zenilib  0.5.3.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
inftrees.c
Go to the documentation of this file.
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2002 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #if !defined(BUILDFIXED) && !defined(STDC)
10 # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
11 #endif
12 
13 
14 #if 0
15 local const char inflate_copyright[] =
16  " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
17 #endif
18 /*
19  If you use the zlib library in a product, an acknowledgment is welcome
20  in the documentation of your product. If for some reason you cannot
21  include such an acknowledgment, I would appreciate that you keep this
22  copyright string in the executable of your product.
23  */
24 
25 /* simplify the use of the inflate_huft type with some defines */
26 #define exop word.what.Exop
27 #define bits word.what.Bits
28 
29 
30 local int huft_build OF((
31  uIntf *, /* code lengths in bits */
32  uInt, /* number of codes */
33  uInt, /* number of "simple" codes */
34  const uIntf *, /* list of base values for non-simple codes */
35  const uIntf *, /* list of extra bits for non-simple codes */
36  inflate_huft * FAR*,/* result: starting table */
37  uIntf *, /* maximum lookup bits (returns actual) */
38  inflate_huft *, /* space for trees */
39  uInt *, /* hufts used in space */
40  uIntf * )); /* space for values */
41 
42 /* Tables for deflate from PKZIP's appnote.txt. */
43 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
44  3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
45  35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
46  /* see note #13 above about 258 */
47 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
48  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
49  3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
50 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
51  1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
52  257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
53  8193, 12289, 16385, 24577};
54 local const uInt cpdext[30] = { /* Extra bits for distance codes */
55  0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
56  7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
57  12, 12, 13, 13};
58 
59 /*
60  Huffman code decoding is performed using a multi-level table lookup.
61  The fastest way to decode is to simply build a lookup table whose
62  size is determined by the longest code. However, the time it takes
63  to build this table can also be a factor if the data being decoded
64  is not very long. The most common codes are necessarily the
65  shortest codes, so those codes dominate the decoding time, and hence
66  the speed. The idea is you can have a shorter table that decodes the
67  shorter, more probable codes, and then point to subsidiary tables for
68  the longer codes. The time it costs to decode the longer codes is
69  then traded against the time it takes to make longer tables.
70 
71  This results of this trade are in the variables lbits and dbits
72  below. lbits is the number of bits the first level table for literal/
73  length codes can decode in one step, and dbits is the same thing for
74  the distance codes. Subsequent tables are also less than or equal to
75  those sizes. These values may be adjusted either when all of the
76  codes are shorter than that, in which case the longest code length in
77  bits is used, or when the shortest code is *longer* than the requested
78  table size, in which case the length of the shortest code in bits is
79  used.
80 
81  There are two different values for the two tables, since they code a
82  different number of possibilities each. The literal/length table
83  codes 286 possible values, or in a flat code, a little over eight
84  bits. The distance table codes 30 possible values, or a little less
85  than five bits, flat. The optimum values for speed end up being
86  about one bit more than those, so lbits is 8+1 and dbits is 5+1.
87  The optimum values may differ though from machine to machine, and
88  possibly even between compilers. Your mileage may vary.
