Using Errors To Teach through a Two-Staged, Structured Review: Peer-Reviewed Quizzes and “What’s Wrong With Me?”

Brian P. Coppola† and Jason K. Pontrello‡§

†Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
‡Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States

Supporting Information

ABSTRACT: Using errors as a method of learning has been made explicit through a two-staged peer review and discussion. During organic chemistry discussion sessions, quizzes are followed by a structured peer review designed to help students identify and discuss student errors. After the face-to-face discussion, a second stage of review involves analyzing and commenting on a set of quiz solutions made available by the instructor on the course Web site. Through this “What’s Wrong With Me?” exercise, students are given two solutions to each question in the quiz. One answer is completely consistent with the course, while the other contains instructor-generated errors and inconsistencies that would be marked “wrong” if graded. Students must post comments explaining solution inconsistencies to earn full credit on the quiz, and they are never told which of the two solutions is correct. This same strategy is also used for examinations and all practice problems (consisting of old exams and other problems); students never receive a single answer key for anything in the course. Course evaluations indicate strong support for peer-reviewed quizzes as generating a sense of community and facilitating learning and understanding of material. Evaluations also indicate that while frustrating at first, a majority of students find the posting of two solutions for course questions to be valuable in their learning process. This method has been used by at least one other faculty member, and has been implemented in general chemistry lecture and laboratory courses.

KEYWORDS: General Public, Organic Chemistry, Collaborative/Cooperative Learning, Testing/Assessment, Learning Theories, Student-Centered Learning

T here is perhaps no more familiar saying than one version or another of “we learn from our mistakes”. In education, learning from errors can be an explicit strategy for teaching, for example, when using simulations, or in medical training. There is a literature on the effects of error-making on learning, including the intriguing experimental result that taking challenging tests (i.e., ones that do not avoid errors) can promote learning. A common science education strategy treats student errors as a source for a teacher’s understanding of the underlying misunderstanding held by learners. Arguably, the practice of recontextualizing errors as “misconceptions” or “alternative conceptions” takes the sting out of wrong answers by pointing to where they come from, but this practice can also inadvertently validate students’ mistakes under the comforting blanket of self-esteem (“there are no wrong answers”) as opposed to shining a light on them as a broad instructional strategy. There appears to be a substantial gap in the literature on the structured use of errors as a learning tool for students, and we wish to report our efforts in this regard.

In some respects, learning from errors has long been an informal practice in courses. Students might compare their solutions to assigned problems with an available answer key or some source of authority (teacher, tutor, peer leader), and with one another as they work in study groups to discuss course material. While it is commonplace in introductory science courses to make answer keys to course quizzes and exams readily available to students to use in preparation for future testing in the course, misusing these resources leads to self-deception about one’s learning.

Resolving disagreements in a structured environment has been used in team learning and peer review exercises. Evidence supports the idea that working together in a structured way can enhance understanding. These strategies typically address errors generated among students as part of completing an assignment, or responding to an extemporeaneous question. One of the great success of peer-to-peer interactions is the ubiquitous report that students feel comfortable making errors in a low stakes environment without the pressure of performing in front of a traditional authority figure. Electronic homework systems are built upon providing specific feedback to student errors, but the act of failure is removed from the direct eyes of a typical authority, and the most common use of these systems is to allow for multiple attempts. None of these strategies are perfect: mistakes still happen, and so we raise the question, here, of how else one can use errors as a teaching tool.

Published: August 21, 2014
SUMMARY OF PRIOR WORK

We have described previously the formal peer-review system we implemented in the Structured Study Group (SSG) program,15,22 in which students provide feedback on one another’s work using a printed rubric. Instead of receiving their work corrected by others, students use the comments from two reviewers, plus their experience in reviewing two peers’ papers, to decide if their original work needs to be corrected, edited, or improved. These sessions, developed at the University of Michigan, take place in groups of 20 students who meet for 2 h, once a week, under the guidance of an upper level undergraduate student leader. Approximately 160 students per term use this Supplemental Instruction option as the way in which they earn Honors credit in the organic chemistry courses.

