Filtering Problems with Cox Jump Processes

Financial Mathematics Reading Group Talk held by Thomas Bernhardt
Introduction
Introduction

Two Topics

Cox processes
- counting processes
- jump rate corresponds to some intensity
- intensity can be described without the jumps
- goals: characterization, intensity manipulation

Filtering problem
- unknown intensity and known jumps
- exemplary calculation of a conditional expectation
- intensity is an Ornstein-Uhlenbeck process
Cox processes
Cox processes

Definition: On the given probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})\)

Let \(N\) counting process, \(X\) non-negative \(\mathcal{F}_0 \otimes \mathcal{B}([0, \infty[)-\text{mb.}\) \(N\) is a Cox process with intensity \(X\) if for \(t \geq r \geq 0\) and \(n \in \mathbb{N}_0\)

\[
\mathbb{P}\left[\int_{[0,t]} X_s \, ds < \infty \quad \forall \ t \geq 0 \right] = 1
\]

\[
\mathbb{P}\left[N_t - N_r = n \mid \mathcal{F}_r \right] = e^{-\int_{[r,t]} X_s \, ds} \cdot \frac{\left(\int_{[r,t]} X_s \, ds \right)^n}{n!} \quad \mathbb{P}\text{-fs.}
\]

- Intensity constantly one leads to a Poisson process with respect to the given filtration
- Conditional distribution of jump times can be computed:

\[
\mathbb{P}\left[T_{n+1} > t \mid \mathcal{F}_r \right] = \mathbb{P}\left[N_t \leq n \mid \mathcal{F}_r \right] = \sum_{k=0}^{n-N_r} \mathbb{P}\left[N_t - N_r = k \mid \mathcal{F}_r \right]
\]
Theorem: Characterization of Cox processes

\(N \) finite counting process, \(X \) non-negative \(\mathcal{F}_0 \otimes \mathcal{B}([0, \infty[)\)-mb with \(\mathbb{P}[\int_{0,t} X_s \, ds < \infty, \forall t \geq 0] = 1 \). Then is equivalent that:

(i) \(N \) is a Cox process with intensity \(X \),
(ii) \(M = N - \int_0 X_s \, ds \) is a local martingale,
(iii) \(\varphi \geq 0 \) predictable: \(\mathbb{E}[\int_0,\infty[\varphi_s \, dN_s] = \mathbb{E}[\int_0,\infty[\varphi_s X_s \, ds] \).

Proof:

(i) \(\Rightarrow \) (ii) jump times for localization and cond. distribution,
(ii) \(\Rightarrow \) (iii) measures implied by \(N, \int_0 X_s \, ds \) coincide on a \(\sigma \)-finite \(\cap \)-stable generator,
(iii) \(\Rightarrow \) (i) stochastic exponential contains Laplace transform.
Cox processes

Theorem: Change of measure

\(N \) Cox with intensity \(X \); \(Y \) non-negative \(\mathcal{F}_0 \otimes \mathcal{B}([0, \infty]) \)-mb with \(\mathbb{P}[\int_0^t Y_s X_s \, ds < \infty \, \forall \, t \geq 0] = 1 \);

\[W := \exp\left(-\int_0^t (Y_s - 1) X_s \, ds \right) \cdot \prod_{s \in [0, t]} (1 + (Y_s - 1) \Delta N_s). \]

Then

- \(W \) is a non-negative right-continuous martingale,
- \(W_T = dQ/dP \) it follows that \(\mathbb{P} = Q \) on \(\mathcal{F}_0 \) and \(N^T \) is again Cox under \(Q \) with intensity \(1_{[0, T]} YX \).

Proof: martingale property

\(W \) is a supermartingale (non-negative stochastic exponential).
\(W \) does not vary in expectation (using conditional distribution).
Cox processes

Theorem: Change of measure \(N \) Cox, intensity \(X; Y \) as \(X \\
\mathcal{W} := \exp(-\int_0^T (Y_s - 1)X_s \, ds) \cdot \prod_{s \in]0,T]}(1 + (Y_s - 1)\Delta N_s). \\
Then \\
\bullet \ N^T \) Cox process with intensity \(\mathbb{1}_{[0,T]} YX \) under \(\mathbb{Q}. \)

Proof: Cox property \(\varphi \geq 0 \) predictable

\[
\mathbb{E}_\mathbb{Q}[\int_{0}^{T} \varphi_s \, dN_s] = \mathbb{E}[\mathcal{W}_T \int_{0}^{T} \varphi_s \, dN_s] = \mathbb{E}[\int_{0}^{T} \varphi_s \mathcal{W}_s \, dN_s] \\
= \mathbb{E}[\int_{0}^{T} \varphi_s \mathcal{W}_s - Y_s \, dN_s], \\
\mathbb{E}_\mathbb{Q}[\int_{0}^{T} \varphi_s Y_s X_s \, ds] = \mathbb{E}_\mathbb{Q}[\mathcal{W}_T \int_{0}^{T} \varphi_s Y_s X_s \, ds] \\
= \mathbb{E}[\int_{0}^{T} \varphi_s \mathcal{W}_s - Y_s X_s \, ds].
\]