89  */
90 
91 
92 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
93 #define BMAX 15 /* maximum bit length of any code */
94 
95 local int huft_build( /* b, n, s, d, e, t, m, hp, hn, v) */
96 uIntf *b, /* code lengths in bits (all assumed <= BMAX) */
97 uInt n, /* number of codes (assumed <= 288) */
98 uInt s, /* number of simple-valued codes (0..s-1) */
99 const uIntf *d, /* list of base values for non-simple codes */
100 const uIntf *e, /* list of extra bits for non-simple codes */
101 inflate_huft * FAR *t, /* result: starting table */
102 uIntf *m, /* maximum lookup bits, returns actual */
103 inflate_huft *hp, /* space for trees */
104 uInt *hn, /* hufts used in space */
105 uIntf *v /* working area: values in order of bit length */
106 /* Given a list of code lengths and a maximum table size, make a set of
107  tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
108  if the given code set is incomplete (the tables are still built in this
109  case), or Z_DATA_ERROR if the input is invalid. */
110 )
111 {
112 
113  uInt a; /* counter for codes of length k */
114  uInt c[BMAX+1]; /* bit length count table */
115  uInt f; /* i repeats in table every f entries */
116  int g; /* maximum code length */
117  int h; /* table level */
118  register uInt i; /* counter, current code */
119  register uInt j; /* counter */
120  register int k; /* number of bits in current code */
121  int l; /* bits per table (returned in m) */
122  uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
123  register uIntf *p; /* pointer into c[], b[], or v[] */
124  inflate_huft *q; /* points to current table */
125  struct inflate_huft_s r; /* table entry for structure assignment */
126  inflate_huft *u[BMAX]; /* table stack */
127  register int w; /* bits before this table == (l * h) */
128  uInt x[BMAX+1]; /* bit offsets, then code stack */
129  uIntf *xp; /* pointer into x */
130  int y; /* number of dummy codes added */
131  uInt z; /* number of entries in current table */
132 
133 
134  /* Make compiler happy */
135  r.base = 0;
136 
137  /* Generate counts for each bit length */
138  p = c;
139 #define C0 *p++ = 0;
140 #define C2 C0 C0 C0 C0
141 #define C4 C2 C2 C2 C2
142  C4 /* clear c[]--assume BMAX+1 is 16 */
143  p = b; i = n;
144  do {
145  c[*p++]++; /* assume all entries <= BMAX */
146  } while (--i);
147  if (c[0] == n) /* null input--all zero length codes */
148  {
149  *t = (inflate_huft *)Z_NULL;
150  *m = 0;
151  return Z_OK;
152  }
153 
154 
155  /* Find minimum and maximum length, bound *m by those */
156  l = *m;
157  for (j = 1; j <= BMAX; j++)
158  if (c[j])
159  break;
160  k = j; /* minimum code length */
161  if ((uInt)l < j)
162  l = j;
163  for (i = BMAX; i; i--)
164  if (c[i])
165  break;
166  g = i; /* maximum code length */
167  if ((uInt)l > i)
168  l = i;
169  *m = l;
170 
171 
172  /* Adjust last length count to fill out codes, if needed */
173  for (y = 1 << j; j < i; j++, y <<= 1)
174  if ((y -= c[j]) < 0)
175  return Z_DATA_ERROR;
176  if ((y -= c[i]) < 0)
177  return Z_DATA_ERROR;
178  c[i] += y;
179 
180 
181  /* Generate starting offsets into the value table for each length */
182  x[1] = j = 0;
183  p = c + 1; xp = x + 2;
184  while (--i) { /* note that i == g from above */
185  *xp++ = (j += *p++);
186  }
187 
188 
189  /* Make a table of values in order of bit lengths */
190  p = b; i = 0;
191  do {
192  if ((j = *p++) != 0)
193  v[x[j]++] = i;
194  } while (++i < n);
195  n = x[g]; /* set n to length of v */
196 
197 
198  /* Generate the Huffman codes and for each, make the table entries */
