zenilib  0.5.3.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
SDL_qsort.c
Go to the documentation of this file.
1 /* qsort.c
2  * (c) 1998 Gareth McCaughan
3  *
4  * This is a drop-in replacement for the C library's |qsort()| routine.
5  *
6  * Features:
7  * - Median-of-three pivoting (and more)
8  * - Truncation and final polishing by a single insertion sort
9  * - Early truncation when no swaps needed in pivoting step
10  * - Explicit recursion, guaranteed not to overflow
11  * - A few little wrinkles stolen from the GNU |qsort()|.
12  * - separate code for non-aligned / aligned / word-size objects
13  *
14  * This code may be reproduced freely provided
15  * - this file is retained unaltered apart from minor
16  * changes for portability and efficiency
17  * - no changes are made to this comment
18  * - any changes that *are* made are clearly flagged
19  * - the _ID string below is altered by inserting, after
20  * the date, the string " altered" followed at your option
21  * by other material. (Exceptions: you may change the name
22  * of the exported routine without changing the ID string.
23  * You may change the values of the macros TRUNC_* and
24  * PIVOT_THRESHOLD without changing the ID string, provided
25  * they remain constants with TRUNC_nonaligned, TRUNC_aligned
26  * and TRUNC_words/WORD_BYTES between 8 and 24, and
27  * PIVOT_THRESHOLD between 32 and 200.)
28  *
29  * You may use it in anything you like; you may make money
30  * out of it; you may distribute it in object form or as
31  * part of an executable without including source code;
32  * you don't have to credit me. (But it would be nice if
33  * you did.)
34  *
35  * If you find problems with this code, or find ways of
36  * making it significantly faster, please let me know!
37  * My e-mail address, valid as of early 1998 and certainly
38  * OK for at least the next 18 months, is
39  * gjm11@dpmms.cam.ac.uk
40  * Thanks!
41  *
42  * Gareth McCaughan Peterhouse Cambridge 1998
43  */
44 #include "SDL_config.h"
45 
46 /*
47 #include <assert.h>
48 #include <stdlib.h>
49 #include <string.h>
50 */
51 #include "SDL_stdinc.h"
52 #include "SDL_assert.h"
53 
54 #if defined(HAVE_QSORT)
55 void
56 SDL_qsort(void *base, size_t nmemb, size_t size, int (*compare) (const void *, const void *))
57 {
58  qsort(base, nmemb, size, compare);
59 }
60 #else
61 
62 #ifdef assert
63 #undef assert
64 #endif
65 #define assert(X) SDL_assert(X)
66 #ifdef malloc
67 #undef malloc
68 #endif
69 #define malloc SDL_malloc
70 #ifdef free
71 #undef free
72 #endif
73 #define free SDL_free
74 #ifdef memcpy
75 #undef memcpy
76 #endif
77 #define memcpy SDL_memcpy
78 #ifdef memmove
79 #undef memmove
80 #endif
81 #define memmove SDL_memmove
82 #ifdef qsort
83 #undef qsort
84 #endif
85 #define qsort SDL_qsort
86 
87 static const char _ID[] = "<qsort.c gjm 1.12 1998-03-19>";
88 
89 /* How many bytes are there per word? (Must be a power of 2,
90  * and must in fact equal sizeof(int).)
91  */
92 #define WORD_BYTES sizeof(int)
93 
94 /* How big does our stack need to be? Answer: one entry per
95  * bit in a |size_t|.
96  */
97 #define STACK_SIZE (8*sizeof(size_t))
98 
99 /* Different situations have slightly different requirements,
100  * and we make life epsilon easier by using different truncation
101  * points for the three different cases.
102  * So far, I have tuned TRUNC_words and guessed that the same
103  * value might work well for the other two cases. Of course
104  * what works well on my machine might work badly on yours.
105  */
106 #define TRUNC_nonaligned 12
107 #define TRUNC_aligned 12
108 #define TRUNC_words 12*WORD_BYTES /* nb different meaning */
109 
110 /* We use a simple pivoting algorithm for shortish sub-arrays
111  * and a more complicated one for larger ones. The threshold
112  * is PIVOT_THRESHOLD.
