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Combined significance tests (combined p values) and tests of the weighted mean effect size are
both used to combine information across studies in meta-analysis. This article compares a com-
bined significance test (the Stouffer test) with a test based on the weighted mean effect size as tests
of the same null hypothesis. The tests are compared analytically in the case in which the within-
group variances are known and compared through large-sample theory in the more usual case in
which the variances are unknown. Generalizations suggested are then explored through a simula-
tion study. This work demonstrates that the test based on the average effect size is usually more
powerful than the Stouffer test unless there is a substantial negative correlation between within-
study sample size and effect size. Thus the test based on the average effect size is generally prefera-
ble, and there is little reason to also calculate the Stouffer test.

In the past two decades, there has been increasing interest in
the use of systematic procedures for combining evidence in
literature reviews. One aspect of these procedures has been the
use of quantitative methods for combining results of statistical
analyses across studies or meta-analysis (Cooper, 1989). Al-
though statistical methods for combining the results of indepen-
dent studies have a history dating to at least the 1930s (eg.,
Cochran, 1937; Fisher, 1932, p. 99), their widespread applica-
tion to research in the social and behavioral sciences (and the
term meta-analysis itself) is relatively new (see Glass, McGaw,
& Smith, 1981).

There are two basic approaches to combining evidence
across studies in meta-analysis. One approach involves testing
the statistical significance of combined results of the collection
of studies. That is, testing whether the observed collection of
results could have arisen by chance if the null hypothesis were
true in every study. The second approach involves estimating a
combined (average) treatment effect. A confidence interval or
significance test is often used to determine whether the com-
bined treatment effect is reliably different from zero (Hedges &
Olkin, 1985).

Meta-analysts who rely on the combined significance testing
approaches emphasize (or should emphasize) testing of the null
hypothesis that the (treatment) effect is zero in all studies.
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Meta-analysts who rely on the combined estimation approach
emphasize the characterization of the magnitude of the com-
bined effect. They may, however, compute a confidence inter-
val for that combined effect or compute a test that the com-
bined effect is different from zero. Some meta-analysts use
both combined significance tests and estimate and test the
combined effect. Although the two approaches use different
information from each study (combined significance tests use
p values and combined estimation procedures use measures of
effect size), the methods are clearly related (see Becker, 1987).

The purpose of this article is to clarify the general relation-
ship between these two approaches to meta-analysis. We do so
by comparing the properties of the statistical tests involved in
the most widely used combined significance test (the Stouffer
or inverse normal procedure; see Rosenthal, 1984) to those of
the most widely used test of the combined effect size (the test of
the weighted mean effect size; see Hedges & Olkin, 1985). We
show that both procedures can be used to test the same hypoth-
esis. Then we show that the two tests give similar resuits when
applied to the same data in the sense that the power of the tests
is quite similar.

It might seem surprising that a combined significance test,
which is not explicitly weighted, gives results that are quite simi-
lar to those of a test based on weighted combinations of effect
sizes. The reason is that the unweighted combined significance
test is actually weighted indirectly by sample size through the p
value. The self-weighting of the combined test procedure is
most obvious in the case of combining tests with known vari-
ances. We show that in this case the Stouffer test statistic can
actually be written as a sample-size-weighted mean of sample
effect sizes.

We begin by providing the statistical model, notation, and
the definition of the two tests. Then we derive the properties of
the two tests in the situation in which the variance within treat-
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ment groups is known. This provides an approximation to the
more realistic case in which variance is unknown and must be
estimated. Next we present asymptotic (large sample) results
where the variance is unknown. Finally we present the results
of a simulation study to support the generalizations suggested
by the analytic results. The simulations systematically vary five
factors: (a) the number of studies in the meta-analysis, (b) the
population value of effect size underlying the set of studies, (c)
the variance of the sample effect sizes, (d) the sample sizes
contained in individual studies, and (e) the correlation be-
tween study sample sizes and population effect sizes.

