xi) \) is obtained by numerical differentiation.

The situation is more critical in mechanical systems with high degrees of freedom and high degrees of underactuation. For these systems, the numerical calculations are time consuming. In particular, employing nonlinear optimization algorithms to tune the parameter vector \(\xi \) would require extensive recomputation of the high dimensional Jacobian matrix at each iteration. To resolve this problem, we turn our attention to the sensitivity analysis. For this purpose, let \(\xi^* \in \Xi \) represent a nominal parameter vector. By computing the Taylor series expansion of \(\frac{\partial P}{\partial x}(x_r, \xi) \) around \(\xi^* \) for sufficiently small \(\| \xi - \xi^* \|, \) (20) becomes
\[\delta x[k+1] = \left(\frac{\partial P}{\partial x}(x_r, \xi^*) + \sum_{i=1}^{p} \frac{\partial^2 P}{\partial \xi_i \partial x}(x_r, \xi^*) \Delta \xi_i \right) \delta x[k], \]
where \(\Delta \xi := (\Delta \xi_1, \ldots, \Delta \xi_p)^\top := \xi - \xi^* \). The objective is to tune \(\Delta \xi \) such that the origin \(\delta x = 0 \) becomes exponentially stable for (21). To do this, we first present the following theorem to numerically calculate the first- and second-order Jacobian matrices in (21). Next, Sections III and IV will present BMI optimization problems to tune \(\Delta \xi \).

Theorem 1 (Calculation of the Jacobian Matrices): Consider a parameterized closed-loop system satisfying Assumptions 1 and 2. Let
\[\Phi(t, x_0, \xi) := \frac{\partial \varphi}{\partial x_0}(t, x_0, \xi) \in \mathbb{R}^{(n+1) \times (n+1)} \]
represent the trajectory sensitivity matrix and define the final value of the trajectory sensitivity matrix on the orbit \(\mathcal{O} \) as follows
\[\Phi_f^\top(\xi) := \Phi(T^*, x_0, \xi). \]

Then the Jacobian matrix \(\frac{\partial P}{\partial x}(x_r, \xi) \) depends on \(\xi \) only through \(\Phi_f^\top(\xi) \) and \(\Upsilon(x_r, \xi) := \frac{\partial \varphi}{\partial \xi}(x_r, \xi) \); i.e.,
\[\frac{\partial P}{\partial x}(x_r, \xi) = \Pi(x_r, \xi^*) \Phi_f^\top(\xi) \Upsilon(x_r, \xi), \quad \forall \xi \in \Xi, \]
in which
\[\Pi(x_r, \xi^*) := I_{(n+1) \times (n+1)} - \frac{f^\top(x_r, \xi^*)}{\frac{\partial f}{\partial x}(x_r, \xi^*) f^\top(x_r, \xi^*)} \]
is a projection matrix independent of \(\xi \). Furthermore, the sensitivity matrices are given by
\[\frac{\partial^2 P}{\partial \xi_i \partial x}(x_r, \xi^*) = \Pi(x_r, \xi^*) \frac{\partial \Phi_f^\top(\xi^*)}{\partial \xi_i} \Upsilon(x_r, \xi^*) + \Pi(x_r, \xi^*) \Phi_f^\top(\xi^*) \frac{\partial \Upsilon(x_r, \xi^*)}{\partial \xi_i}, \]
for \(i = 1, \ldots, p \).

Remark 2 (Variational Equation): Theorem 1 simplifies the calculation of the sensitivity matrices \(\frac{\partial P}{\partial x}(x_r, \xi^*), i = 1, \ldots, p \) by relating them to the final value of the trajectory sensitivity matrix on \(\mathcal{O} \), i.e., \(\Phi_f^\top(\xi^*) \), and its derivatives \(\frac{\partial \Phi_f^\top(\xi^*)}{\partial \xi_i} \). In addition, \(\Phi_f^\top(\xi) \) can be obtained by numerical integration of a matrix differential equation, referred to as the variational equation [24], as follows
\[\dot{\Phi}(t, x_0, \xi) = \frac{\partial f^\top}{\partial x}(\varphi(t, \xi) \Phi(t, x_0, \xi), 0 \leq t \leq T^* \]
\[\Phi(0, x_0, \xi) = I_{(n+1) \times (n+1)}. \]
Finally, one can employ numerical differentiation approaches, like the two point symmetric difference method, to calculate \(\frac{\partial \Phi^*_i}{\partial s}(\xi^*) \). In particular, for \(i = 1, \ldots, p, \)
\[
\frac{\partial \Phi^*_i}{\partial s}(\xi^*) = \frac{1}{2\delta} (\Phi^*_j(\xi^* + \delta e_i) - \Phi^*_j(\xi^* - \delta e_i)),
\]
where \(\{e_1, \ldots, e_p\} \) is the standard basis for \(\mathbb{R}^p \) and \(\delta > 0 \) is a small perturbation value.

Remark 3 (Simplified Jacobian Matrices): Theorem 1 also relates the sensitivity matrices \(\frac{\partial^p P}{\partial x_i \partial s}(x^*_j, \xi^*) \), \(i = 1, \ldots, p \) to the sensitivity of the reset map Jacobian, i.e., \(\frac{\partial \Phi^*_i}{\partial \xi}(x^*_j, \xi^*) \) (see (23)). For hybrid systems with one continuous-time phase, the reset map \(\Delta \) is independent of \(\xi \), and hence, one can simplify (22) and (23) as follows
\[
\frac{\partial \Phi^*_i}{\partial x}(x^*_j, \xi) = \Pi(x^*_j, \xi^*) \Phi^*_i(\xi) \tilde{\Upsilon}(x^*_j, \xi) \quad (24)
\]
\[
\frac{\partial^2 \Phi}{\partial \xi \partial x}(x^*_j, \xi^*) = \Pi(x^*_j, \xi^*) \frac{\partial \Phi^*_i}{\partial \xi}(\xi^*) \tilde{\Upsilon}'(x^*_j, \xi), \quad (25)
\]
where \(\tilde{\Upsilon}(x^*_j) := \frac{\partial \Phi^*_i}{\partial x}(x^*_j, \xi^*) \). The calculation of \(\frac{\partial \Phi}{\partial s}(x^*_j, \xi^*) \) in (23) for hybrid systems with multiple continuous-time phases will be addressed in Section V (see Part 2 of Theorem 4).

Proof: According to Items 2 and 3 of Assumption 1, \(T(x^*_j, \xi) = T^* \) and \(\Delta(x^*_j, \xi) = x^*_j \) for all \(\xi \in \Xi \). This fact together with (17) implies that the Jacobian of the Poincaré return map can be expressed as
\[
D_1 P(x^*_j, \xi) = D_1 \varphi(T^*, x^*_j, \xi) D_1 T(x^*_j, \xi) D_1 \Delta(x^*_j, \xi)
+ D_2 \varphi(T^*, x^*_j, \xi) D_1 \Delta(x^*_j, \xi).
\]

Furthermore,
\[
D_1 \varphi(T^*, x^*_j, \xi) = \dot{\psi}(T^*, x^*_j, \xi)
= f^{cl}(\varphi(T^*, x^*_j, \xi), \xi)
= f^{cl}(\dot{x}^*_j, \xi)
= f^{cl}(x^*_j, \xi^*), \quad (27)
\]
in which we have made use of the invariance condition (see (11)) in the last equality. \(D_2 \varphi(T^*, x^*_j, \xi) \) can also be expressed as
\[
D_2 \varphi(T^*, x^*_j, \xi) = \frac{\partial \varphi}{\partial x_0}(T^*, x^*_j, \xi)
= \Phi(T^*, x^*_j, \xi)
= \Phi^*_j(\xi).
\]