One of the assignments in which these students explicitly use errors is called “exam error check”. In preparation for their SSG session, each student writes one response (a, b, or c) to an exam question of their choice, which also presupposes that an instructor might have made an error in constructing a question: (a) If you judge that there is was a poorly worded or formatted question, whether you got it wrong or not, then write out why it is bad and suggest a way to rewrite it; (b) Explain why something you got wrong was actually wrong, and how you should have been looking at the information in order to get it correct the first time; or (c) If you think all of the problems are good and you got them all completely correct, then pick what you consider to be the most difficult problem and write out an explanation of the thought process used to arrive at the solution in a way that would be helpful to a peer. The assignment is then peer-reviewed according to the method described above.

Another strategy we have used in a large (400+) student setting within an even larger (1500-student) organic chemistry course is to engage the class, as a whole, in considering errors from the perspective of an instructor.23 Using a sheet consisting of six scanned student responses assembled prior to formal grading, everyone in class thinks about what the partial credit scheme ought to be and then comes to a consensus in small group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitates reaching a class-wide consensus for the grading, which ends up the same group discussion. The instructor then facilitate...
correct solution, students eventually expressed appreciation for the opportunity to review these “common” errors, commenting that it helps prevent repetition of the same errors in future graded materials.

An open, online discussion is used to facilitate the students’ debate about the options. LATTE (Learning and Teaching Technology Environment) is the learning management system (LMS) used by the Brandeis University community. LATTE is based on the Moodle open-source platform. As part of each quiz, about 10% of the points are awarded for going to the course Web site, reviewing the two solution options for the question assigned to a student group, and posting a comment about a part of a solution they believe to be inconsistent with the course. The credit is awarded for participation, not for accuracy of the content. The fact that the students have their graded quizzes (or later, examinations) to work from is irrelevant, too, because the intent of the exercise is to focus on why the wrong answers are incorrect rather than only why the right answers are correct. We observe that the discussions rapidly converge on the options that are, in fact, the ones with the errors.

To keep the exercise manageable and meaningful for a large group of students, we divide the class of 160–240 students into 4–6 student groups, each assigned different questions to review each week. A student group could be assigned to posting comments on solutions for the recent quiz, for a recent examination, or for a part of the practice problems (consisting of old exams). Figure 2 gives examples of the two options presented for the quiz question shown in Figure 1, as well as several typical student postings. Postings remain on the course Web site for all students to then review, question, and learn from. In addition, because posts are not graded for accuracy, students need to think about their peers’ comments, incorporating an additional level of reflective thought into use of the posted solutions.

Reinforcing Course Concepts

Using incorrect solutions to questions is a powerful tool to teach and reinforce many basic concepts in organic chemistry. For example, students often struggle recognizing selectivity in chemical reactions, or orders of steps in complex mechanisms. By providing two solutions to these types of problems, students are forced to consider multiple options, and explain as part of the online discussion their logical reasoning for why a given solution is inconsistent with course material. This strategy has been used to demonstrate a very large number of course topics, with a few highlighted below:

(a) Differences in leaving group ability
(b) Electrophilicity of carbonyl-based functional groups
(c) Regio- and stereoselective transformations
(d) Different types of aromatic substitution reactions
(e) Concerted vs stepwise mechanistic steps (and termolecular steps)
(f) Major species in aqueous solutions
(g) Timing of deprotonation reactions
(h) Reagents that partially reduce or oxidize functional groups
(i) Kinetic vs thermodynamic control over reactions

ASSESSMENT

Peer Reviewed Quizzes

Peer-reviewed quizzes were implemented during multiple semesters of the organic chemistry lecture course at Brandeis University between 2009 and 2012. A survey was given to students to assess the peer-reviewed quizzes; 93 written comments from
students about the peer-reviewed quizzes have been generally grouped into these five categories:

1. Understanding, Learning, and Structure. This category includes 29 comments, which these quotes exemplify:

 “Having to compare answers and justify ones own reasoning really helps me learn and grow in the course. Individual quizzes can be forgotten about easier and the theories never fully understood.”

