zenilib  0.5.3.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
e_pow.c
Go to the documentation of this file.
1 /* @(#)e_pow.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #if defined(LIBM_SCCS) && !defined(lint)
14 static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
15 #endif
16 
17 /* __ieee754_pow(x,y) return x**y
18  *
19  * n
20  * Method: Let x = 2 * (1+f)
21  * 1. Compute and return log2(x) in two pieces:
22  * log2(x) = w1 + w2,
23  * where w1 has 53-24 = 29 bit trailing zeros.
24  * 2. Perform y*log2(x) = n+y' by simulating muti-precision
25  * arithmetic, where |y'|<=0.5.
26  * 3. Return x**y = 2**n*exp(y'*log2)
27  *
28  * Special cases:
29  * 1. (anything) ** 0 is 1
30  * 2. (anything) ** 1 is itself
31  * 3. (anything) ** NAN is NAN
32  * 4. NAN ** (anything except 0) is NAN
33  * 5. +-(|x| > 1) ** +INF is +INF
34  * 6. +-(|x| > 1) ** -INF is +0
35  * 7. +-(|x| < 1) ** +INF is +0
36  * 8. +-(|x| < 1) ** -INF is +INF
37  * 9. +-1 ** +-INF is NAN
38  * 10. +0 ** (+anything except 0, NAN) is +0
39  * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
40  * 12. +0 ** (-anything except 0, NAN) is +INF
41  * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
42  * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
43  * 15. +INF ** (+anything except 0,NAN) is +INF
44  * 16. +INF ** (-anything except 0,NAN) is +0
45  * 17. -INF ** (anything) = -0 ** (-anything)
46  * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
47  * 19. (-anything except 0 and inf) ** (non-integer) is NAN
48  *
49  * Accuracy:
50  * pow(x,y) returns x**y nearly rounded. In particular
51  * pow(integer,integer)
52  * always returns the correct integer provided it is
53  * representable.
54  *
55  * Constants :
56  * The hexadecimal values are the intended ones for the following
57  * constants. The decimal values may be used, provided that the
58  * compiler will convert from decimal to binary accurately enough
59  * to produce the hexadecimal values shown.
60  */
61 
62 #include "math_libm.h"
63 #include "math_private.h"
64 
67 #ifdef __STDC__
68  static const double
69 #else
70  static double
71 #endif
72  bp[] = { 1.0, 1.5, }, dp_h[] = {
73  0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
74 
75  dp_l[] = {
76  0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
77 
78  zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
79  huge_val = 1.0e300, tiny = 1.0e-300,
80  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
81  L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
82  L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
83  L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
84  L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
85  L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
86  L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
87  P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
88  P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
89  P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
90  P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
91  P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
92  lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
93  lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
94  lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
95  ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
96  cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
97  cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
98  cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
99  ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
100  ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
101  ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */
102 
103 #ifdef __STDC__
104  double attribute_hidden __ieee754_pow(double x, double y)
105 #else
107  double x, y;
108 #endif
109  {
110  double z, ax, z_h, z_l, p_h, p_l;
111  double y1, t1, t2, r, s, t, u, v, w;
112  int32_t i, j, k, yisint, n;
113  int32_t hx, hy, ix, iy;
114  u_int32_t lx, ly;
115 
116  EXTRACT_WORDS(hx, lx, x);
117  EXTRACT_WORDS(hy, ly, y);
118  ix = hx & 0x7fffffff;
119  iy = hy & 0x7fffffff;
120 
121  /* y==zero: x**0 = 1 */
122  if ((iy | ly) == 0)
123  return one;
124 
125  /* +-NaN return x+y */
126  if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
127  iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
128  return x + y;
129 
130  /* determine if y is an odd int when x < 0