113  */
114 #define PIVOT_THRESHOLD 40
115 
116 typedef struct
117 {
118  char *first;
119  char *last;
120 } stack_entry;
121 #define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
122 #define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
123 #define doLeft {first=ffirst;llast=last;continue;}
124 #define doRight {ffirst=first;last=llast;continue;}
125 #define pop {if (--stacktop<0) break;\
126  first=ffirst=stack[stacktop].first;\
127  last=llast=stack[stacktop].last;\
128  continue;}
129 
130 /* Some comments on the implementation.
131  * 1. When we finish partitioning the array into "low"
132  * and "high", we forget entirely about short subarrays,
133  * because they'll be done later by insertion sort.
134  * Doing lots of little insertion sorts might be a win
135  * on large datasets for locality-of-reference reasons,
136  * but it makes the code much nastier and increases
137  * bookkeeping overhead.
138  * 2. We always save the shorter and get to work on the
139  * longer. This guarantees that every time we push
140  * an item onto the stack its size is <= 1/2 of that
141  * of its parent; so the stack can't need more than
142  * log_2(max-array-size) entries.
143  * 3. We choose a pivot by looking at the first, last
144  * and middle elements. We arrange them into order
145  * because it's easy to do that in conjunction with
146  * choosing the pivot, and it makes things a little
147  * easier in the partitioning step. Anyway, the pivot
148  * is the middle of these three. It's still possible
149  * to construct datasets where the algorithm takes
150  * time of order n^2, but it simply never happens in
151  * practice.
152  * 3' Newsflash: On further investigation I find that
153  * it's easy to construct datasets where median-of-3
154  * simply isn't good enough. So on large-ish subarrays
155  * we do a more sophisticated pivoting: we take three
156  * sets of 3 elements, find their medians, and then
157  * take the median of those.
158  * 4. We copy the pivot element to a separate place
159  * because that way we can always do our comparisons
160  * directly against a pointer to that separate place,
161  * and don't have to wonder "did we move the pivot
162  * element?". This makes the inner loop better.
163  * 5. It's possible to make the pivoting even more
164  * reliable by looking at more candidates when n
165  * is larger. (Taking this to its logical conclusion
166  * results in a variant of quicksort that doesn't
167  * have that n^2 worst case.) However, the overhead
168  * from the extra bookkeeping means that it's just
169  * not worth while.
170  * 6. This is pretty clean and portable code. Here are
171  * all the potential portability pitfalls and problems
172  * I know of:
173  * - In one place (the insertion sort) I construct
174  * a pointer that points just past the end of the
175  * supplied array, and assume that (a) it won't
176  * compare equal to any pointer within the array,
177  * and (b) it will compare equal to a pointer
178  * obtained by stepping off the end of the array.
179  * These might fail on some segmented architectures.
180  * - I assume that there are 8 bits in a |char| when
181  * computing the size of stack needed. This would
182  * fail on machines with 9-bit or 16-bit bytes.
183  * - I assume that if |((int)base&(sizeof(int)-1))==0|
184  * and |(size&(sizeof(int)-1))==0| then it's safe to
185  * get at array elements via |int*|s, and that if
186  * actually |size==sizeof(int)| as well then it's
187  * safe to treat the elements as |int|s. This might
188  * fail on systems that convert pointers to integers
189  * in non-standard ways.
190  * - I assume that |8*sizeof(size_t)<=INT_MAX|. This
191  * would be false on a machine with 8-bit |char|s,
192  * 16-bit |int|s and 4096-bit |size_t|s. :-)
193  */
194 
195 /* The recursion logic is the same in each case: */
196 #define Recurse(Trunc) \
197  { size_t l=last-ffirst,r=llast-first; \
198  if (l<Trunc) { \
199  if (r>=Trunc) doRight \
200  else pop \
201  } \
202  else if (l<=r) { pushLeft; doRight } \
203  else if (r>=Trunc) { pushRight; doLeft }\
204  else doLeft \
205  }
206 
207 /* and so is the pivoting logic: */
208 #define Pivot(swapper,sz) \
209  if ((size_t)(last-first)>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
210  else { \
211  if (compare(first,mid)<0) { \
212  if (compare(mid,last)>0) { \
213  swapper(mid,last); \
214  if (compare(first,mid)>0) swapper(first,mid);\
215  } \
216  } \
217  else { \
218  if (compare(mid,last)>0) swapper(first,last)\
219  else { \
220  swapper(first,mid); \
221  if (compare(mid,last)>0) swapper(mid,last);\
222  } \
223  } \
224  first+=sz; last-=sz; \
225  }
226 
227 #ifdef DEBUG_QSORT
228 #include <stdio.h>
229 #endif
230 
231 /* and so is the partitioning logic: */
232 #define Partition(swapper,sz) { \
233  int swapped=0; \
234  do { \
235  while (compare(first,pivot)<0) first+=sz; \
236  while (compare(pivot,last)<0) last-=sz; \
237  if (first<last) { \
238  swapper(first,last); swapped=1; \
239  first+=sz; last-=sz; } \
240  else if (first==last) { first+=sz; last-=sz; break; }\
241  } while (first<=last); \
242  if (!swapped) pop \
243 }
244 
245 /* and so is the pre-insertion-sort operation of putting
246  * the smallest element into place as a sentinel.