From the switching and invariance conditions (see Item 2 of Assumption 1),
\[
s(\varphi(T(x, \xi), x, \xi)) = 0,
\forall \xi \in \Xi
\]
which together with the Implicit Function Theorem implies that
\[
s(\varphi(T(x, \xi), x, \xi)) = 0 \quad (29)
\]
for all \(x \) in an open neighborhood of \(x^*_j \) and all \(\xi \in \Xi \). Differentiating (29) with respect to \(x \) around \((x^*_j, \xi) \) results in
\[
D s(x^*_j) D_1 \varphi(T^*, x^*_j, \xi) D_1 T(x^*_j, \xi)
+ D s(x^*_j) D_2 \varphi(T^*, x^*_j, \xi) = 0
\]
which in combination with (27), (28) and the transversality assumption results in
\[
D_1 T(x^*_j, \xi) = -\frac{\partial \varphi}{\partial x}(x^*_j, \xi) \Phi^*_j(\xi) / \partial \xi - \frac{\partial x}{\partial s}(x^*_j, \xi).
\]

In particular, the Jacobian of the time-to-reset function depends on \(\xi \) only through \(\Phi^*_j(\xi) \). Replacing (30) in (26) yields (22), from which (23) follows immediately.

III. TRANSLATION OF THE STABILIZATION PROBLEM INTO A SET OF BMIs

The objective of this section is to translate the problem of exponential stabilization of the origin \(\delta z = 0 \) for the linearized discrete-time system (21) into a set of BMIs. To this end, we first present a set of coordinates for the tangent space \(T_{x^*_j} S \). In (20), (21) and Theorem 1, the Poincaré map is considered from \(X \) to \(X \). In order to study the exponential stability behavior of the periodic orbit \(O \), we need to pre and post multiply the Jacobian matrix \(\frac{\partial P}{\partial x}(x^*_j, \xi) \) by constant projection and lift matrices, respectively, to obtain a linear operator from the \(n \)-dimensional tangent space \(T_{x^*_j} S \) to \(T_{x^*_j} S \). In particular, let \(\pi_{proj} \in \mathbb{R}^{n \times (n+1)} \) and \(\pi_{lift} \in \mathbb{R}^{(n+1) \times n} \) denote projection and lift matrices, respectively. Next, assume that \(\Delta \xi \in \mathbb{R}^{n+1} \) is a small perturbation such that \(\frac{\partial P}{\partial x}(x^*_j, \xi) \Delta \xi = 0 \) and let \(\delta \xi \in \mathbb{R}^n \) be the corresponding coordinates for \(T_{x^*_j} S \), i.e.,
\[
\delta \xi = \pi_{proj} \delta x
\delta x = \pi_{lift} \delta \xi.
\]

Then, from (21), the evolution of \(\delta z[k], k = 0, 1, \ldots \) can be expressed as
\[
\delta z[k+1] = \left(A_0 + \sum_{i=1}^p A_i \Delta \xi_i \right) \delta z[k], \quad k = 0, 1, \ldots, \quad (31)
\]
where
\[
A_0 := \pi_{proj} \frac{\partial P}{\partial x}(x^*_j, \xi^*) \pi_{lift} \in \mathbb{R}^{n \times n}
A_i := \pi_{proj} \frac{\partial^2 P}{\partial \xi_i \partial x}(x^*_j, \xi^*) \pi_{lift} \in \mathbb{R}^{n \times n}, \quad i = 1, \ldots, p.
\]

Remark 4 (Properties of the Projection and Lift Matrices):
The projection and lift matrices have the following properties
\[
\begin{align*}
(i) \quad & \pi_{proj} \pi_{lift} = I_{n \times n} \\
(ii) \quad & \frac{\partial \pi_{proj}}{\partial x}(x^*_j) \pi_{lift} = 0.
\end{align*}
\]

Next, we present the following theorem to translate the tuning of the constant perturbation vector \(\Delta \xi \) for exponential stabilization of \(\delta z = 0 \) into a set of BMIs.

Theorem 2 (BMIs for Stabilizations of the Origin): The following statements are correct.
1) There exists an \(n \times np \) matrix \(B \) such that
\[
A_0 + \sum_{i=1}^p A_i \Delta \xi_i = A_0 + B(I_{n \times n} \otimes \Delta \xi),
\]
in which \(\otimes \) denotes the Kronecker product.

2) The origin \(\delta z = 0 \) is exponentially stable for (31) if there exist \(W = W^T \in \mathbb{R}^{n \times n} \), \(\Delta \xi \in \mathbb{R}^p \), and a scalar \(\mu \geq 0 \) such that the following BMI is satisfied
\[
\begin{bmatrix}
W & A_0 W + B(I_{n \times n} \otimes \Delta \xi) W^T
\end{bmatrix} > 0,
\]
in which \(* \) denotes the transpose of the block \((1, 2)\).

\textbf{Proof}: For Part 1, we claim there exists a matrix \(B \) such that for all \(\Delta \xi \in \mathbb{R}^p \),
\[
\sum_{i=1}^p A_i \Delta \xi_i = B(I_{n \times n} \otimes \Delta \xi).
\]

To show this, let us partition the \(B \) matrix as
\[
B = [B_1 \quad B_2 \quad \cdots \quad B_n],
\]
where \(B_j \in \mathbb{R}^{n \times p} \) for \(j = 1, \ldots, n \). From the definition of the Kronecker product,
\[
B(I_{n \times n} \otimes \Delta \xi) = [B_1 \quad \cdots \quad B_n]
\begin{bmatrix}
\Delta \xi & \cdots & 0 \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \Delta \xi
\end{bmatrix}.
\]

Hence, the \(j \)-th column of \(B(I_{n \times n} \otimes \Delta \xi) \) is \(B_j \Delta \xi \) for \(j = 1, \ldots, n \). To satisfy (34), one can conclude that
\[
B_j \Delta \xi = \sum_{i=1}^p A_i(\cdot, j) \Delta \xi_i,
\]
where \(A_i(\cdot, j) \) represents the \(j \)-th column of \(A_i \). Next, differentiating both sides of (35) with respect to \(\Delta \xi \) together with \(\frac{\partial \Delta \xi}{\partial \Delta \xi} = e_i^T \), \(i = 1, \ldots, p \) yields
\[
B_j = \sum_{i=1}^p A_i(\cdot, j) e_i^T,
\]
which completes the proof of Part 1.

For Part 2, from (33), it can be concluded that \(W > 0 \) and \((1 - \mu) W > 0 \) which together with \(\mu \geq 0 \) result in \(\mu \in [0, 1) \). Let us consider the Lyapunov function \(V[k] := V(\delta z[k]) := \delta z[k]^T W^{-1} \delta z[k] \). Next, using Schur’s Lemma,
\[
W(A_0 + B(I_{n \times n} \otimes \Delta \xi))^T W^{-1} (A_0 + B(I_{n \times n} \otimes \Delta \xi)) W - W < -\mu W.
\]

Pre and post multiplying (37) with \(W^{-1} \) yields \(\Delta V[k] := V[k+1] - V[k] < -\mu V[k] \), and hence,
\[
\|\delta z[k]\|_2 < \sqrt{\frac{\lambda_{\text{max}}(W^{-1}) \lambda_{\text{min}}(W^{-1})}{(1 - \mu)^k}} \|\delta z[0]\|_2
\]
for \(k = 1, 2, \ldots \), in which \(\lambda_{\text{min}}(.) \) and \(\lambda_{\text{max}}(.) \) denote the minimum and maximum eigenvalues, respectively.