199  x[0] = i = 0; /* first Huffman code is zero */
200  p = v; /* grab values in bit order */
201  h = -1; /* no tables yet--level -1 */
202  w = -l; /* bits decoded == (l * h) */
203  u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
204  q = (inflate_huft *)Z_NULL; /* ditto */
205  z = 0; /* ditto */
206 
207  /* go through the bit lengths (k already is bits in shortest code) */
208  for (; k <= g; k++)
209  {
210  a = c[k];
211  while (a--)
212  {
213  /* here i is the Huffman code of length k bits for value *p */
214  /* make tables up to required level */
215  while (k > w + l)
216  {
217  h++;
218  w += l; /* previous table always l bits */
219 
220  /* compute minimum size table less than or equal to l bits */
221  z = g - w;
222  z = z > (uInt)l ? (uInt)l : z; /* table size upper limit */
223  if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
224  { /* too few codes for k-w bit table */
225  f -= a + 1; /* deduct codes from patterns left */
226  xp = c + k;
227  if (j < z)
228  while (++j < z) /* try smaller tables up to z bits */
229  {
230  if ((f <<= 1) <= *++xp)
231  break; /* enough codes to use up j bits */
232  f -= *xp; /* else deduct codes from patterns */
233  }
234  }
235  z = 1 << j; /* table entries for j-bit table */
236 
237  /* allocate new table */
238  if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
239  return Z_DATA_ERROR; /* overflow of MANY */
240  u[h] = q = hp + *hn;
241  *hn += z;
242 
243  /* connect to last table, if there is one */
244  if (h)
245  {
246  x[h] = i; /* save pattern for backing up */
247  r.bits = (Byte)l; /* bits to dump before this table */
248  r.exop = (Byte)j; /* bits in this table */
249  j = i >> (w - l);
250  r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
251  u[h-1][j] = r; /* connect to last table */
252  }
253  else
254  *t = q; /* first table is returned result */
255  }
256 
257  /* set up table entry in r */
258  r.bits = (Byte)(k - w);
259  if (p >= v + n)
260  r.exop = 128 + 64; /* out of values--invalid code */
261  else if (*p < s)
262  {
263  r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
264  r.base = *p++; /* simple code is just the value */
265  }
266  else
267  {
268  r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
269  r.base = d[*p++ - s];
270  }
271 
272  /* fill code-like entries with r */
273  f = 1 << (k - w);
274  for (j = i >> w; j < z; j += f)
275  q[j] = r;
276 
277  /* backwards increment the k-bit code i */
278  for (j = 1 << (k - 1); i & j; j >>= 1)
279  i ^= j;
280  i ^= j;
281 
282  /* backup over finished tables */
283  mask = (1 << w) - 1; /* needed on HP, cc -O bug */
284  while ((i & mask) != x[h])
285  {
286  h--; /* don't need to update q */
287  w -= l;
288  mask = (1 << w) - 1;
289  }
290  }
291  }
292 
293 
294  /* Return Z_BUF_ERROR if we were given an incomplete table */
295  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
296 }
297 
298 
299 local int inflate_trees_bits( /* c, bb, tb, hp, z) */
300 uIntf *c, /* 19 code lengths */
301 uIntf *bb, /* bits tree desired/actual depth */
302 inflate_huft * FAR *tb, /* bits tree result */
303 inflate_huft *hp, /* space for trees */
304 z_streamp z /* for messages */
305 )
306 {
307  int r;
308  uInt hn = 0; /* hufts used in space */
309  uIntf *v; /* work area for huft_build */
310 
311  if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
312  return Z_MEM_ERROR;
313  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
314  tb, bb, hp, &hn, v);
315  if (r == Z_DATA_ERROR)
316  z->msg = (char*)"oversubscribed dynamic bit lengths tree";