131  * yisint = 0 ... y is not an integer
132  * yisint = 1 ... y is an odd int
133  * yisint = 2 ... y is an even int
134  */
135  yisint = 0;
136  if (hx < 0) {
137  if (iy >= 0x43400000)
138  yisint = 2; /* even integer y */
139  else if (iy >= 0x3ff00000) {
140  k = (iy >> 20) - 0x3ff; /* exponent */
141  if (k > 20) {
142  j = ly >> (52 - k);
143  if ((j << (52 - k)) == ly)
144  yisint = 2 - (j & 1);
145  } else if (ly == 0) {
146  j = iy >> (20 - k);
147  if ((j << (20 - k)) == iy)
148  yisint = 2 - (j & 1);
149  }
150  }
151  }
152 
153  /* special value of y */
154  if (ly == 0) {
155  if (iy == 0x7ff00000) { /* y is +-inf */
156  if (((ix - 0x3ff00000) | lx) == 0)
157  return y - y; /* inf**+-1 is NaN */
158  else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
159  return (hy >= 0) ? y : zero;
160  else /* (|x|<1)**-,+inf = inf,0 */
161  return (hy < 0) ? -y : zero;
162  }
163  if (iy == 0x3ff00000) { /* y is +-1 */
164  if (hy < 0)
165  return one / x;
166  else
167  return x;
168  }
169  if (hy == 0x40000000)
170  return x * x; /* y is 2 */
171  if (hy == 0x3fe00000) { /* y is 0.5 */
172  if (hx >= 0) /* x >= +0 */
173  return __ieee754_sqrt(x);
174  }
175  }
176 
177  ax = fabs(x);
178  /* special value of x */
179  if (lx == 0) {
180  if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
181  z = ax; /* x is +-0,+-inf,+-1 */
182  if (hy < 0)
183  z = one / z; /* z = (1/|x|) */
184  if (hx < 0) {
185  if (((ix - 0x3ff00000) | yisint) == 0) {
186  z = (z - z) / (z - z); /* (-1)**non-int is NaN */
187  } else if (yisint == 1)
188  z = -z; /* (x<0)**odd = -(|x|**odd) */
189  }
190  return z;
191  }
192  }
193 
194  /* (x<0)**(non-int) is NaN */
195  if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
196  return (x - x) / (x - x);
197 
198  /* |y| is huge */
199  if (iy > 0x41e00000) { /* if |y| > 2**31 */
200  if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
201  if (ix <= 0x3fefffff)
202  return (hy < 0) ? huge_val * huge_val : tiny * tiny;
203  if (ix >= 0x3ff00000)
204  return (hy > 0) ? huge_val * huge_val : tiny * tiny;
205  }
206  /* over/underflow if x is not close to one */
207  if (ix < 0x3fefffff)
208  return (hy < 0) ? huge_val * huge_val : tiny * tiny;
209  if (ix > 0x3ff00000)
210  return (hy > 0) ? huge_val * huge_val : tiny * tiny;
211  /* now |1-x| is tiny <= 2**-20, suffice to compute
212  log(x) by x-x^2/2+x^3/3-x^4/4 */
213  t = x - 1; /* t has 20 trailing zeros */
214  w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
215  u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
216  v = t * ivln2_l - w * ivln2;
217  t1 = u + v;
218  SET_LOW_WORD(t1, 0);
219  t2 = v - (t1 - u);
220  } else {
221  double s2, s_h, s_l, t_h, t_l;
222  n = 0;
223  /* take care subnormal number */
224  if (ix < 0x00100000) {
225  ax *= two53;
226  n -= 53;
227  GET_HIGH_WORD(ix, ax);
228  }
229  n += ((ix) >> 20) - 0x3ff;
230  j = ix & 0x000fffff;
231  /* determine interval */
232  ix = j | 0x3ff00000; /* normalize ix */
233  if (j <= 0x3988E)
234  k = 0; /* |x|<sqrt(3/2) */
235  else if (j < 0xBB67A)
236  k = 1; /* |x|<sqrt(3) */
237  else {
238  k = 0;
239  n += 1;
240  ix -= 0x00100000;
241  }
242  SET_HIGH_WORD(ax, ix);
243 
244  /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
245  u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
246  v = one / (ax + bp[k]);
247  s = u * v;
248  s_h = s;
249  SET_LOW_WORD(s_h, 0);
250  /* t_h=ax+bp[k] High */
251  t_h = zero;
252  SET_HIGH_WORD(t_h,
253  ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
254  t_l = ax - (t_h - bp[k]);
255  s_l = v * ((u - s_h * t_h) - s_h * t_l);
256  /* compute log(ax) */
257  s2 = s * s;
258  r = s2 * s2 * (L1 +
259  s2 * (L2 +
260  s2 * (L3 +
261  s2 * (L4 + s2 * (L5 + s2 * L6)))));
262  r += s_l * (s_h + s);
263  s2 = s_h * s_h;
264  t_h = 3.0 + s2 + r;
265  SET_LOW_WORD(t_h, 0);
266  t_l = r - ((t_h - 3.0) - s2);
267  /* u+v = s*(1+...) */
268  u = s_h * t_h;
269  v = s_l * t_h + t_l * s;
270  /* 2/(3log2)*(s+...) */
271  p_h = u + v;
272  SET_LOW_WORD(p_h, 0);
273  p_l = v - (p_h - u);
274  z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
275  z_l = cp_l * p_h + p_l * cp + dp_l[k];
276  /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
277  t = (double) n;
278  t1 = (((z_h + z_l) + dp_h[k]) + t);
279  SET_LOW_WORD(t1, 0);
280  t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
281  }
282 
283  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