In order to have a good approximation based on the Taylor series expansion in (21), we are interested in solutions of (33) with minimum 2-norm of \(\Delta \xi \). Moreover, according to the upper bound for the discrete-time solutions in (38), we would like to maximize the convergence rate, or equivalently, minimize \(-\mu\). Hence, to tune the constant perturbation \(\Delta \xi \), we set up the following BMI optimization problem
\[
\min_{w, \Delta \xi, \mu, \gamma} - w \mu + \gamma
\]
\[
\text{s.t.} \quad \begin{bmatrix} W & A_0 W + B(I_{n \times n} \otimes \Delta \xi) W^T \end{bmatrix} > 0,
\]
\[
\|\Delta \xi\|_2^2 < \gamma,
\]
\[
\mu \geq 0,
\]
in which \(w > 0 \) is a positive weight as a tradeoff between improving the convergence rate and minimizing the 2-norm of \(\Delta \xi \). In addition, using Schur’s Lemma, \(\|\Delta \xi\|_2^2 < \gamma \) can also be expressed as the following LMI
\[
\begin{bmatrix}
I_{p \times p} & \Delta \xi \\
\Delta \xi^T & \gamma
\end{bmatrix} > 0.
\]

Finally, the optimization problem (39) becomes
\[
\min_{w, \Delta \xi, \mu, \gamma} - w \mu + \gamma
\]
\[
\text{s.t.} \quad \begin{bmatrix} W & A_0 W + B(I_{n \times n} \otimes \Delta \xi) W^T \end{bmatrix} > 0,
\]
\[
\begin{bmatrix}
I_{p \times p} & \Delta \xi \\
\Delta \xi^T & \gamma
\end{bmatrix} > 0,
\]
\[
\mu \geq 0.
\]

For later purposes, we remark that \(\sqrt{1 - \mu} \) represents an upper bound for the spectral radius of \(A_0 + B(I_{n \times n} \otimes \Delta \xi) \).

\section{Robust Stabilization of the Periodic Orbit as a BMI Optimization Problem}

The objective of this section is to address the robust stabilization of the periodic orbit \(\mathcal{O} \) against uncertainty in the switching condition of (2) as a BMI optimization problem. Our motivation for this problem comes from stable bipedal walking over uneven ground [12], [16]. To make this precise, we assume a general form of the switching manifold in (2) and denote it by \(S_d \), parameterized by a scalar \(d \), as follows
\[
S_d := \{ x \in \mathcal{X} | s(x) = d \},
\]
in which \(d \in D \) and \(D := [-d_{\text{max}}, d_{\text{max}}] \subset \mathbb{R} \) denotes a closed neighborhood of the origin for some positive \(d_{\text{max}} \).
One can assume that \(d \) represents the height of the ground during stepping down or stepping up in bipedal walking. In the new notation, \(S_0 = S \), where \(S \) was already defined in (2) as the nominal switching manifold. In what follows, we shall consider \(d \) as a disturbance. Corresponding to the switching manifold \(S_d \), the extended time-to-reset function \(T_e : \mathcal{X} \times \Xi \times \mathcal{X} \times \Xi \to \mathbb{R}^+ \) would be of the form
\[
T_e(x, \xi, x', \xi') = M(I_{n \times n} \otimes \Delta \xi)^T W^{-1} (I_{n \times n} \otimes \Delta \xi) W(I_{n \times n} \otimes \Delta \xi)^T + (1 - \mu) W^{-1}.
\]

Preprint submitted to IEEE Transactions on Robotics. Received: July 16, 2014 15:37:01 PST
$D \to \mathbb{R}_{\geq 0}$ is defined as the first time at which the solution $\varphi(t, x_0, \xi)$ intersects S_d, i.e.,

$$T_e(x_0, \xi, d) := \inf \{ t > 0 \mid \varphi(t, x_0, \xi) \in S_d \}.$$ \hfill (42)

One immediate result of (42) is that $T_e(x_0, \xi, 0) = T(x_0, \xi)$, in which $T(x_0, \xi)$ is the nominal time-to-reset function given in (5). Next, we extend the definition of the impact map to all points on $X \times \Xi \times D$ as follows.

Assumption 4 (Extended Reset Map): For all $(x, \xi, d) \in X \times \Xi \times D$, the extended reset map is defined as

$$\Delta_e(x, \xi, d) := \Delta(x, \xi).$$

In particular, the extended reset map Δ_e does not depend on d.

The motivation for Assumption 4 comes from bipedal walking on rough ground, in which the instantaneous impact map, based on rigid body contacts [22], does not depend explicitly on the ground height d. Now we are in a position to present the extended Poincaré map $P_e : X \times \Xi \times D \to X$, given by

$$P_e(x, \xi, d) := \varphi(T_e(\Delta_e(x, \xi, d), \xi), d, \varphi(T_e(\Delta_e(x, \xi, d), \xi), \xi),$$

which results in the extended discrete-time system

$$x[k+1] = P_e(x[k], \xi, d[k]), \quad k = 0, 1, \ldots,$$

in which $d[k] \in D$ represents the disturbance input.

Remark 5 (Geometric Description of P_e): For every $x \in X$, one can define $d := s(x)$ so that $x \in S_d$. Then $P_e(x, \xi, d) \in S_d$. One immediate result of this fact is that for a fixed $d \in D$, $P_e(\cdot, \xi, d)$ maps S_d to S_d, whereas the nominal Poincaré map $P(\cdot, \xi)$ in (17) maps S_0 to S_0. Under Assumptions 1 and 4, x^*_{j} is a fixed point of P_e for $d = 0$ and all $\xi \in \Xi$, i.e.,

$$P_e(x^*_{j}, \xi, 0) = x^*_{j}, \quad \forall \xi \in \Xi.$$ \hfill (45)

Furthermore, the extended map $P_e(\cdot, \xi, 0)$ is equal to $P(\cdot, \xi)$, that is

$$P_e(\cdot, \xi, 0) = P(\cdot, \xi), \quad \forall \xi \in \Xi.$$ \hfill (46)

Consistent with our perspective that d represents a disturbance, we will study the robustness of the nominal fixed point x^*_{j} of the undisturbed system (i.e., $d[k] = 0 \forall k$). According to the invariance condition in (45), linearization of (44) around $(x^*_{j}, \xi, 0)$ results in

$$\delta x[k+1] = \frac{\partial P_e}{\partial x}(x^*_{j}, \xi, 0) \delta x[k] + \frac{\partial P_e}{\partial d}(x^*_{j}, \xi, 0) d[k].$$ \hfill (47)

In this latter equation, $\delta x[k] := x[k] - x^*_{j}$ belongs to the $n+1$-dimensional tangent space $T_{x^*_{j}}X = \mathbb{R}^{n+1}$. The following theorem presents a numerical approach to calculate the Jacobian matrices in (47).

\textbf{Theorem 3 (Extended Jacobian Matrices):} Suppose that Assumptions 1, 2 and 4 are satisfied. Then,

$$\frac{\partial P_e}{\partial x}(x^*_{j}, \xi, 0) = \frac{\partial P}{\partial x}(x^*_{j}, \xi)$$

$$\frac{\partial P_e}{\partial d}(x^*_{j}, \xi, 0) = f^3(x^*_{j}, \xi^*)$$

for all $\xi \in \Xi$. In particular, $\frac{\partial P_e}{\partial d}(x^*_{j}, \xi, 0)$ is independent of ξ, i.e.,

$$\frac{\partial P_e}{\partial d}(x^*_{j}, \xi, 0) = \frac{\partial P_e}{\partial d}(x^*_{j}, \xi^*, 0).$$ \hfill (50)

\textbf{Proof:} See Appendix B.