317  else if (r == Z_BUF_ERROR || *bb == 0)
318  {
319  z->msg = (char*)"incomplete dynamic bit lengths tree";
320  r = Z_DATA_ERROR;
321  }
322  ZFREE(z, v);
323  return r;
324 }
325 
326 
327 local int inflate_trees_dynamic( /* nl, nd, c, bl, bd, tl, td, hp, z) */
328 uInt nl, /* number of literal/length codes */
329 uInt nd, /* number of distance codes */
330 uIntf *c, /* that many (total) code lengths */
331 uIntf *bl, /* literal desired/actual bit depth */
332 uIntf *bd, /* distance desired/actual bit depth */
333 inflate_huft * FAR *tl, /* literal/length tree result */
334 inflate_huft * FAR *td, /* distance tree result */
335 inflate_huft *hp, /* space for trees */
336 z_streamp z /* for messages */
337 )
338 {
339  int r;
340  uInt hn = 0; /* hufts used in space */
341  uIntf *v; /* work area for huft_build */
342 
343  /* allocate work area */
344  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
345  return Z_MEM_ERROR;
346 
347  /* build literal/length tree */
348  r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
349  if (r != Z_OK || *bl == 0)
350  {
351  if (r == Z_DATA_ERROR)
352  z->msg = (char*)"oversubscribed literal/length tree";
353  else if (r != Z_MEM_ERROR)
354  {
355  z->msg = (char*)"incomplete literal/length tree";
356  r = Z_DATA_ERROR;
357  }
358  ZFREE(z, v);
359  return r;
360  }
361 
362  /* build distance tree */
363  r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
364  if (r != Z_OK || (*bd == 0 && nl > 257))
365  {
366  if (r == Z_DATA_ERROR)
367  z->msg = (char*)"oversubscribed distance tree";
368  else if (r == Z_BUF_ERROR) {
369 #if 0
370  {
371 #endif
372 #ifdef PKZIP_BUG_WORKAROUND
373  r = Z_OK;
374  }
375 #else
376  z->msg = (char*)"incomplete distance tree";
377  r = Z_DATA_ERROR;
378  }
379  else if (r != Z_MEM_ERROR)
380  {
381  z->msg = (char*)"empty distance tree with lengths";
382  r = Z_DATA_ERROR;
383  }
384  ZFREE(z, v);
385  return r;
386 #endif
387  }
388 
389  /* done */
390  ZFREE(z, v);
391  return Z_OK;
392 }
393 
394 
395 /* build fixed tables only once--keep them here */
396 #ifdef BUILDFIXED
398 #define FIXEDH 544 /* number of hufts used by fixed tables */
404 #else
405 #include "inffixed.h"
406 #endif
407 
408 
409 local int inflate_trees_fixed( /* bl, bd, tl, td, z) */
410 uIntf *bl, /* literal desired/actual bit depth */
411 uIntf *bd, /* distance desired/actual bit depth */
412 const inflate_huft * FAR *tl, /* literal/length tree result */
413 const inflate_huft * FAR *td, /* distance tree result */
414 z_streamp z /* for memory allocation */
415 )
416 {
417 #ifdef BUILDFIXED
418  /* build fixed tables if not already */
419  if (!fixed_built)
420  {
421  int k; /* temporary variable */
422  uInt f = 0; /* number of hufts used in fixed_mem */
423  uIntf *c; /* length list for huft_build */
424  uIntf *v; /* work area for huft_build */
425 
426  /* allocate memory */
427  if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
428  return Z_MEM_ERROR;
429  if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
430  {
431  ZFREE(z, c);
432  return Z_MEM_ERROR;
433  }
434 
435  /* literal table */
436  for (k = 0; k < 144; k++)
437  c[k] = 8;
438  for (; k < 256; k++)
439  c[k] = 9;
440  for (; k < 280; k++)
441  c[k] = 7;
442  for (; k < 288; k++)
443  c[k] = 8;
444  fixed_bl = 9;
445  huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
446  fixed_mem, &f, v);
447 
448  /* distance table */
449  for (k = 0; k < 30; k++)
450  c[k] = 5;
451  fixed_bd = 5;
452  huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
453  fixed_mem, &f, v);
454 