247  * Doing this makes the inner loop nicer. I got this
248  * idea from the GNU implementation of qsort().
249  */
250 #define PreInsertion(swapper,limit,sz) \
251  first=base; \
252  last=first + (nmemb>limit ? limit : nmemb-1)*sz;\
253  while (last!=base) { \
254  if (compare(first,last)>0) first=last; \
255  last-=sz; } \
256  if (first!=base) swapper(first,(char*)base);
257 
258 /* and so is the insertion sort, in the first two cases: */
259 #define Insertion(swapper) \
260  last=((char*)base)+nmemb*size; \
261  for (first=((char*)base)+size;first!=last;first+=size) { \
262  char *test; \
263  /* Find the right place for |first|. \
264  * My apologies for var reuse. */ \
265  for (test=first-size;compare(test,first)>0;test-=size) ; \
266  test+=size; \
267  if (test!=first) { \
268  /* Shift everything in [test,first) \
269  * up by one, and place |first| \
270  * where |test| is. */ \
271  memcpy(pivot,first,size); \
272  memmove(test+size,test,first-test); \
273  memcpy(test,pivot,size); \
274  } \
275  }
276 
277 #define SWAP_nonaligned(a,b) { \
278  register char *aa=(a),*bb=(b); \
279  register size_t sz=size; \
280  do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
281 
282 #define SWAP_aligned(a,b) { \
283  register int *aa=(int*)(a),*bb=(int*)(b); \
284  register size_t sz=size; \
285  do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
286 
287 #define SWAP_words(a,b) { \
288  register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
289 
290 /* ---------------------------------------------------------------------- */
291 
292 static char *
293 pivot_big(char *first, char *mid, char *last, size_t size,
294  int compare(const void *, const void *))
295 {
296  size_t d = (((last - first) / size) >> 3) * size;
297  char *m1, *m2, *m3;
298  {
299  char *a = first, *b = first + d, *c = first + 2 * d;
300 #ifdef DEBUG_QSORT
301  fprintf(stderr, "< %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
302 #endif
303  m1 = compare(a, b) < 0 ?
304  (compare(b, c) < 0 ? b : (compare(a, c) < 0 ? c : a))
305  : (compare(a, c) < 0 ? a : (compare(b, c) < 0 ? c : b));
306  }
307  {
308  char *a = mid - d, *b = mid, *c = mid + d;
309 #ifdef DEBUG_QSORT
310  fprintf(stderr, ". %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
311 #endif
312  m2 = compare(a, b) < 0 ?
313  (compare(b, c) < 0 ? b : (compare(a, c) < 0 ? c : a))
314  : (compare(a, c) < 0 ? a : (compare(b, c) < 0 ? c : b));
315  }
316  {
317  char *a = last - 2 * d, *b = last - d, *c = last;
318 #ifdef DEBUG_QSORT
319  fprintf(stderr, "> %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
320 #endif
321  m3 = compare(a, b) < 0 ?
322  (compare(b, c) < 0 ? b : (compare(a, c) < 0 ? c : a))
323  : (compare(a, c) < 0 ? a : (compare(b, c) < 0 ? c : b));
324  }
325 #ifdef DEBUG_QSORT
326  fprintf(stderr, "-> %d %d %d\n", *(int *) m1, *(int *) m2, *(int *) m3);
327 #endif
328  return compare(m1, m2) < 0 ?