284  if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
285  s = -one; /* (-ve)**(odd int) */
286 
287  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
288  y1 = y;
289  SET_LOW_WORD(y1, 0);
290  p_l = (y - y1) * t1 + y * t2;
291  p_h = y1 * t1;
292  z = p_l + p_h;
293  EXTRACT_WORDS(j, i, z);
294  if (j >= 0x40900000) { /* z >= 1024 */
295  if (((j - 0x40900000) | i) != 0) /* if z > 1024 */
296  return s * huge_val * huge_val; /* overflow */
297  else {
298  if (p_l + ovt > z - p_h)
299  return s * huge_val * huge_val; /* overflow */
300  }
301  } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
302  if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */
303  return s * tiny * tiny; /* underflow */
304  else {
305  if (p_l <= z - p_h)
306  return s * tiny * tiny; /* underflow */
307  }
308  }
309  /*
310  * compute 2**(p_h+p_l)
311  */
312  i = j & 0x7fffffff;
313  k = (i >> 20) - 0x3ff;
314  n = 0;
315  if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
316  n = j + (0x00100000 >> (k + 1));
317  k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
318  t = zero;
319  SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
320  n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
321  if (j < 0)
322  n = -n;
323  p_h -= t;
324  }
325  t = p_l + p_h;
326  SET_LOW_WORD(t, 0);
327  u = t * lg2_h;
328  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
329  z = u + v;
330  w = v - (z - u);
331  t = z * z;
332  t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
333  r = (z * t1) / (t1 - two) - (w + z * w);
334  z = one - (r - z);
335  GET_HIGH_WORD(j, z);
336  j += (n << 20);
337  if ((j >> 20) <= 0)
338  z = scalbn(z, n); /* subnormal output */
339  else
340  SET_HIGH_WORD(z, j);
341  return s * z;
342  }
static double two53
Definition: e_pow.c:78
#define GET_HIGH_WORD(i, d)
Definition: math_private.h:102
#define __ieee754_pow
Definition: math_private.h:39
static double dp_h[]
Definition: e_pow.c:72
static double ivln2_h
Definition: e_pow.c:100
GLdouble s
Definition: glew.h:1376
static double L5
Definition: e_pow.c:85
t2
Definition: e_log.c:151
int32_t k
Definition: e_log.c:102
static double zero
Definition: e_pow.c:78
GLclampd n
Definition: glew.h:7287
static double huge_val
Definition: e_pow.c:79
EGLSurface EGLint x
Definition: eglext.h:293
GLdouble GLdouble t
Definition: glew.h:1384
int32_t j
Definition: e_log.c:102
static double one
Definition: e_pow.c:78
long int32_t
Definition: types.h:9
GLuint GLfloat GLfloat GLfloat GLfloat y1
Definition: glew.h:11582
#define __ieee754_sqrt
Definition: math_private.h:42
#define SET_HIGH_WORD(d, v)
Definition: math_private.h:130
static double ivln2
Definition: e_pow.c:99
SET_LOW_WORD(z, low)
static double L6
Definition: e_pow.c:86
GLuint GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat GLfloat t1
Definition: glew.h:11582
static double two
Definition: e_pow.c:78
static double L2
Definition: e_pow.c:82
unsigned int u_int32_t
Definition: math_private.h:29
ALuint u
Definition: alMain.h:58
const GLdouble * v
Definition: glew.h:1377
static double P1
Definition: e_pow.c:87
#define EXTRACT_WORDS(ix0, ix1, d)
Definition: math_private.h:92
static double L4
Definition: e_pow.c:84
static double ivln2_l
Definition: e_pow.c:101
static double lg2_l
Definition: e_pow.c:94
static double L1
Definition: e_pow.c:81
static double lg2
Definition: e_pow.c:92
static double bp[]
Definition: e_pow.c:72
static double tiny
Definition: e_pow.c:79
EGLSurface EGLint EGLint y
Definition: eglext.h:293
static double dp_l[]
Definition: e_pow.c:75
int32_t hx
Definition: e_log.c:102
double attribute_hidden
int32_t ix
Definition: e_rem_pio2.c:100
u_int32_t lx
Definition: e_log.c:105
#define libm_hidden_proto(x)
Definition: math_private.h:25
static double P2
Definition: e_pow.c:88
static double P3
Definition: e_pow.c:89
GLdouble GLdouble GLdouble r
Definition: glew.h:1392
GLint GLint GLint GLint z
Definition: gl2ext.h:1214
static double L3
Definition: e_pow.c:83
GLint GLint GLint GLint GLint w
Definition: gl2ext.h:1215
int iy
Definition: k_sin.c:69
double scalbn(double x, int n)
Definition: s_scalbn.c:42
static double cp_l
Definition: e_pow.c:98
int i
Definition: pngrutil.c:1377
static double cp_h
Definition: e_pow.c:97
static double lg2_h
Definition: e_pow.c:93
static double P4
Definition: e_pow.c:90
double fabs(double x)
Definition: s_fabs.c:29
static double ovt
Definition: e_pow.c:95
static double cp
Definition: e_pow.c:96
static double P5
Definition: e_pow.c:91