 [Fall 2010]

 “I truly felt that my understanding in the course is largely due to these quizzes and the peer-reviews. It allows for all the students to communicate their ideas.”

 [Spring 2012]

2. Confidence and Self Assessment. This category includes 4 comments, typified by these quotes:

 “[This was] really helpful! Able to express what I’m confident I know in exchange for help from those who know my questionable areas better.”

 [Fall 2010]

 “The quizzes are helpful in telling me how much to study.”

 [Spring 2011]

3. Collaboration and Communication. This category has 34 comments, with these representative quotes:

 “I really like peer quizzes, everyone is able to contribute what they know and through the combined effort solidify what we know by explaining, and learn/understand what we previously did not through the help of our peers.”

 [Fall 2010]

 “I found peer reviewed quizzes to be much more effective compared to independent quizzes. It promoted a sense of community and made it so people had to understand what was going on to explain it to others.”

 [Fall 2010]

 “It would be better to have easier quizzes that are done independently. Peer-review can get confusing when people disagree.”

 [Spring 2012]

4. Preparation and Copying. This category includes 20 comments, which this quote exemplifies:

 “Peer review questionnaire part is good because it gives subtle nudges. For me the worst part was when grade grubber ran around begging for answers. This is about the answer as much as the understanding.”

 [Fall 2010]

5. Time Constraints. This category has 6 comments; this quote is representative:

 “I think we need a little more time for the quizzes—it’s usually highly stressful to finish in time.”

 [Spring 2011]

Written comments indicated that students found these quizzes were valuable to their learning and understanding, increased their confidence about self-assessment, and were useful to gauge how much more to study certain material. There were a few concerns about feeling rushed to finish the quizzes in the allotted time. By far, the most common concerns expressed were that some peers were unprepared, and tended to copy answers rather than working together to reach solutions.

In addition to the free-response portion of the peer-reviewed quizzes survey, students also responded to statement items using a Likert-scale to indicate agreement or disagreement. These data are reported in Table 1 and generally indicate strong agreement that students learned from peer-reviewed quizzes and preferred them over independent quizzes.

What’s Wrong With Me?

The What’s Wrong With Me? resource has been implemented in organic chemistry lecture courses and laboratory courses at Brandeis University between 2009 and 2013. A survey was given to students to assess the What’s Wrong With Me? exercise; 152 written comments from students about the What’s Wrong With Me? exercise have been generally grouped into these three categories:

1. Learning, Understanding, and Frustration. This category includes 67 comments, which these quotes exemplify:

 “I like this method of giving the solutions because it encourages thought instead of simple copying, especially for the practice tests”

 [Fall 2010]

 “It was frustrating at first not having the right answer easily accessible, but discussing which one was right and why improved understanding”

 [Spring 2012]

 “It is clear to see that this does encourage students to learn and analyze their mistakes.”

 [Summer 2012]

 “Having two solutions helps in the understanding of the material. It requires the student to look at the entire answer given, rather than gloss over right or wrong examples.”

 [Summer 2013]

 “As study tools, wrong answers don’t help those of us who are already confused. As learning tools, sure, but not as review materials for exams.”

 [Spring 2011]