Model and Notation

Suppose that the data arise from a series of k independent
studies, each of which compares a treatment or experimental
group (E) with a control group (C). Let Y} and Y'§ denote the
jth observations in the experimental and control groups of the
ith study, and let nf and n€ be the experimental and control
group sample sizes. Suppose also that the assumptions for the
validity of the two-sample ¢ test are met in each study. That is,
the observations in the experimental and control groups of the
ith study are independently normally distributed with means
uE and uf, respectively, and common variance o2. Define the
(population) effect size in the ith study as the standardized
mean difference

E__ ,C
“l “' (1)
0;

5 =

and define the sample estimate of effect size (the sample effect
size) in the ith study as

di=;’ (2)

where Y¥ and Y€ are the sample means in the experimental and
control groups, respectively, and s; is the pooled within-group
sample standard deviation. The two-sample 7 statistic for test-
ing the significance of mean differences in the ith study can be
written as

L= V’Tiid i (3)
where #, is the harmonic mean of #E and n{ given by
s
: i

Let p; be the one-tailed p value for the ith study derived from ¢,
Thus p;, is the probability of obtaining a ¢ statistic larger than ¢,
in the ith study when the null hypothesis is true.

Combined Significance Tests in Meta-Analysis

Rosenthal (1978, 1984) described 7 methods for combining
the probabilities of independent studies. Hedges and Olkin
(1985) described 4 additional methods and discussed the statis-
tical properties of all 11 methods. Rosenthal (1978) argued that
the method of adding zs is the most serviceable because of its
simplicity and general applicability. Today this method is proba-

bly most often used by meta-analysts and is compared in this
article to the test of the mean effect size. The method was first
developed by Stouffer, Suchman, DeVinney, Star, and Williams
(1949; p. 45) and is often referred to as the Stouffer method. The
Stouffer method involves (a) converting one-tailed p levels to
their associated z scores, (b) retaining the direction of each
study’s outcome by attaching a positive or negative sign to the z
score depending on whether the directional hypothesis was
supported, (¢) summing the z scores, (d) dividing by the square
root of the number of p levels, and (e) referring this number
back to a standard normal distribution table to obtain a com-
bined significance level (one-sided).

Thus, the Stouffer method could be described symbolically
by saying that to test the joint nuil hypothesis,

Hyd =«++=8=0,

compute the statistic

1 k
Zs= W‘ _Zl z(p;)
where z(p,) = —®7'(p,) is the z score corresponding to p;, the
one-tailed p value associated with ¢, the ¢ statistic in study i. We
reject H at significance level « if Zg exceeds the 100a% one-
tailed critical value of the standard normal distribution.

Effect Size Estimation in Meta-Analysis

Two measures of effect dominate the meta-analytic litera-
ture. When the primary studies in question compare two
groups, either through treatment versus control comparisons or
through single-degree-of-freedom contrasts, the effect size is
expressed as some form of standardized difference between the
group means, often called a 4 index (Cohen, 1977). When two
continuous variables are related, the product-moment correla-
tion coefficient, or r index, is most often used. We restrict our
attention to the 4 index in this article, though similar results
hold for the r index.

The (weighted) mean effect size in meta-analysis is calcu-
lated by averaging the individual effects after each has been
weighted by the inverse of its variance (Hedges & Olkin, 1985,
pp. 110-113). The standard error of the weighted mean effect
size is the square root of the reciprocal of the sum of the
weights. The test that the mean effect differs from zero consists
of (a) computing the weighted mean effect size, (b) dividing it
by its standard error, and (c) referring the ratio to a standard
normal table to obtain a significance level.

The one-tailed test that the average effect size is greater than
zero can be described symbolically by saying that to test H,
compute the test statistic

d.
Zue = S(d.)’

where d. is the weighted mean effect size and S(d.) is its stan-
dard error. More specifically,
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where the weight w;, given by

L, 4
YT T 2nF )
is the reciprocal of the estimated sampling variance of d,
(Hedges & Olkin, 1985; p. 115).

We reject H, at significance level « if Z; , exceeds the 100a%
one-tailed critical value of the standard normal distribution.
This test is algebraically equivalent to, but more direct than,
computing a confidence interval about the average effect size
and rejecting the null hypothesis that the effect size is zero if the
confidence interval does not contain zero. Because the one-
sided test on the mean effect size is mathematically equivalent
to the test that is based on whether the lower confidence limit
exceeds zero, we refer to the test on the mean effect size as the
lower confidence limit (LCL) test.

