How much to put in a tontine

Thomas Bernhardt and Catherine Donnelly
Risk Insight Lab https://risk-insight-lab.com/

Quantitative Finance Workshop 2019,
Friday 25th January, 2019
The UK pension freedom since 2015

building a personal pension pot, and at retirement...

buy annuity
- savings for **guaranteed income**, $\mathbb{E}[\text{give}] = \mathbb{E}[\text{take}]$
- **mortality pooling** (law of large numbers)

go into drawdown
- savings spent over time
- **investments** (fluctuating)
- bequest
The UK pension freedom since 2015

building

cost

buy annuity
- saving
- income
- mortality pooling (law of large numbers)
go into drawdown
- savings spent over time
- investments (fluctuating)
- bequest

credit value

investment
annuity

age
The UK pension freedom since 2015

building a personal pension pot, and at retirement...

buy annuity
- savings for guaranteed income, $\mathbb{E}[\text{give}] = \mathbb{E}[\text{take}]$
- mortality pooling (law of large numbers)

\Downarrow

mortality credits at high ages, unpopular choice

go into drawdown
- savings spent over time
- investments (fluctuating)
- bequest

\Downarrow

investment returns at low ages, risk of outliving
Tontines

$Tontine = \text{mortality credits} + \text{investment return}$

- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest

add bequest
- allow to choose α, how much to surrender, to have a bequest (comes with reduction in mortality credits)
in the background mortality credits boost wealth and bequest

(a) Before re-balancing.

(b) After re-balancing.
Tontines

Tontine = mortality credits + investment return
- surrender savings to a group of people, to get mortality credits
- no guarantees, to be able to invest

add bequest
- allow to choose α, how much to surrender, to have a bequest
 (comes with reduction in mortality credits)

mathematical description
- mortality credits = additional α-weighted stream of income
- in a Black-Scholes market and force of mortality λ...

\[
\frac{dX_t}{X_t} = r(1 - \pi_t)dt + \mu \pi_t dt + \sigma \pi_t dW_t - c_t dt + \alpha \lambda_t dt
\]
Numerical results

optimization problem including lifespan τ, bequest motive b, and constant relative risk aversion $1 - \gamma$

- $\sup_{\alpha,c,\pi} \mathbb{E} \left[\int_0^\tau U(s, cX_s) \, ds + b B(\tau, (1 - \alpha)X_\tau) \right]$
- $U(s, x) = B(s, x) = e^{-\rho s} x^{\gamma} / \gamma$
- $\mathbb{P}[\tau > x] = \exp \left(- \int_0^x \lambda_s \, ds \right)$
solution for optimal α, given bequest motive b and risk aversion $1 - \gamma$

- risk seeking, low $1 - \gamma$
 - down and up
 - changes from 0% to 100%
Numerical results

Force of mortality

Age (years)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Forces of mortality at Age

0% 20% 40% 60% 80% 100%

Solution for optimal α, given bequest motive b and risk aversion $1 - \gamma$.

Risk seeking, low $1 - \gamma$• down and up• changes from 0% to 100%

Risk averse, high $1 - \gamma$• around 80%• stable even for changes in μ, σ, r and slight changes with ρ, λ.
Numerical results

Force of mortality

Consumption rate = 0.09 and $\alpha = 0.8$

Bequest account value at Age

Constant relative risk aversion $1 - \gamma$

Risk seeking, low $1 - \gamma$

• down and up
• changes from 0% to 100%

Consumption rate = 0.09 and $\alpha = 0.8$

Risk averse, high $1 - \gamma$

• around 80%
• stable even for changes in μ, σ, r and slight changes with ρ, λ
Numerical results

Force of mortality

Consumption rate = 0.09 and $\alpha = 0.8$

Bequest account value at Age

Consumption rate = 0.09 and $\alpha = 0.8$

constant relative risk aversion $1 - \gamma$

in the tontine

0% 20% 40% 60% 80% 100%

$b=1$

$b=2$

$b=3$

$b=6$

$b=7$

risk averse, high $1 - \gamma$

• around 80%

• stable even for changes in μ, σ, r and slight changes with ρ, λ
Numerical results

solution for optimal α, given bequest motive b and risk aversion $1 - \gamma$

risk seeking, low $1 - \gamma$
- down and up
- changes from 0% to 100%

risk averse, high $1 - \gamma$
- around 80%
- stable even for changes in μ, σ, r and slight changes with ρ, λ
Numerical Results

direct comparison to drawdown (same consumption, no fluctuation)

`Tontine with bequest' gives higher bequest after age 87

Drawdown account hits zero by age 88
given τ independent from \mathcal{F}_t, is it true that...

$$\sup_{\alpha, c, \pi} \mathbb{E} \left[\int_0^\tau U(s, c_s X_s) \, ds \right] = \sup_{\alpha, c', \pi'} \mathbb{E} \left[\int_0^\infty U(s, c'_s X_s) \mathbb{P}[\tau > s] \, ds \right]?$$

- on the left side, c, π adapted to $\mathcal{F}_t \vee \{\tau > s | t > s\}$
- on the right side, c', π' adapted to \mathcal{F}_t

for c there is \mathcal{F}_t-adapted c' such that $c_{t \wedge \tau} = c'_{t \wedge \tau}$, but c' might not be locally integrable! For example...

- $\mathcal{F}_t = \{\Omega, \emptyset\}$, $\tau \sim \mathcal{U}(0, 1)$, $c_t = (1 - \tau \wedge t)^{-1}$
 $$\Rightarrow c'_t = (1 - t)^{-1}$$
do we know that the optimal controls are deterministic before solving the HJB?

\[V(t, x) = \sup_{\alpha, c, \pi} \mathbb{E} \left[\int_0^\tau e^{-\rho s} X_s^{\gamma} / \gamma \, ds \bigg| X_t = x \right] \]

- \(V(t, x) \) and \(V(t, y) \) only differ by a constant
 \(\Rightarrow \) any \(x \) at \(t \) gives same optimal controls
 \(\Rightarrow \) (heuristic) optimal controls are independent of \(X \)
 \(\Rightarrow \) optimal controls are deterministic
Mathematical features 3

does the transversality condition holds true for all X...

$$\lim_{t \to \infty} V(t, X_t) = \lim_{t \to \infty} e^{-\rho t} P[\tau > t] E[\log X_t] = 0 \ ?$$

we have

- $V(0, x) = E \left[\int_0^\infty e^{-\rho s} P[\tau > s] \log(c_s X_s) \, ds \right] > -\infty$

$\Rightarrow E \left[\int_0^\infty e^{-\rho s} P[\tau > s] \log(X_s) \, ds \right] \in \mathbb{R}$

$\Rightarrow \lim_{n \to \infty} V(t_n, X_{t_n}) = \lim_{n \to \infty} e^{-\rho t_n} P[\tau > t_n] E[\log X_{t_n}] = 0$

but bad choice of X tends to ∞ on another sequence
Future research

- how many members so that law of large numbers holds true?
- study Mathematical features 2 in more detail

Thank you for your attention.
Do you have any questions or feedback?