Using the Taylor series expansion of $\frac{\partial P_e}{\partial d}(x^*_{j}, \xi, 0)$ around ξ^* and an analysis similar to Part 1 of Theorem 2, (47) becomes

$$\delta x[k+1] = (A_{0,e} + B_e (I_{(n+1) \times (n+1)} \odot \Delta_e)) \delta x[k] + C_e d[k],$$ \hfill (51)

in which the subscript “e” stands for the extended map and

$$A_{0,e} := \frac{\partial P_e}{\partial x}(x^*_{j}, \xi^*, 0) \in \mathbb{R}^{(n+1) \times (n+1)}$$

$$A_{i,e} := \frac{\partial^2 P_e}{\partial x_i \partial x}(x^*_{j}, \xi^*, 0) \in \mathbb{R}^{(n+1) \times (n+1)}, \quad i = 1, \ldots, p$$

$$C_e := \frac{\partial P_e}{\partial d}(x^*_j, \xi^*, 0) \in \mathbb{R}^{(n+1) \times 1}$$

$$B_e := [B_{1,e} \cdots B_{n+1,e}] \in \mathbb{R}^{(n+1) \times (n+1)p}$$

$$B_{j,e} := \sum_{i=1}^{p} A_{i,e}(\cdot, j) e_i^T, \quad j = 1, \ldots, n+1.$$ \hfill (52)

Remark 6 (Relation among Sensitivity Matrices): From (32) and (48), the sensitivity matrices are related to the extended sensitivity matrices as follows

$$A_0 = \pi_{\text{proj}} A_{0,e} \pi_{\text{lift}}$$

$$A_i = \pi_{\text{proj}} A_{i,e} \pi_{\text{lift}}, \quad i = 1, \ldots, p.$$ \hfill (53)

Now we turn our attention to the robustness problem. For this purpose, we assume that $d[0] \neq 0$ is an unknown disturbance and $d[k] = 0$ for $k = 1, 2, \cdots$. The initial condition is also assumed to coincide with the fixed point, i.e., $x[0] = x^*_j \in S_0$. Then, from the discrete-time system (44), $x[1] \in S_d[0]$ and $x[k] \in S_0$ for $k = 2, 3, \cdots$ (see Fig. 1 as a geometric description of the problem for bipedal walking). In particular, $x[2]$ can be considered as an initial condition for the return map P in (18). Next, the objective is to tune the constant perturbation vector $\Delta \xi$ to minimize the 2-norm of the deviation $\delta x[2] = x[2] - x^*_j$ for all possible disturbances $d[0] \in D$, that is,

$$\min_{\Delta \xi} \max_{d[0] \in D} \| F \delta x[2] \|_2,$$ \hfill (54)

where $F \in \mathbb{R}^{(n+1) \times (n+1)}$ is a given constant matrix. From the problem statement, $\delta x[0] = 0$ and (51) result in $\delta x[1] = 0$.
\[C_d[0], \text{ and hence,} \]
\[\max_{d[0] \in D} \| F \delta x[2] \|_2 = d_{\text{max}} \| F (A_{0,e} + B_c (I_{(n+1) \times (n+1)} \otimes \Delta \xi)) \|_2. \]

Next, using Schur’s Lemma, the optimization problem (52) is equivalent to the following LMI optimization
\[\min_{\Delta \xi; \eta} \eta \]
\[\text{s.t.} \left[\begin{array}{c} I_{(m \times 1)} F (A_{0,e} + B_c (I_{(n+1) \times (n+1)} \otimes \Delta \xi)) C_e \\
\eta/d_{\text{max}}^2 \end{array} \right] > 0, \]

in which \(\eta \) is an upper bound for \(\max_{d[0] \in D} \| F \delta x[2] \|_2 \).

Finally, one can combine the stabilization and robustness optimization problems to end up with the following BMI problem
\[\min_{W, \Delta \xi, \mu, \gamma, \eta} -w_1 \mu + w_2 \eta + \gamma \quad (53) \]
\[\text{s.t.} \]
\[\left[\begin{array}{c} W A_0 W + B (I_{n \times n} \otimes \Delta \xi) W \\
(1 - \mu) W \\
I_{(m \times 1)} F (A_{0,e} + B_c (I_{(n+1) \times (n+1)} \otimes \Delta \xi)) C_e \\
\eta/d_{\text{max}}^2 \end{array} \right] > 0, \]
\[\left[\begin{array}{c} I_{p \times p} \Delta \xi \\
\gamma \end{array} \right] > 0, \]
\[\mu \geq 0, \]

where \(w_1 \) and \(w_2 \) are positive weights corresponding to the convergence rate and robustness, respectively.

V. HYBRID SYSTEMS WITH MULTIPLE CONTINUOUS-TIME PHASES

This section extends the sensitivity analysis of Subsection II-D to exponentially stabilize the periodic orbit \(O \) for hybrid systems with multiple continuous-time phases. In particular, the section investigates Item 3 of Assumption 1 and calculates the sensitivity matrices of the reset-map Jacobian, i.e., \(\partial_T (x_f, x^*, t) \), \(i = 1, \cdots, p \), in the sensitivity calculations of (23). To simplify the analysis, we study hybrid systems with two continuous-time phases as follows
\[\Sigma_1 : \left\{ \begin{array}{l} \dot{x} = f_1(x) + g_1(x) u, \quad x^- \notin S_{1\to 2} \\
x^+ = \Delta_{1\to 2}(x^-), \quad x^- \in S_{1\to 2} \end{array} \right. \]
\[\Sigma_2 : \left\{ \begin{array}{l} \dot{x} = f_2(x) + g_2(x) u, \quad x^- \notin S_{2\to 1} \\
x^+ = \Delta_{2\to 1}(x^-), \quad x^- \in S_{2\to 1} \end{array} \right. \quad (54) \]

in which the state variable vector \(x \in X \subset \mathbb{R}^{n+1} \) and control input \(u \in U \subset \mathbb{R}^m \) are assumed to be common during phases 1 and 2. For every \(i \neq j \in \{1, 2\} \), the switching manifold \(S_{i\to j} \) is taken as \(S_{i\to j} := \{ x \in X | s_{i\to j}(x) = 0 \} \), where \(s_{i\to j} : X \to \mathbb{R} \) is a \(C^\infty \) switching function from phase \(i \) to phase \(j \).