Exact Theory When the Within-Group Variance
Is Known

It is useful to compare the Stouffer test with the LCL test in
the case in which the within-group standard deviation o; is
known in each study. Exact theory can be obtained in this case,
and it provides an approximation to what might be expected in
the more complex (but more realistic) case when the standard
deviations are not known. When the standard deviations are
known, the (optimal) statistical test for treatment effects (that
is, to test whether uF = u®) is the z test. The z statistic in the i th
study is

SE_
z;= ﬁx[z'—;ﬁ] = Vad, (5)

where
d,= il . (6)

is an effect size estimate computed using the population stan-
dard deviation o;, which is assumed to be known.

Both the LCL test and the Stouffer test yield statistics (Z; ¢y
and Zj, respectively) that have standard normal distributions
when the joint null hypothesis

H0:61= ..=6k=0

is true. Thus, both the LCL test and the Stouffer test involve
comparing the values of their respective z statistics to critical
values obtained from the standard normal distribution. The
decision rules for one-sided tests at the 100a% significance level
are for LCL, reject H, if Z ;> C,, and for Stouffer, reject H, if
Zs > C, where C, is the 100a% critical value of the standard
normal distribution.
The LCL test statistic, Z; o, can be written as

2= 2[3] Ve ™

where 71 is the average of A, . . ., Ai,. The Stouffer test statistic,

Zg, can be written as

Tzfd (8)

i=1

Equation 8 reveals that the Stouffer test statistic, although not
explicitly weighted, is actually equivalent to a sample size
weighted mean of effect size estimates. The “weighting” is a
consequence of the fact that the test statistic used to generate
the p values depends on sample size as well as effect size.

To evaluate the power of these two tests, we need to know the
probability that each will reject the null hypothesis when H, is
false. This probability can be obtained through the sampling
distribution of the test statistic when H, is false. The sampling
distributions of Z; ; and Z are both normally distributed with
a variance of one, but the expression for the means can be
different. In particular,

ZLCLNN(alﬂL’ 1)’ ZS~N(659 1)’

where

s 8] s o

An exact expression for the power of these two tests at signifi-
cance level a is

power(Stouffer test) = 1 — &(C, — é,) (10)

and
power(LCL test) = 1 — ®(C, — d.c1) (11)

where ®(x) is the standard normal cumulative distribution
function.

Formulas 9, 10, and 11 imply that the power of these tests
dependson §,, - - - , 6, and on the sample sizes. Because §;
and 6, combine §,, - - - , §, in different ways, neither of these
tests is the most powerful in all situations. However, a few gener-
alizations are possible. When the sample sizes in all of the stud-
ies are equal (that is, when 7, = - - - = 7;), the tests yield the
same tests statistics and, therefore, have identical power. If the
sample sizes are unequal but all of the studies have the same
effect size (that is, if §,, = + =§,=6), then 6. > §,, and the
LCL test is more powerful than the Stouffer test. If both sample
size and population effect sizes are unequal, then either the
LCL test or the Stouffer test may be more powerful. If larger
values of #; are associated with larger values of §; (that is, if &
values are positively correlated with 7 values), then 6 > &,
and the LCL test is more powerful than the Stouffer test. If 6
values are negatively correlated with 7 values, then §, can be
larger than é,;, and the Stouffer test can be more powerful
than the LCL test.
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Asymptotic Theory When the Within-Group Variance
Is Unknown

Examination of the case in which the within-group variance
o7 is known in each study provides useful insight into the behav-
ior of the two tests, but it provides only a rough approximation
of their behavior when the variances are unknown. For exam-
ple, although the individual ¢ statistics in each study tend to z
statistics in large samples (that is, in large samples the z statistic
tends to behave essentially as if the variance o7 were known),
the large-sample distribution of z(p;) = —®7!(p,) is not the
same when p, is based on a z statistic as it is when p;, is based on
a ¢ statistic (see Lambert, 1978; Lambert & Hall, 1982, 1983).
Because the Stouffer test is computed from z( p;) values, it there-
fore does not have precisely the same behavior, even in large
samples, when the variance is known as when it is unknown.
The large-sample distribution of Z;; also differs when the
variance is unknown. Thus it is necessary to compare the prop-
erties of the two tests when the variances are assumed to be
unknown.

