For 2-bond coupling, the ${}^{2}J_{HH}$ value is observed to differ based on the hybridization of the intervening carbon atom (sp³ HCH are 12–15 Hz; sp² HCH are 0–2 Hz).

In freely rotating systems, the typical ${}^{3}J_{HH}$ value is 7 Hz, representing the average contribution from all conformations. In fixed geometry systems, such as with cis and trans hydrogens, the different values are consistent with the Karplus generalization (${}^{3}J_{HH}$ for cis hydrogens, with a 0° dihedral angle, is 6–12 Hz, while that for trans hydrogens is 12–18 Hz).

Coupling constants for 4-bond systems and above are generally unobservable, except for allylic systems (${}^{4}J_{HH} = 0-3$ Hz), propargylic systems (${}^{3}J_{HH} = 2-3$ Hz), and on aromatic rings (ortho ${}^{3}J_{HH} = 6-10$ Hz; meta ${}^{4}J_{HH} = 1-3$ Hz; **para** ${}^{5}J_{HH} = 0-1$ Hz).

Equivalent versus nonequivalent neighbors. In 1,1,2-trichloroethane, whose ¹H-NMR spectrum was shown in Figure AP0925, we consider the two hydrogen atoms in the methylene group of carbon-2 to be equivalent. The carbon-carbon bond is freely rotating, and each of those two hydrogens have the same average neighboring interaction in their spin-spin coupling. As a result, the signal for the carbon-1 hydrogen appears as a 1:2:1 triplet. The general construction for how that pattern arises was shown in Figure 0919, along with Pascal's triangle.

In 1,1,2-trichloroethane, the experimentally determined ${}^{3}/_{HH} = 7$ Hz. Figure AP0928 summarizes the origin of the appearance of the 1 H-NMR signal for the single hydrogen carbon-1 and shows how the triplet can be imagined as the sequential addition of each of the two equivalent neighboring hydrogens and their field (splitting) effect.

Figure AP0928

In the branching diagram, we start with the carbon-1 hydrogen signal as though there were no neighboring atoms, which would be a singlet at a chemical shift of δ 5.78 ppm. Then we add the effect of the first neighboring hydrogen, which divides the signal into two populations that are separated by 7 Hz, the ${}^{3}/_{HH}$ value. The effect is to move half of the original population by +3.5 Hz and the other half by -3.5 Hz. With one neighbor, in other words, the appearance of the signal would be a doublet, centered at δ 5.78 ppm (which is still the chemical shift value for the absorption), and with a ${}^{3}/_{HH} = 7$ Hz. Adding into the second neighboring hydrogen completes the picture. Each of the lines of the imagined doublet is split again, sending half in the +3.5 Hz direction and half in the -3.5 Hz direction. The triplet is now present.