The vector fields \(f_i \), columns of \(g_i \), and reset maps \(\Delta_{i\to j} \) are assumed to be \(C^\infty \). Furthermore, during the continuous-time phase \(i \in \{1, 2\} \), the control input \(u \) takes the form
\[u = \Gamma_i(x, \xi^i), \]
where \(\Gamma_i : X \times \Xi^i \to U \) is a \(C^\infty \) feedback law and \(\xi^i \in \Xi^i \) denotes the parameter vector of phase \(i \). The closed-loop vector field is then given by \(\dot{x} = f^0_i(x, \xi^i) := f_i(x) + g_i(x) \Gamma_i(x, \xi^i) \), whose unique solution with the initial condition \(x(0) = x_0 \) is represented by \(\varphi_i(t, x_0, \xi^i) \). The time-to-reset function during phase \(i \in \{1, 2\} \) is \(T_i : X \times \Xi^i \to \mathbb{R}^+ \) where
\[T_i(x_0, \xi^i) := \inf \left\{ t > 0 | \varphi_i(t, x_0, \xi^i) \in S_{i\to j} \right\}, \]
and \(j \neq i \in \{1, 2\} \). The one-phase map \(P_{i\to j} : S_{i\to j} \times \Xi^j \to S_{j\to i}, \quad i \neq j \in \{1, 2\} \), is defined as
\[P_{i\to j}(x, \xi^j) := \varphi_j \left(T_j(\Delta_{i\to j}(x), \xi^j), \Delta_{i\to j}(x), \xi^j \right). \]

Using [7, Theorem 4.3], the closed-loop hybrid model with two continuous-time phases can now be expressed in the standard form (4) as
\[\Sigma_{\xi}^1 : \left\{ \begin{array}{l} \dot{x} = f_1^0(x, \xi^1) \\
x^+ = \Delta(x^-, \xi^1), \quad x^- \in S_{1\to 2} \end{array} \right. \quad (55) \]
\[\text{in which} \]
\[\Delta(x, \xi^2) := \Delta_{2\to 1} \circ P_{1\to 2}(x, \xi^2). \quad (56) \]
is the composition of the flow of phase 2 and the reset map from phase 2 to phase 1, “\(\circ \)” denotes the function composition, and
\[\xi := \left[\begin{array}{c} \xi^1 \\
\xi^2 \end{array} \right] \in \Xi := \Xi^1 \times \Xi^2 \quad (57) \]

Fig. 1: Geometric description of the robustness problem for bipedal walking. Here, \(x[0] = x_7^i \in S_0 \) and \(d[0] \in D \) is assumed to be a nonzero and unknown disturbance. Furthermore, \(d[k] = 0 \) for all \(k = 1, 2, \cdots \). In this case, \(P_{i}(x[0], \xi, d[0]) \in S_{d[0]} \) and \(x[2] = P_{i}(x[1], \xi, 0) \in S_0 \). The evolution of \(x[k] \) for \(k = 3, 4, \cdots \) can then be described by the Poincaré return map in (18). The objective is to find \(\Delta \xi \) to minimize \(\| F \delta x[2] \|_2 \) for all possible \(d[0] \in D \).
The configuration space represents the \(q \in \mathcal{Q} \) and discrete-time phases to represent the instantaneous impacts with continuous-time phases to describe the evolution of the 3D bipedal walking. Models of bipedal walking are hybrid system with one continuous-time phase if and only if the closed-loop hybrid model with two continuous-time phases is taken as the tangent bundle \(\mathcal{T} \mathcal{X} \) and \(\mathcal{Q} \). The following statements are correct.

1. The state manifold is the \(\mathcal{X} := \mathcal{T} \mathcal{Q} \cup \mathcal{Q} \) and equivalent hybrid model with one continuous-time phase whose reset map was parameterized by \(\xi \) (see (55)). However, according to the symmetry and \([28, \text{Theorem 4}]\), an alternative and equivalent hybrid model with one continuous-time phase can now be presented whose reset map is independent of \(\xi \). This simplifies the sensitivity analysis as well as the BMI optimization. To make this clear, we present the following theorem.

Theorem 5 (Half Map): Assume that the hybrid model of walking has the left-right symmetry. Let \(\mathcal{O} = \mathcal{O}_1 \cup \mathcal{O}_2 \) be a symmetric periodic orbit in the sense that \(\mathcal{O}_2 = S_x \mathcal{O}_1 \). Suppose further that \(\xi^1 \) and \(\xi^2 \) are chosen according to the symmetry relation

\[
\xi^2 = S_x \xi^1. \tag{58}
\]

Then, the following statements are correct.

1) The Poincaré return map \(P : \mathcal{S}_1_{-1} \times 3\mathcal{F} \times \mathcal{Z}^2 \rightarrow \mathcal{S}_1_{-2} \) for the closed-loop hybrid model with two continuous-time phases can be factorized as

\[
P(x, \xi^1, \xi^2) = P_{\text{half}}(P_{\text{half}}(x, \xi^1), \xi^1),
\]

in which \(P_{\text{half}} \) is the half map given by

\[
P_{\text{half}}(x, \xi^1) := P_{2 \rightarrow 1}(S_x x, \xi^1). \tag{59}
\]

2) The half map is the Poincaré return map for the following hybrid system with one continuous-time phase

\[
\Sigma_x : \begin{cases}
\dot{x} = f_1^c(x, \xi) \\
x^- \notin \mathcal{S}_1_{-2}
\end{cases}, \quad \begin{cases}
x^+ = \Delta(x^-), \\
x^- \in \mathcal{S}_1_{-2},
\end{cases}
\]

in which \(\xi := \xi^1 \) and \(\Delta(x) := \Delta_2 \rightarrow 1(S_x x) \) is independent of \(\xi \).

Proof: The proof is immediate from the construction procedure \((59)\) and \([28, \text{Theorem 4}]\).}

Remark 7 (Reduced-Order Sensitivity Analysis): From Theorem 5,

\[
\frac{\partial P}{\partial x}(x^*_f, \xi^1, \xi^2) = \left(\frac{\partial P_{\text{half}}}{\partial x}(x^*_f, \xi^1) \right)^2
\]

and hence, the periodic orbit \(\mathcal{O} \) is exponentially stable for the hybrid model with two continuous-time phases if and only if \(\mathcal{O}_1 \) is exponentially stable for \((60)\). Consequently, one can apply the sensitivity analysis to the Jacobian matrix \(\frac{\partial P}{\partial x}(x^*_f, \xi^1) \) with fewer parameters rather than \(\frac{\partial P}{\partial x}(x^*_f, \xi^1, \xi^2) \). Finally, \(\xi^2 \) can be obtained according to the symmetry relation \((58)\).
B. Virtual Constraints

This subsection applies the analytical results of the paper to the virtual constraints approach. Virtual constraints are kinematic relations among the generalized coordinates enforced asymptotically by continuous-time feedback control [6], [7], [19], [33], [34], [35]. It has been shown that for mechanical systems with more than one degree of underactuation, the choice of virtual constraints affects the stability of the periodic orbit [19]. Reference [19] showed that controlling the actuated coordinates for a five-link underactuated 3D bipedal robot cannot stabilize a periodic walking gait. Next, based on physical intuition, a different choice of virtual constraints was proposed to stabilize the same orbit. However, for ATRIAS, a related robot with additional degrees of freedom due to series elastic actuators, the same intuition did not lead to a stable periodic orbit [27]. This underlines the importance of having a systematic method for choosing these constraints. This subsection relates the problem of choosing virtual constraints to the BMI optimization. This will be illustrated on the dynamical models of the five-link 3D bipedal robot of [19] and of ATRIAS.

During phase \(i \in \{1, 2\} \) of the hybrid model of walking (54), the virtual constraints are defined as the \(m \)-dimensional output function

\[
y_i(q, \xi^i) := H^i (q - q^i_\theta (\theta_i(q))) ,
\]

in which \(m = \dim(u) \) is the control input dimension, \(H^i \) is a constant output matrix to be determined, \(\xi^i := \text{vec}(H^i) \), and \(q^i_\theta (\theta_i) \) represents the desired evolution of the generalized coordinates vector \(q \) on the orbit \(\mathcal{O}_i \) in terms of \(\theta_i \). Moreover, \(\theta_i(q) \) denotes the phasing variable during phase \(i \) as a function of the configuration variables \(q \) (see Assumption 3). We note that in (62), \(H^i q \) denotes the set of controlled variables, whereas \(H^i q^i_\theta (\theta_i) \) represents the desired evolution of the controlled variables on the orbit. If the output function (62) has uniform vector relative degree \(r = 2 \) on the periodic orbit, the continuous-time controller \(\Gamma_i(x, \xi^i) \) is then taken as the input-output linearizing feedback law of Example 2.