Averaged Results* by Organic Chemistry Lecture Course

<table>
<thead>
<tr>
<th>Statements for Response</th>
<th>Fall 2010, N = 139</th>
<th>Spring 2011, N = 115</th>
<th>Spring 2012, N = 177</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 I prefer peer-reviewed quizzes to independent quizzes.</td>
<td>1.4 0.6</td>
<td>1.3 0.6</td>
<td>1.4 0.7</td>
</tr>
<tr>
<td>2 I learn from other students during the peer review.</td>
<td>1.3 0.6</td>
<td>1.3 0.6</td>
<td>1.4 0.6</td>
</tr>
<tr>
<td>3 This method of learning has increased my:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a Interest in the course</td>
<td>1.8 0.7</td>
<td>1.9 0.7</td>
<td>2.0 0.8</td>
</tr>
<tr>
<td>b Understanding of the material</td>
<td>1.5 0.7</td>
<td>1.5 0.6</td>
<td>1.6 0.7</td>
</tr>
<tr>
<td>c Confidence in my understanding</td>
<td>1.7 0.7</td>
<td>1.7 0.7</td>
<td>1.8 0.8</td>
</tr>
<tr>
<td>d Ability to communicate</td>
<td>1.5 0.6</td>
<td>1.7 0.6</td>
<td>1.6 0.7</td>
</tr>
</tbody>
</table>

*The scale for response ranged from 1 to 4 as follows: 1 = Strongly agree; 2 = Agree; 3 = Disagree; 4 = Strongly disagree.

Table 1. Comparison of Student Responses to Peer-Reviewed Quizzes

2151
Table 2. Comparison of Student Responses to the What’s Wrong with Me Exercise

<table>
<thead>
<tr>
<th>Statements for Response</th>
<th>Fall 2010, N = 139</th>
<th>Spring 2011, N = 115</th>
<th>Spring 2012, N = 177</th>
<th>Summer 2012, N = 34</th>
<th>Summer 2013, N = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>SD</td>
<td>Avg</td>
<td>SD</td>
<td>Avg</td>
</tr>
<tr>
<td>1 I find the solutions helpful when studying for exams.</td>
<td>1.7</td>
<td>0.7</td>
<td>2.0</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>2 I learn from the posts from other students.</td>
<td>2.3</td>
<td>0.7</td>
<td>2.4</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>3 This method of learning has increased my:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a Interest in the course</td>
<td>2.0</td>
<td>0.7</td>
<td>2.6</td>
<td>2.8</td>
<td>2.3</td>
</tr>
<tr>
<td>b Understanding of the material</td>
<td>1.8</td>
<td>0.6</td>
<td>2.0</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>c Confidence in my understanding</td>
<td>1.9</td>
<td>0.7</td>
<td>2.2</td>
<td>0.6</td>
<td>2.1</td>
</tr>
<tr>
<td>d Ability to communicate</td>
<td>2.1</td>
<td>0.7</td>
<td>2.1</td>
<td>0.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>

“These data are reported in Table 2. Students generally agreed that the resource was helpful in studying, however there was less agreement that students learned from each other’s posted comments.”

USE BY OTHER FACULTY AND IN OTHER COURSES

Second Semester Organic Chemistry

Peer-reviewed quizzes and What’s Wrong With Me? were both incorporated by another Brandeis University instructor into the second semester organic chemistry lectures during the Spring 2010 and 2011 terms, and met with generally positive student response. Typical comments from the Spring 2011 course have been included in the previous section.

General, Honors General, and Organic Chemistry Laboratory Courses

The What’s Wrong With Me? activity has been used to promote online discussion of practice problems and exams in organic chemistry laboratory courses at Brandeis since 2009 (see Supporting Information for an example of an organic chemistry laboratory exam). The activity was also implemented in general and honors general chemistry lab courses (Spring 2011) to present solutions to weekly quizzes given during lab lecture time as well as practice problems and exams.

General Chemistry

Peer-reviewed quizzes have been incorporated into general chemistry lecture courses by two other Brandeis University instructors since the Fall 2009 semester. General chemistry instructor Claudia Novack remarks, “The peer review questions are perhaps the most important part of the quiz. I ask questions that try to give the students guidance, but the students also need to consider the questions carefully enough to appreciate the hints. I am considering abandoning the designation of ‘quiz’ next year, and instead calling these Wednesday evening sessions “learning exercises,” which will account for 10% of the total grade. I am hoping that the change in language will better reflect the intent of the exercise—not to assess or evaluate, but to learn.” She has also observed, “Many students have commented that they like these exercises a lot. They appreciate the opportunity to learn and to test themselves at the same time, but without the anxiety that usually accompanies work that affects their grades. The down side is that less mature students don’t catch on. They continue to rely on their friends, relieved to dodge a bullet every week, and still put off reading, doing problems, etc., until right before the exam. I can give them all the opportunity to succeed, but at some point, they...”
need to take responsibility for their own contributions to the goal.”

