Example C

3° alkyl anion, pK_a conj. acid 16, bromide moderate base ("b") H₃C₁, Br NaOH Stage 1: bimolecular predicted: E2

i. Is there (or is there the potential for) an sp³ carbon-leaving group?
ii. If so, what is the structural category for the carbon atom?

iii. If there is a Lewis base, what is its classification?

yes			yes, potential				no	
1°	1° 2°			3°		heteroatom-substituted		
allylic			benzylic				propargylic	
		d pK _a > 30		. acid pK _a , hindered conj. acid > 10		poor electron donor (not in the other categories)		

iv. Is a bimolecular reaction predicted? If so, which one?

S _N 2	E2	1	no bimolecular			
v. If no bimolecular, then is there:						
good car possible	bocation	polar solvent				
vi. Is S _N 1/E1 predicted?						
ye	es	no				

Lewis	<u>category a</u> good e donor weak base		<u>category c</u> good e donor strong base	<u>category d</u> poor e donor weak base
sp ³ C-LG	anion, c.a. pK _a <15 uncharged sp ³ N/S/P	anion, c.a. pK _a ~15-30	c.a. pK _a > 30 hindered: c.a. pK _a > 10)
1°C	S _N 2	S _N 2	E2 (no β-H: S _N 2)	no
2°C	S _N 2	E2 (no β-H: S _N 2)	Ε2 (β-Η)	bimolecular predicted
3°C	no S _N 2; no E2	Е2 (β-н)	Е2 (β-н)	,

The original version was marked as 2° not 3° (although it does not change the outcome).

The Lewis base (hydroxide) is an anion. The conjugate acid of hydroxide is water, with its pKa value of about 16; this places hydroxide in the category of being a good electron donor that is also a moderate base for substitution and elimination reactions.