Asymptotic Theory for the Stouffer Test

Becker (1985) has used results from the asymptotic effi-
ciency of test statistics to obtain the asymptotic distribution of
z(p).Sheshowed that if n,= nE+ n¢, xE=nt/n,, = n¢/n,and
#F and #¢ remain fixed as n; > oo, then the asymptotic distri-
bution of z(p;) when n, > 0 and é > 0 is given by

[z(p;) — Ymilog (1 + xSafoD)] ~ N(O, n?),  (12)

where

L wEaS8(1 + xEaCel/2) (13)
T + 7ExC6t) % log (1 + nentol)

This asymptotic distribution shows the limitations of the ap-
proximation of z( p;) (where p;is computed from a ¢ statistic) by
Ai,d; (the value assuming o; is known). Neither the mean
(V#.5;) nor the variance (1) of the z( ;) when o, is known is the
same as that of the limiting distribution of z(p;) when g, is
unknown. Expanding the logarithm in Equation 12 through a
Taylor series, we found that when §;is small, the mean of z( p;) is
approximately

Vnilog (1 + w5aS8?) ~ VA8,

and using EHospital’s rule, the limit of the variance ? as §,— 0
is 1. Thus the limiting distribution of z( p;) corresponds to the
distribution with ¢; known only for small values of 5;.

Because the Stouffer statistic Z, is a linear combination of
z(p1)s - .., z(p:), the asymptotic distribution of z(p;) implies
the asymptotic distribution of Zs. f N= 3%, n,and n,/N, ...,
n,/N remain fixed as N = oo, then the large-sample approxi-
mation that is based on the asymptotic distribution of Zs is
given by

Zs ~ N(u,, 0), (14)
where
k
= > VYnlog (1 + xCxE62)/k, (15)
=1
and
k
n =2 nlk, (16)

=1

and #? is given by Equation 13. The power of the Stouffer test for
significance level « is just the probability that Z is greater than
the critical value C,. Consequently, the power of the Stouffer
test computed from the large-sample approximation (14) is just

(17)

where ®(x) is the standard normal cumulative distribution
function, g, is given by Equation 15, and #2 is given by Equa-
tion 16.

power (Stouffer test) = 1 — ®[(C, — u,)/n,],

Asymptotic Theory for the LCL Test

The asymptotic distribution of the weighted mean effect
sizes was given by Hedges (1982) for the case of effect sizes
computed under the assumption that the within-group vari-
ances are unknown in each study. His results imply that if n, =
nE+nS N=3% n,and n¥/N,..., ni/Nremain fixed as N >
o0, then the large-sample approximation to the distribution of

ZicLis

Zier ~ N(éyer, 1), (18)
where
k k
dcL = Z wﬂ%/[E w;], (19)
i=1 =1
and
1 6?
wi_—ri_i+——2(nf+n,-c)' (20)

Hedges (1982) studied the accuracy of this large-sample ap-
proximation and found it to be quite accurate for a wide range
of sample sizes and effect sizes.

The power of the LCL test for significance level « is the
probability that Z .~ exceeds the critical value C,. Conse-
quently, the power of the LCL test computed from the large-

sample approximation is
power (LCL test) = 1 — ®&(C, — 1), (21)

where ®(x) is the standard normal cumulative distribution
function and 8, ; is given by Equation 19.

Comparing the Two Tests

The algebraic forms of Expressions 17 and 21 for the power of
the two sets do not lend themselves to easy comparisons. How-
ever, when 8y, ..., § are all small, then Equation 17 reduces
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approximately to Equation 10, and Equation 2 reduces approx-
imately to Equation 11. Hence for small effect sizes and large
sample sizes, we expect the qualitative generalizations derived
in the case in which the variance is known to apply to the case
in which the variance is unknown. Numerical computations for
nonnegligable values of §; are also consistent with the expecta-
tion .that the LCL and Stouffer tests will have approximately
the same power when sample sizes are all equal but that the
LCL test will be more powerful in most cases where sample
sizes are unequal across studies. The Stouffer test is expected to
be more powerful only when sample and effect sizes have a
substantial negative correlation.