Using characterization gives the claim.
Filtering problems with Cox processes
Filtering problems with Cox processes

Example with an OU intensity

- model \(dX = dJ - \lambda X dt \) where \(J \) is compound Poisson process and \(M \) its Poisson process
- aim the conditional Laplace transform with additional information about \(M \)

\[
E \left[\exp \left(\alpha X_R + \beta X_S + \gamma \int_{]R,S]} X_s \, ds \right) \mid \mathcal{F}_R^N \lor \mathcal{F}_R^M \right]
\]

Equivalent to calculate (solving the SDE, using independency)

\[
E \left[\exp \left(\int_{]R,S]} B_s \, dJ_s \right) \right] \cdot E \left[\exp \left((\alpha + B_R)X_R \right) \mid \mathcal{F}_R^N \lor \mathcal{F}_R^M \right]
\]

where \(B_s = \gamma/\lambda + (\beta - \gamma/\lambda) \cdot \exp (\lambda(s - S)) \).
Filtering problems with Cox processes

The left term $\mathbb{E}\left[\exp \left(\int_{[R,S]} B_s \, dJ_s \right) \right]

M be a Poisson process and ξ independent size of a jump of J.

$\mathbb{E}\left[\exp \left(\int_{[R,T]} B_s \, dJ_s \right) \bigg| \mathcal{F}_\infty \right] = \prod_{s \in [R,S]} \left(1 + \left(\mathbb{E}\left[\exp(B_s \xi) \right] - 1 \right) \Delta M_s \right)

\Rightarrow \mathbb{E}\left[\exp \left(\int_{[R,T]} B_s \, dJ_s \right) \right] \overset{!}{=} \exp \left(a \int_{[R,S]} \mathbb{E}[\exp(B_s \xi)] - 1 \, ds \right)

cos following process is a martingale (measure change theorem)

$t \quad \mapsto \quad \frac{\prod_{s \in [R,t]} \left(1 + \left(\mathbb{E}[\exp(B_s \xi)] - 1 \right) \Delta M_s \right)}{\exp(a \int_{[R,t]} \mathbb{E}[\exp(B_s \xi)] - 1 \, ds)}.$
Filtering problems with Cox processes

The right term \(\mathbb{E}\left[\exp \left((\alpha + B_R) X_R \right) | \mathcal{F}_R^N \vee \mathcal{F}_R^M \right] \)

General approach: \(X \) positive, choose \(Y = 1/X \)

Measure \(Q \) with \(N \) independent of \(X \) and untouched distribution of \(X \).

Look at \(H \mathcal{F}_0 \)-mb. Bayes, independency, measurability:

\[
\mathbb{E}\left[H | \mathcal{F}_R^N \vee \mathcal{F}_R^M \right] = \frac{\mathbb{E}_Q[H \frac{dP}{dQ} | \mathcal{F}_R^N \vee \mathcal{F}_R^M]}{\mathbb{E}_Q[\frac{dP}{dQ} | \mathcal{F}_R^N \vee \mathcal{F}_R^M]} = \frac{\mathbb{E}[(H \frac{dP}{dQ})^{m,n}]}{\mathbb{E}[(dP/dQ)^{m,n}]} \bigg|_{N=n} = M=m.
\]
Filtering problems with Cox processes

The formula (for $\Gamma(b, \rho)$ distributed jump sizes)

\[
\mathbb{E} \left[\exp \left(\alpha X_R + \beta X_S + \gamma \int_{[R,S]} X_s \, ds \right) \bigg| \mathcal{F}_R^N \lor \mathcal{F}_R^M \right] = \exp \left(a \int_{[R,S]} \frac{b^p}{(b - B_s)^p} - 1 \, ds \right) \cdot \frac{Z_R^{\alpha + B_R}}{Z_R^0}
\]

where

\[
Z_R^\alpha = \int_{M_R} \exp \left(\alpha X_{R, j}^M \right) \exp \left(\int_{[0,R]} 1 - X_{s,j}^M \, ds \right) \prod_{s \in [0,R]} \left(1 + (X_{s,j}^M - 1)\Delta N_s \right) \, d\Gamma_j
\]

and

\[
X_{s,j}^M = e^{-\lambda s} x_0 + e^{-\lambda s} \sum_{n=1}^{M_s} e^{\lambda \theta n} \cdot j_n
\]

as well as M_R as subscript of the integrals the number of integrations over the positive real line means with respect to the multidimensional variable j.