Honors General Chemistry

Peer-reviewed quizzes and the *What’s Wrong With Me?* exercise have been incorporated into Brandeis honors general chemistry lecture courses Spring 2010 and 2013 consisting of enrollments of 30–40 students. Examples of honors general chemistry Quiz, Peer Review Sheet, and Solutions are available in the Supporting Information. These written comments on the formal course evaluations from honors general chemistry in Spring 2010 and 2013 represent student responses to the evaluation question, “Please identify those aspects of the course you found most useful or valuable for learning.”

“It was also helpful that in the SSG students could work through problems together and then explain it in front of the whole class.”

“Recitation was nice because after we took our quiz, we would trade with partners, correct each others’ quizzes, and then talk about them. I found this really helpful. And the worksheets we did after the quizzes were helpful too.”

Students also responded to the question “What suggestions would you make to the instructor for improving the course?” with these representative comments:

“[Do] more SSG review and correction.”

“The quizzes should not have a section that has to be completed online because students tend to forget about it.”

Students who referenced the peer-Reviewed Quiz or *What’s Wrong With Me?* were generally positive, indicating the activities were “helpful” and “valuable”. The concerns expressed by students centered around a lack of confidence in the correct solution, and some comments even requested “more” of the review exercises.

DISCUSSION AND CONCLUSIONS

Structured assignments based on errors have been generally well received by students. Evaluations reveal a preference for reviewing student-generated errors through peer-reviewed quizzes over independent quizzes, with the only significant problem being students who only seek answers rather than fully benefiting from the group learning process. The second most common concern was time pressure to complete the work during class time. To address these issues in future courses, students will complete and turn in a brief homework assignment before the quiz. The assignment will address similar content to the quiz, so students will become familiar with the material if they are not already, and the assignment will count toward the quiz grade. It is anticipated that this will increase preparation and also alleviate some of the expressed feelings of being rushed to finish.

Two interesting observations: (1) not all groups converged on the same answer—there was still large diversity in the answers presented by students on the quiz to be graded; and (2) despite the collaborative group component, grades were still not “100%”, but rather in the typical 70–80% range. This is likely largely due to the level of difficulty of the quiz, written at an exam level, while the content is still newly learned and not fully studied.

Providing an additional review of instructor-generated errors through the *What’s Wrong With Me?* activity elicited mixed feelings, with many students describing it as a “love-hate” relationship. Most students recognize that it forces them to learn the material more effectively; however, it also requires more effort to study than having a single answer key.

In all of these activities, we have highlighted the value of working explicitly with errors as a way to promote students’ deep engagement with the subject matter. Understanding why something is wrong might be at least as valuable as understanding why something is right, and the side-by-side contrast, in principle, gives the strongest students a chance to reflect on their learning while affording the weakest students a chance to uncover the pitfalls that might have led them to the wrong solution. As an instructional strategy, we have demonstrated ways in which errors can be worked into both large and small settings, and in a few different subject areas. There is a great deal of work that could be done to further understand how working with errors might affect student learning, and we look forward to seeing how others might identify different ways to incorporate errors into teaching and learning.

ASSOCIATED CONTENT

Supporting Information

A representative example of a quiz, accompanying peer review sheet, and options 1 and 2 solutions for the *What’s Wrong With Me?* exercise for the honors general chemistry course is included. An example of a quiz and exam with associated review exercises is also included for the organic chemistry course. An example of an exam for an organic chemistry lab course in included as well. This material is available via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: pontrell@brandeis.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We want to thank Claudia Novack at Brandeis University for helpful discussions about science education methods and for implementing these resources in her own chemistry courses.

REFERENCES