A Simulation Study

A simulation study was conducted to verify, in some finite
sample situations, the generalizations suggested by the large-
sample theory.

Method

Design. The simulation study used a five-factor design systemati-
cally varying (a) the number of studies in the meta-analysis[ k= 12, 24,
and 36], (b) the average value of the population effect size across
studies [3 = 0.0, 0.15, and 0.30], (c) the standard deviation of the
population effect sizes across studies [¢7 = 0.0, 0.05, and 0.15], (d) the
within-group sample sizes of the individual studies (see below), and
(e) the correlation between the within-study sample sizes and the popu-
lation effect sizes [p = —0.3, 0.0, and 0.3]. The within-group sample
sizes nf = n = n, of the individual studies were assembled according to
three patterns: (a)n; = - - - =ng=20,(b)n =n,=10,n;=n,=20,ns=
ng=30,and(c)n =5,n,=10,n3=15,n,=25,ns= 30, ns=35. Fork =
12, the pattern was repeated four times, and for k = 36, the pattern was
repeated six times.

For sufficiently large values of sample size and effect sizes, the power
of both tests is very close to the maximum possible value of one. In this
range of sample and effect sizes, comparisons between tests would be
misleading because it is impossible for either test to be substantially
more powerful than the other. Thus comparisons between tests, if they
are to be meaningful, must be made in situations in which tests have
moderate power. These values of sample sizes, effect sizes, and num-
bers of studies were chosen to be realistic for meta-analyses, yet not so
large as to yield power values that are essentially one for both tests.

With all factors crossed, the design has the possibility of 3° = 243
cells or conditions. However, some of the conditions implied by combi-
nations of factor levels are impossible. For example, when the variance
of o7 of effect sizes across studies is zero, the correlation of sample size
and effect size must also be zero. Similarly, when the within-study
sample sizes are all equal, this correlation must be zero. Thus only 153
conditions were possible. A minimum of 2,000 replications (2,000
meta-analyses) were generated with the parameters implied by each
condition.

Data generation. For each replication within a condition, a set of
12, 24, or 36 ¢ statistics were generated (depending on the level of & for
that condition). Each ¢ statistic corresponded to the results of a single
“study” The value of ¢, for a study with effect size 8, and sample sizes nE
and nf was generated as

6= Vax/\Y/y

where X = b, + Z/\f, v=nE+nS—2,Z~ N(0,1)and Y ~ x 2. The
values of Z were generated using the International Mathematics Sub-
routine Libraries (IMSL) subroutine DRNNOR, and the values of ¥
were generated using the IMSL subroutine DRNCHI. The sample ef-
fect sizes were computed as

di:X/m~

The p values for the ¢ statistics and the values of z(p) = —®7'(p)
needed to compute Zg were computed using the IMSL subroutines
DTDF and DNORIN, respectively.

Data analysis. The Stouffer test statistic Zg and the LCL test statis-
tic Z; o were computed for each replication. The data were then ana-
lyzed by means of the Statistical Analysis System (SAS) packaged pro-
grams to determine the number of statistics in each cell that exceeded
the a = .05 and .01 critical values. Because the pattern of results was
similar at the two significance levels, we report results here only for a =
.05. The number of instances in which one statistic was significant but
the other was not was also tabulated for each cell. To investigate the
power of the LCL test in relation to that of the Stouffer test, we calcu-
lated the power curves for both tests at the .05 level of significance
(one-tailed). Power differences were obtained by subtracting the ob-
served proportion of times Zg exceeded Z o5 = 1.645 from the observed
proportion of times Z; ; exceeded the same value. A 95% confidence
interval was constructed around the difference value. In addition, we
considered the proportion of times that the LCL test rejected the null
hypothesis and the Stouffer test failed to reject the null hypothesis
(denoted by Z; ¢ .5), the proportion of times the Stouffer test rejected
the null hypothesis and the LCL test failed to reject the null hypothesis
(denoted by Zg., ¢ ), and the proportion of the times both tests agreed
to reject or not to reject the null hypothesis (denoted Zgy ).