455  /* done */
456  ZFREE(z, v);
457  ZFREE(z, c);
458  fixed_built = 1;
459  }
460 #else
461  FT_UNUSED(z);
462 #endif
463  *bl = fixed_bl;
464  *bd = fixed_bd;
465  *tl = fixed_tl;
466  *td = fixed_td;
467  return Z_OK;
468 }
#define FIXEDH
Definition: inftrees.c:398
GLdouble s
Definition: glew.h:1376
GLfloat GLfloat GLfloat GLfloat h
Definition: glew.h:7294
GLboolean GLboolean g
Definition: glew.h:8736
GLclampf f
Definition: glew.h:3390
local int inflate_trees_fixed(uIntf *bl, uIntf *bd, const inflate_huft *FAR *tl, const inflate_huft *FAR *td, z_streamp z)
Definition: inftrees.c:409
int32_t k
Definition: e_log.c:102
local int fixed_built
Definition: inftrees.c:397
GLclampd n
Definition: glew.h:7287
#define local
Definition: zutil.h:30
EGLSurface EGLint x
Definition: eglext.h:293
return Display return Display Bool Bool int int e
Definition: SDL_x11sym.h:30
local const uInt cplext[31]
Definition: inftrees.c:47
#define Z_DATA_ERROR
Definition: zlib.h:137
GLdouble GLdouble t
Definition: glew.h:1384
int32_t j
Definition: e_log.c:102
local const uInt cpdext[30]
Definition: inftrees.c:54
#define MANY
Definition: inftrees.h:36
GLboolean GLboolean GLboolean GLboolean a
Definition: glew.h:8736
return Display return Display Bool Bool int d
Definition: SDL_x11sym.h:30
unsigned int uInt
Definition: zconf.h:221
#define Z_BUF_ERROR
Definition: zlib.h:139
#define Z_NULL
Definition: zlib.h:164
local const uInt cplens[31]
Definition: inftrees.c:43
const char inflate_copyright[]
Definition: inftrees.c:11
#define Z_OK
Definition: zlib.h:132
local const uInt cpdist[30]
Definition: inftrees.c:50
local int huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e, inflate_huft *FAR *t, uIntf *m, inflate_huft *hp, uInt *hn, uIntf *v)
Definition: inftrees.c:95
ALuint u
Definition: alMain.h:58
const GLdouble * v
Definition: glew.h:1377
#define ZFREE(strm, addr)
Definition: zutil.h:212
local const uInt fixed_bd
Definition: inffixed.h:11
#define ZALLOC(strm, items, size)
Definition: zutil.h:210
local int inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft *FAR *tb, inflate_huft *hp, z_streamp z)
Definition: inftrees.c:299
local const inflate_huft fixed_td[]
Definition: inffixed.h:142
GLfloat GLfloat p
Definition: glew.h:14938
const GLfloat * c
Definition: glew.h:14913
local inflate_huft fixed_mem[FIXEDH]
Definition: inftrees.c:399
#define FAR
Definition: zconf.h:215
#define OF(args)
Definition: zconf.h:146
z_stream FAR * z_streamp
Definition: zlib.h:89
EGLSurface EGLint EGLint y
Definition: eglext.h:293
GLdouble l
Definition: glew.h:8383
#define BMAX
Definition: inftrees.c:93
#define C4
local const inflate_huft fixed_tl[]
Definition: inffixed.h:12
GLdouble GLdouble GLdouble GLdouble q
Definition: glew.h:1400
unsigned char Byte
Definition: zconf.h:219
GLint GLint GLint GLint GLint GLint GLint GLbitfield mask
Definition: gl2ext.h:961
GLdouble GLdouble GLdouble r
Definition: glew.h:1392
GLdouble GLdouble GLdouble b
Definition: glew.h:8383
GLint GLint GLint GLint z
Definition: gl2ext.h:1214
GLint GLint GLint GLint GLint w
Definition: gl2ext.h:1215
#define Z_MEM_ERROR
Definition: zlib.h:138
int i
Definition: pngrutil.c:1377
uInt FAR uIntf
Definition: zconf.h:232
#define m(i, j)
#define FT_UNUSED(arg)
Definition: ftconfig.h:101
local const uInt fixed_bl
Definition: inffixed.h:10
struct inflate_huft_s FAR inflate_huft
Definition: inftrees.h:17
local int inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd, inflate_huft *FAR *tl, inflate_huft *FAR *td, inflate_huft *hp, z_streamp z)
Definition: inftrees.c:327
const GLdouble * m
Definition: glew.h:8385