Remark 8 (Symmetry in Virtual Constraints): For mechanical models of bipedal robots, the state symmetry matrix can be expressed as \(S_x = \text{block diag}\{S_q, S_q\} \), where \(S_q \) is the position symmetry matrix. Suppose further that \(S_q \) is an output symmetry matrix with the property \(S_y S_q = I_{m \times m} \). If the output functions and phasing variables during phases 1 and 2 are chosen such that

\[
y_1(q, \xi^1) = S_y y_1(S_q q, S_q \xi^1), \quad \theta_2(q) = \theta_1(S_q q),
\]

for all \(q \in \mathcal{Q} \) and \(\xi^2 \in \Xi^2 \), then one can conclude that

\[
H^2 = S_y H^1 S_q,
\]

or equivalently, the symmetry relation (58) is satisfied with \(S_q = S_q^\top \otimes S_q \). In addition, it can be shown that all conditions of Definition 1 are satisfied. Hence, we can apply the reduced-order sensitivity analysis and BMI optimization of Remark 7 to tune \(H^1 \).

C. PENBMI Solver

In order to solve the stability and robustness BMI optimization problems in (40) and (53), we make use of the solver PENBMI\(^1\) integrated with the MATLAB environment through the YALMIP\(^2\). PENBMI is a general-purpose solver for BMI optimization problems which guarantees the convergence to a critical point satisfying the first-order Karush-Kuhn-Tucker optimality conditions [36].

D. Five-Link Walker

This subsection illustrates the results of the paper to design robust and stabilizing virtual constraints for a walking gait of an underactuated 3D bipedal robot with 8 degrees of freedom and 2 degrees of underactuation. The robot model was previously presented in [19]. The robot consists of a torso and two identical legs with revolute knees and point feet. Each hip has two degrees of freedom. It is assumed that there is no yaw motion about the stance leg end. Furthermore, the roll \((i.e., q_1)\) and pitch \((i.e., q_2)\) angles at the leg end are unactuated, whereas all of the internal joints are independently actuated. The structure and configuration variables of the robot during the right stance phase are shown in Fig. 2. Here, the phasing variable is defined as the angle of the virtual leg connecting the stance leg end to the stance hip in the sagittal plane. A periodic orbit \(O \) is then designed using the motion planning algorithm of [19]. The virtual constraints controller of [19] can stabilize the orbit. However, it cannot handle rough ground walking. To resolve this problem, the set of nominal controlled variables is taken to be simply the actuated coordinates

\[
H^{1*} q := (q_3, q_4, q_5, q_6, q_7, q_8)^\top ,
\]

in which \(H^{1*} \in \mathbb{R}^{6 \times 8} \) is the nominal value of the \(H^1 \) matrix. By employing this nominal output function, the dominant eigenvalues of the \(15 \times 15 \) Jacobian matrix of the half map become \(-3.3475, 0.8558, -0.2064)\), and hence, \(O \) is unstable. Next, we let \(\xi = \text{vec}(H^1) \in \mathbb{R}^{48}\) and employ the reduced-order sensitivity analysis as given in Remark 7. The 2-norm of the extended sensitivity matrices \(A_{e, \epsilon} \) versus the elements of the \(H^1 \) matrix is depicted in Fig. 3. From this figure, the most important sensitivity matrices around the nominal output function correspond to the first column of the \(H^1 \) matrix, which is related to the roll angle \(q_1 \). According to this observation, we reduce the dimension of the BMI optimization problem (53) by letting \(\Delta \xi \) parameterizes only the first column of the \(H^1 \) matrix, i.e., \(H^1 = H^{1*} + [\Delta \xi \ 0_{6 \times 1} \cdots 0_{6 \times 1}] \). For robust stability, let \(v_{cm} := (v_{cm}^x, v_{cm}^y)^\top \in \mathbb{R}^2 \) denote the horizontal components of the robot’s center of mass (COM) velocity expressed in the world frame. Next, the \(F \) matrix in (52) is taken as

\[
F = \frac{\partial v_{cm}}{\partial x} (x^*_j)
\]

to minimize the deviation in the COM velocity just before impact during uneven ground walking. Solving the optimization

\footnotesize
\(^1\)http://www.penopt.com/penbmi.html
\(^2\)http://users.isy.liu.se/johanl/yalmip/
Taylor series expansion (21), are the Jacobian of the half Poincaré map, calculated based on the deviations from the periodic orbit in the roll direction. In uneven ground walking, a ground height profile would be difficult to discover through intuition.

The nominal output function of the closed-loop system is started off the orbit with an error $\bar{\theta}\otimes q, \xi$). This new output enhances stability responding to roll angle errors by adjusting the desired evolutions of the controlled variables. Convergence to a stable limit cycle is clear.

Next, the dominant eigenvalues of the real Jacobian of the half Poincaré map become $\{−0.9339, 0.8269, 0.5869\}$. Corresponding to this H^1 matrix, the dominant eigenvalues of the Jacobian of the half Poincaré map, calculated based on the Taylor series expansion (21), are $\{−0.9329, 0.9341, 0.3463\}$. The results of the sensitivity analysis shown in Fig. 3 and the optimized virtual constraints (64) have an important interpretation. The nominal output function $y(q, \xi) = h_0(q) − h_d(\theta_{\text{pitch}}(q))$, coordinates the links based only upon a phasing variable $\theta_{\text{pitch}}(q) = \theta(q)$ defined in the sagittal plane. Thus it ignores deviations from the periodic orbit in the roll direction. In contrast, the optimized output function, which can be expressed as

$$y(q, \xi) = h_0(q) − h_d(\theta_{\text{pitch}}(q)) − \bar{h}_d(\theta_{\text{roll}}(q)), \quad (66)$$

responds to roll angle errors by adjusting the desired evolutions of the controlled variables. This new output enhances stability of the periodic orbit by coupling pitch and roll in a way that would be difficult to discover through intuition.

To evaluate the robustness of the closed-loop system for uneven ground walking, a ground height profile $d[k]$ with $d[k] \in [−d_{\text{max}}, d_{\text{max}}]$ is considered, in which $d_{\text{max}} = 0.01$ (m). It is further assumed that $d[k]$ is periodic with the period of 7 steps, i.e., $d[k + 7] = d[k]$ for all $k = 0, 1, \ldots$. Figure 5 presents the ground height profile $d[k]$ and corresponding x and y components of the COM velocity deviation $\delta v_{\text{cm}}[k]$ for the robust optimal solution versus the step number k. The animation of this simulation can be found at [37].

E. Exponential Stability Modulo Yaw

The five-link walker of Subsection VI-D does not have yaw motion about the stance leg end. For bipedal robots with yaw motion, there are two kinds of stability during walking on a flat ground: full-state stability and stability modulo yaw [38]. This subsection extends the sensitivity analysis developed in Subsection II-D for exponential stability modulo yaw in 3D bipedal walking. To achieve this goal, without loss of generality, we assume that the first component of the state vector x represents the yaw position of the robot with respect to the world frame and we denote this component by x_{yaw}. From the equivariance property of [38], if the feedback laws $\Gamma_i(x, \xi^i), i \in \{1, 2\}$ do not depend on the yaw position (i.e., x_{yaw}), then the first column of the Jacobian matrix $\frac{\partial P}{\partial x}(x^i, \xi^1, \xi^2)$ becomes $(1, 0, \cdots, 0)^T$. In particular, there is an eigenvalue “1” corresponding to the yaw position. Hence, for exponential stability modulo yaw, we apply the sensitivity
In what follows, $O_1 \cup O_2$ is a periodic orbit for walking at 1.1 (m/s) designed using the motion planning algorithm of [27].