Comparisons of test procedures are complicated if the rejection
rates of the tests are not the same (and ideally equal to the nominal
significance level) when the null hypothesis is true. For example, a test
that rejects more often than an exact test when the null hypothesis is
true may also reject more often when the null hypothesis is false, but
the comparison is not entirely fair. To ensure that empirical power
comparisons presented below were fair in this sense, we investigated
the rejection rates of the two tests under all of the conditions in our
design for which the null hypothesis was true, that is, conditions in
which every population effect size was zero. The proportion of the
replications that led to rejection of the null hypothesis at the nominal «
=05 level of significance did not differ from .05 for either the Stouffer
or the LCL test under any of the nine conditions examined. These
results are consistent with the fact that the Stouffer test is an exact test
and that the LCL test, while not exact, has a rejection rate very close to
the nominal under the null hypothesis. The latter conclusion is sup-
ported by rather extensive numerical investigations of the distribution
of Z; ¢, in small samples (Hedges, 1982; Hedges & Olkin, 1985).

Results

The results of the simulation study summarized in Table 1
confirm that the two tests generally have rather similar power
although the LCL test is generally slightly more powerful. The
two tests lead to the same decision (to reject or not to reject) in
the majority of cases. When they do not lead to the same deci-
sion, the LCL test is usually much more likely to lead to the
(correct) decision to reject the null hypothesis. Note that all of
the differences between the empirical rejection rates of the two
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Table 1

Summary of the Results of the Simulation Experiment
Comparing the Power of the Lower Confidence

Limit (LCL) and Stouffer Tests

Configuration =0 5=.15 3=.30

Balance across studies

Equal sample sizes

Power of the LCL test .055 719 983
Power of the Stouffer test .050 704 981
Ziciss .005 .014 .002
Zso1c1 .000 .000 .000
ZseroL 995 986 998
Three distinct sample sizes
Power of the LCL test .059 718 983
Power of the Stouffer test 052 .690 977
Ziciss 013 .042 .007
Ze1cL .006 .013 001
ZsurcL 981 945 992
Six distinct sample sizes
Power of the LCL test 077 699 .980
Power of the Stouffer test 055 .654 972
Zicl-s .029 .065 011
VARTS .007 021 .002
ZeicL 964 914 987

Correlation between sample size and effect size

p=-3
Power of the LCL test .022 .563* 966
Power of the Stouffer test .024 567* .962
Ziciss .004 .035 .008
ZssicL .006 .039 .005
ZsercL .990 926 .987
p=0
Power of the LCL test 056 719 983
Power of the Stouffer test .050 .690 978
Ziciss .010 .036 .006
Zso1c1 004 .007 .001
ZsrcL 986 957 993
p=.3
Power of the LCL test .145 .826 993
Power of the Stouffer test .093 765 .984
Zicros .058 .066 .009
ZsorcL .042 .005 .000
ZorcL .900 .929 991

Situations in which each test shows greatest superiority

LCL test has greatest advantage®
Power of the LCL test .743
Power of the Stouffer test .606
Ziciss 140
Zso oL .003
~LCL 857
Stouffer test has greatest advantages®
Power of the LCL test .550
Power of the Stouffer test 626
Zicios .013
ZsrcL .090
ZsrcL .897

Note. All differences between tests, except those marked with an
asterisk, are statistically significant at the .001 level of significance.

* This configuration is defined by 6 = .15, 6,2 = .15, p = .3, k=12, and
the pattern of six distinct sample sizes. ® This configuration is de-
fined by 6 = .15, 6,>= .15, p = —.3, k= 36, and the pattern of six distinct
sample sizes.

tests reported in the table are statistically significant ( p <.001)
unless noted by an asterisk.

We predicted that the LCL test would be more powerful than
the Stouffer test when the sample sizes were equal. The first
panel of Table 1 shows that when the samples sizes are the same,
the LCL test has slightly greater power than the Stouffer test.
When sample sizes are unequal, the LCL test has a slightly
greater advantage in power over the Stouffer test. The maxi-
mum power difference, for the third pattern of sample sizes
and & = .15, was 4.5%. In this condition, Z ;.5 = 6.5% and
Zsrcr= 2.1%.

We also predicted that the LCL test would be more powerful
than the Stouffer test when the correlation between sample size
and effect size was positive but that the Stouffer test could be
more powerful than the LCL test when the correlation was
negative. The second panel of Table I confirms this prediction.
If the correlation between sample size and effect size is zero or
positive, the LCL test is slightly more powerful than the
Stouffer test. When the correlation is negative, however, the
power of the LCL test exceeds that of the Stouffer test when § =
.30. Thus, even when analytic considerations suggest that the
Stouffer test should have the greatest advantage over the LCL
test, it is significantly more powerful for small average effect
sizes, significantly less powerful for large average effect sizes,
and more powerful, but not significantly so, for intermediate
average effect sizes. Moreover, the magnitude of the power ad-
vantage of the Stouffer test when p = —.3 is smaller than that of
the LCL test when p = 0 or p = .3. For example, when p = —.3
and 6 = .15, the power of the Stouffer test exceeds that of the
LCL test by 0.4%, Zg;c1 = 3.9%, and Z; 1.5 = 3.5%. But when
p=.3andé =15, the power of the LCL test exceeds that of the
Stouffer test by 6.1%, Z; ;.5 = 6.6%, and Zg,; = 0.5%.

Finally, we examined all 153 conditions to discover when the
maximum differences between the two tests occurred. The re-
sults for the condition in which the LCL test exhibited the
greatest superiority are reported in the third panel of Table I.
When § = .15, ¢? = .15, the sample sizes show six distinctions
(the third pattern), p=.3, and k=12, the power of the LCL test
exceeded that of the Stouffer test by 13.7%, Z; ;. = 14.0%, and
Zs.1 o1 = 0.3%. The Stouffer test exhibited the greatest superior-
ity when 6 =.15, 67 = .15, the sample sizes show six distinctions,
p = —.3, and k = 36. In this condition, the power of the Stouffer
test exceeded that of the LCL test by 7.6%, Zg,; ¢y = 9.0%, and

ZLCI)S = 1.3%.

Conclusion

The Stouffer test of the significance of combined results and
the LCL test of the significance of the weighted average effect
size can both be viewed as tests of essentially the same null
hypothesis. That is, both can be viewed as tests of the null
hypothesis that the effect size is zero in every study or that the
average effect size is zero. Our results suggest, therefore, that
there is no justification for computing both the Stouffer test
and a test that the mean effect size differs from zero.

One rather formal criterion for choosing between the two
tests is statistical power. The power of the two tests does not
differ substantially in many situations. When they do differ in
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power, both analytic results and our simulation results suggest
that the LCL test is usually slightly more powerful than the
Stouffer test. The most substantial advantages in power for the
LCL test occur where effect sizes are modest and study sample
sizes vary substantially, so that studies with larger sample sizes
have larger effect sizes. However, when sample sizes are nega-
tively correlated with effect sizes (small studies have larger ef-
fects), the Stouffer test may be slightly more powerful than the
LCL test. Of course neither test will be superior when sample
sizes or effect sizes are very large. In such cases, both tests will
reject the null hypothesis nearly 100% of the time. Conse-
quently, power considerations suggest that the LCL is generally
preferable whenever it can be applied, that is, whenever effect
size estimates are available from each study.

Another criterion for choosing a test procedure is the clarity
of the relationship between the test and a meaningful estimate
of effect magnitude. This criterion is less formal than broadly
conceptual. Its importance depends on the importance at-
tached to estimation in the interpretation of research results.
The role of effect magnitude is hidden in the mathematics of
the Stouffer procedure. The average effect magnitude is explicit
in the LCL test.

A final consideration has less to do with comparing tests
than choosing statistical analysis strategy. Despite calls for the
increased use of estimation, hypothesis-testing strategies still
seem to predominate in primary research. Estimation of effects
has usually, but not always, predominated in meta-analysis
(Glass et al., 1981). Part of the reason may be that strategies
involving estimation are frequently more informative than nuil-
hypothesis-testing strategies (see Becker, 1987; Hedges & Ol-
kin, 1985). Given that estimation strategies generally have ad-
vantages of greater interpretability, the LCL test has another
advantage. The weighted mean effect size and its standard error
are (or can be) computed from the same components required
to compute Z; ;. Thus an estimation of the average effect size,
its standard error, and a confidence interval for effect size may
be computed with very little additional effort.
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