1) Stability Modulo Yaw: To stabilize the periodic orbit O, the nominal controlled variables are taken as

$$H^{1*}q = \begin{bmatrix}
\frac{1}{2}(q_{gr1R} + q_{gr2R}) \\
\frac{1}{2}(q_{gr1L} + q_{gr2L}) \\
q_{gr2R} - q_{gr1R} \\
q_{gr2L} - q_{gr1L} \\
q_{3R} \\
\frac{\partial}{\partial q} (x_{sw} - x_{COM}) \left(x^*_f \right)^T q
\end{bmatrix},$$

where the first and second components are the stance and swing leg angles12, respectively. The leg angle is defined in the sagittal plane as the angle between the torso and the virtual line connecting the hip to the leg end. The third and fourth components of the controlled variables in (68) are the stance and swing knee angles, respectively. We note that since the legs are actuated through springs, the leg and knee angles have been defined at the outputs of the harmonic drives. These components can stabilize periodic orbits for planar walking of ATRIAS [27]. The fifth component is then defined as the stance hip angle in the frontal plane. Finally, $x_{sw}(q) - x_{COM}(q)$ denotes the horizontal distance between the robot’s COM and swing leg end in the frontal plane. Here, $x_{sw}(q)$ and $x_{COM}(q)$ represent the horizontal coordinates of the swing leg end and COM in the frontal plane, respectively (see Fig. 6). The sixth component of the controlled variables in (68) is taken as the linearized approximation of the distance function around the orbit O_1 just before the impact (i.e., x^*_f). The idea of controlling the distance between the COM and swing leg end

12It is assumed that phase 1 corresponds to the right stance phase.
Fig. 6: Sagittal and frontal planes of ATRIAS 2.1 during the right stance phase with the associated configuration variables. The Euler angles $q_T (\text{yaw})$, $q_y T (\text{roll})$ and $q_z T (\text{pitch})$ describe the rotation of the torso frame $\theta_T x_T y_T z_T$ with respect to the world frame $0_0 x_0 y_0 z_0$.

in the frontal plane originated in [19]. For the five-link robot of Subsection VI-D, the distance function can stabilize the gait, whereas for the ATRIAS structure, it cannot. In particular, the dominant eigenvalues of the 25×25 Jacobian of the half Poincaré map are $\{-1.0000, -1.3011, 0.8363, -0.1602\}$. Since the distance function is defined in the frontal plane, it is yaw invariant and hence, from Remark 9, the eigenvalue -1 corresponds to the yaw position.

Figure 7 represents the 2-norm of the extended sensitivity matrices versus the elements of the H^1 matrix. From this figure, the most important sensitivity matrices relate to columns $1-7$ and 13. However, the first column corresponds to the yaw position and we do not consider it for stability modulo yaw. According to these observations, we let $\Delta \xi$ parameterize only the columns $2-7$ and 13. Next, the optimization problem (53) with $w_1 = 1$, $w_2 = 1$ and $d_{\max} = 1$ (cm) is solved for exponential and robust stability. The optimal controlled variables, i.e., $H^1 q$, are then given by

$$\begin{bmatrix}
\frac{1}{2}(q_{y1} + q_{y2}) \\
\frac{1}{2}(q_{y1} + q_{y2}) \\
q_{y1} - q_{y2} \\
q_{y2} - q_{y1} \\
q_{x1} - q_{x2} \\
q_{y1} - q_{y2} \\
q_{x1} - q_{x2}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2}(q_{y1} + q_{y2}) \\
\frac{1}{2}(q_{y1} + q_{y2}) \\
q_{y1} - q_{y2} \\
q_{y2} - q_{y1} \\
q_{x1} - q_{x2} \\
q_{y1} - q_{y2} \\
q_{x1} - q_{x2}
\end{bmatrix} =
\begin{bmatrix}
-0.1193 q_T - 0.1277 q_L \\
+0.0786 q_T + 0.0842 q_L \\
-0.0033 q_T - 0.3334 q_L \\
+0.0400 q_T + 0.428 q_L \\
+0.0003 q_T + 0.0041 q_L \\
-0.2731 q_T - 0.2923 q_L
\end{bmatrix}
\left(\begin{array}{c} x_{sw} - x_{COM} \\ y_T \\ z_T \end{array}\right)
\frac{q}{q}
\begin{bmatrix}
0.0263 q_T \\
0.0250 q_T \\
-0.0112 q_T \\
-0.0186 q_T \\
-0.0729 q_T \\
0.1065 q_T
\end{bmatrix}
(69)

Corresponding to these controlled variables, the dominant eigenvalues of the 25×25 Jacobian of the half Poincaré map, calculated based on the Taylor series expansion (21), are $\{-1.0000, -0.9033, 0.8087, 0.5410, -0.1128\}$. For comparison, the dominant eigenvalues of the real Jacobian of the half Poincaré map become $\{-1.0000, -0.8183, 0.8686 \pm 0.1011 i, -0.1104\}$. The controlled variables (69) can also be interpreted as defining a modified output of the form (66).

By computing the sensitivities of the distance function $d[k]$ with respect to the yaw, we find the following eigenvalues of the real Jacobian of the half Poincaré map: $\{-1.0000, -0.8183, 0.8686 \pm 0.1011 i, -0.1104\}$. These eigenvalues correspond to the yaw angle q_T being zero. However, since the orbit is exponentially stable modulo yaw, the horizontal disturbance changes the direction of walking by shifting the phase portrait in the yaw coordinates.

Figure 8 depicts the phase portraits of the closed-loop system during 50 consecutive steps of walking. Here, the simulation starts at the end of the left stance phase on the periodic orbit (see the circles in the plots). During the fourth step, an external horizontal force with a magnitude of 100 N is applied to the COM of the robot for 50% of the step. Convergence to the periodic orbit is clear. The orbit O has been designed to walk along the y-axis of the world frame which corresponds to the yaw angle q_T being zero. However, since the orbit is exponentially stable modulo yaw, the horizontal disturbance changes the direction of walking by shifting the phase portrait in the yaw coordinates.

To evaluate the robustness of the closed-loop system, we simulated walking over a periodic sequence of ground height disturbance $d[k] \in [-d_{\max}, d_{\max}]$ with the period 20. The maximum disturbance size $d_{\max} = 0.3$ (cm) corresponds to 3.75% of robot’s leg length. Figure 5 presents the evolutions of the disturbance $d[k]$ and corresponding x and y components of the COM velocity deviation $\delta v_{\text{COM}}[k]$ for the optimal solution. An animation of this simulation can be found at [37].

2) Yaw Stability: Next, our objective is to improve the controlled variables (69) for full exponential stability including yaw. For this goal, the sensitivity analysis is done around the improved output function (69). Figure 10 depicts the 2-norm of the extended Jacobian matrices. Since, the orbit is already stabilized modulo yaw, we only let $\Delta \xi$ parameterizes the first column of the H^1 matrix which corresponds to the yaw position. Next, the optimization problem (53) is solved with $w_1 = 1$ and $w_2 = 0$. The optimal perturbation in the controlled variables is then given by

For this optimal solution, the elements of $\Delta \xi$ corresponding to columns $3-7$ are very small and are not reported here.
power of the sensitivity and BMI approach, we study the

Convergence to the periodic orbit even in the yaw position is

step. Finally, Fig. 12 depicts the trajectory of the COM and

δv

COM velocity (i.e., responding

Fig. 9: Plot of the ground height profile d[k] (m) and the corresponding z and y components of the deviation in ATRIAS’s COM velocity (i.e., δvcm[k]) (m/s) for the optimal solution of (53) versus the step number k.

for which the dominant eigenvalues of the estimated and real Jacobian matrices become

\{-0.8836 \pm 0.0529i, 0.8694 \pm 0.1051i, -0.1109\} and

\{-0.8854, -0.8854, 0.8757, 0.8757, -0.1109\}, respectively. Figure 11 illustrates the phase portraits of the closed-loop system corresponding to the optimal solution during 80 consecutive steps of walking. During the fourth step, an external horizontal force with a magnitude of 70[N] is applied to the side of the robot to its COM over 50% of the step. Finally, Fig. 12 depicts the trajectory of the COM and the foot step locations in the xy-plane of the world frame. Convergence to the periodic orbit even in the yaw position is clear.

3) Other Nominal Output Functions: To demonstrate the power of the sensitivity and BMI approach, we study the

stabilization of other nominal output functions. We start with

nominal controlled variables as in (68) in which the sixth component is replaced by

\[
\frac{\partial}{\partial q} \left(\frac{1}{2} x_{sw} - x_{COM} \right) (x_f^*) q
\]

where \(\frac{1}{2} x_{sw}(q) - x_{COM}(q)\) represents the distance between the COM and the point midway between the the leg ends in the frontal plane\(^\text{[14]}\). In (70), the distance function has been linearized around the orbit \(O_1\) just before the impact. The dominant eigenvalues of the Jacobian of the half Poincaré map are \{-1.0000, 1.0499, -0.8455, 0.8430, -0.1130\} and hence, zeroing the output function cannot stabilize the orbit \(O\). The optimization problem (40) is then solved for exponential stability modulo yaw. The dominant eigenvalues of the Jacobian of the half Poincaré map based on the linear approximation of (21) are \{-1.0000, -0.8702, 0.8359 \pm 0.0851i, -0.1329\}. Next, the dominant eigenvalues of the real Jacobian of the half Poincaré map corresponding to this perturbation become \{-1.0000, -0.8623, 0.8630 \pm 0.0713i, -0.1465\}.

If the sixth component of the nominal controlled variables in (68) is defined as the swing hip angle \(q_{HL}\), the periodic orbit \(O\) is extremely unstable and the dominant eigenvalues of the Jacobian of the half Poincaré map are \{-1.0000, -2.4587, 0.8414, -0.4228\}. Next, for exponential stability modulo yaw, the optimization problem (40) is solved. The optimal perturbation values are then plugged in the output functions. However, the values are not small enough to have a good approximation based on the Taylor series expansion and as a consequence, the orbit \(O\) is not stable. In particular, the dominant eigenvalues of the real Jacobian of the half Poincaré map become \{-1.0000, -1.2608, 0.8087, -0.2036\}. Next, an alternative sensitivity analysis is done around the resultant perturbed output function. The optimal solution of (40) is then calculated. Finally, the dominant eigenvalues of Jacobian of the half Poincaré map, based on Taylor series expansion (21) and real calculations, are \{-1.0000, -0.8561, 0.8418 \pm 0.1030i, -0.1084\} and

\[-1.0000, -0.8764, 0.7773 \pm 0.1056i, -0.1308\], respectively.

\(^{14}\text{The expression (70) assumes that the stance leg end is on the origin of the world frame.}\)
This paper introduced a method for designing continuous-time controllers to robustly and exponentially stabilize periodic orbits for hybrid systems. In contrast with previous methods that rely on recomputing the Jacobian of the Poincaré map at each step of a nonlinear optimization, the proposed method employs a sensitivity analysis to approximate the Jacobian by an affine function of the control parameters. The resulting optimization problem involves LMI and BMI constraints and can be solved efficiently with existing software packages. The algorithm presented in this paper can be extended to more general forms of uncertainties. We will also investigate the results of applying our method to more general forms of robust stabilization problems, including robustness against uncertainties rising from external forces acting on the robot. In future research, we will investigate these forms of uncertainties. We will also investigate the results for stable and 3D underactuated running by ATRIAS with 32 states and 6 actuators. Furthermore, the BMI optimization of this paper can be extended to improve stability of bipedal walking by designing proper phasing variables.

APPENDIX A

Proof of Lemma 1

Let us define $\Psi(t, x_0, \xi) := \frac{\partial}{\partial x_0} \phi(t, x_0, \xi) \in \mathbb{R}^{(n+1) \times p}$. From the definition of the solution $\phi(t, x_0, \xi)$,

$$\phi(t, x_0, \xi) = x_0 + \int_0^t \mathbf{f}^{cl}(\varphi(\tau, x_0, \xi), \xi) \, d\tau. \quad (71)$$

Differentiating both sides of (71) with respect ξ and next with respect to the time yields the following matrix differential equation

$$\dot{\Psi}(t, x_0, \xi) = \frac{\partial f^{cl}}{\partial x}(x, \xi) \big|_{x = \varphi(t, x_0, \xi)} \Psi(t, x_0, \xi) + \frac{\partial f^{cl}}{\partial \xi}(x, \xi) \big|_{x = \varphi(t, x_0, \xi)} \Psi(t, x_0, \xi). \quad (72)$$

$$\Psi(0, x_0, \xi) = 0.$$

Since f^{cl} is C^∞, the solutions of (72) are unique over the maximal interval of existence. Consequently, $\Psi(t, x_0, \xi) \equiv 0$ if and only if $\frac{\partial f^{cl}}{\partial \xi}(x, \xi) = 0$ for all $x = \varphi(t, x_0, \xi)$.

APPENDIX B

Proof of Theorem 3

The proof of (48) is immediate from (46). To extract (49), from Assumption 1, $T_c(x_0^*, \xi, 0) = T^*$ for all $\xi \in \Xi$. Furthermore, the Implicit Function Theorem is applied to

$$s(\varphi(T_c(x, \xi, d), (x, \xi))) = 0. \quad (73)$$

from which, it can be concluded that

$$D_s(x^*_f) D_1 \varphi(T^*, x^*_0, \xi) D_3 T_c(x^*_0, \xi, 0) - 1 = 0.$$

This latter equation together with (27) results in

$$D_3 T_c(x^*_0, \xi, 0) = \frac{1}{D_3 \varphi(T^*, x^*_0, \xi)} f^{cl}(x^*_f, \xi^*). \quad (74)$$

Finally, from Assumption 4, P_c depends on d only through the extended time-to-reset function T_c, and hence,

$$D_3 P_c(x^*_f, \xi, 0) = D_1 \varphi(T^*, x^*_0, \xi) D_3 T_c(x^*_0, \xi, 0).$$

This together with (74) and (27) completes the proof.

APPENDIX C

Proof of Theorem 4

According to (11), $\frac{\partial}{\partial x^1}(x, \xi^1) = 0$ for all $x \in \overline{\Omega}_1$ follows Item 1 of Assumption 1. In an analogous manner, $\frac{\partial}{\partial x^2}(x, \xi^2) = 0$ for all $x \in \overline{\Omega}_2$ results in $\frac{\partial}{\partial x^2}(t, \Delta_{1 \rightarrow 2}(x^*_{f,1}), \xi^2) = 0$ for all $t \geq 0$, and hence,

$$P_{1 \rightarrow 2}(x^*_{f,1}, \xi^2) = x^*_{f,2}, \forall \xi^2 \in \Xi^2.$$
This together with (56) completes the proof of Item 3 of Assumption 1. The proof of Part 2 is similar to the one presented in Theorem 1.

REFERENCES