329  (compare(m2, m3) < 0 ? m2 : (compare(m1, m3) < 0 ? m3 : m1))
330  : (compare(m1, m3) < 0 ? m1 : (compare(m2, m3) < 0 ? m3 : m2));
331 }
332 
333 /* ---------------------------------------------------------------------- */
334 
335 static void
336 qsort_nonaligned(void *base, size_t nmemb, size_t size,
337  int (*compare) (const void *, const void *))
338 {
339 
340  stack_entry stack[STACK_SIZE];
341  int stacktop = 0;
342  char *first, *last;
343  char *pivot = malloc(size);
344  size_t trunc = TRUNC_nonaligned * size;
345  assert(pivot != 0);
346 
347  first = (char *) base;
348  last = first + (nmemb - 1) * size;
349 
350  if ((size_t) (last - first) > trunc) {
351  char *ffirst = first, *llast = last;
352  while (1) {
353  /* Select pivot */
354  {
355  char *mid = first + size * ((last - first) / size >> 1);
356  Pivot(SWAP_nonaligned, size);
357  memcpy(pivot, mid, size);
358  }
359  /* Partition. */
360  Partition(SWAP_nonaligned, size);
361  /* Prepare to recurse/iterate. */
362  Recurse(trunc)}
363  }
366  free(pivot);
367 }
368 
369 static void
370 qsort_aligned(void *base, size_t nmemb, size_t size,
371  int (*compare) (const void *, const void *))
372 {
373 
374  stack_entry stack[STACK_SIZE];
375  int stacktop = 0;
376  char *first, *last;
377  char *pivot = malloc(size);
378  size_t trunc = TRUNC_aligned * size;
379  assert(pivot != 0);
380 
381  first = (char *) base;
382  last = first + (nmemb - 1) * size;
383 
384  if ((size_t) (last - first) > trunc) {
385  char *ffirst = first, *llast = last;
386  while (1) {
387  /* Select pivot */
388  {
389  char *mid = first + size * ((last - first) / size >> 1);
390  Pivot(SWAP_aligned, size);
391  memcpy(pivot, mid, size);
392  }
393  /* Partition. */
394  Partition(SWAP_aligned, size);
395  /* Prepare to recurse/iterate. */
396  Recurse(trunc)}
397  }
400  free(pivot);
401 }
402 
403 static void
404 qsort_words(void *base, size_t nmemb,
405  int (*compare) (const void *, const void *))
406 {
407 
408  stack_entry stack[STACK_SIZE];
409  int stacktop = 0;
410  char *first, *last;
411  char *pivot = malloc(WORD_BYTES);
412  assert(pivot != 0);
413 
414  first = (char *) base;
415  last = first + (nmemb - 1) * WORD_BYTES;
416 
417  if (last - first > TRUNC_words) {
418  char *ffirst = first, *llast = last;
419  while (1) {
420 #ifdef DEBUG_QSORT
421  fprintf(stderr, "Doing %d:%d: ",
422  (first - (char *) base) / WORD_BYTES,
423  (last - (char *) base) / WORD_BYTES);
424 #endif
425  /* Select pivot */
426  {
427  char *mid =
428  first + WORD_BYTES * ((last - first) / (2 * WORD_BYTES));
430  *(int *) pivot = *(int *) mid;
431  }
432 #ifdef DEBUG_QSORT
433  fprintf(stderr, "pivot=%d\n", *(int *) pivot);
434 #endif
435  /* Partition. */
437  /* Prepare to recurse/iterate. */
439  }
441  /* Now do insertion sort. */
442  last = ((char *) base) + nmemb * WORD_BYTES;
443  for (first = ((char *) base) + WORD_BYTES; first != last;
444  first += WORD_BYTES) {
445  /* Find the right place for |first|. My apologies for var reuse */
446  int *pl = (int *) (first - WORD_BYTES), *pr = (int *) first;
447  *(int *) pivot = *(int *) first;
448  for (; compare(pl, pivot) > 0; pr = pl, --pl) {
449  *pr = *pl;
450  }
451  if (pr != (int *) first)
452  *pr = *(int *) pivot;
453  }
454  free(pivot);
455 }
456 
457 /* ---------------------------------------------------------------------- */
458 
459 void
460 qsort(void *base, size_t nmemb, size_t size,
461  int (*compare) (const void *, const void *))
462 {
463 
464  if (nmemb <= 1)
465  return;
466  if (((uintptr_t) base | size) & (WORD_BYTES - 1))
467  qsort_nonaligned(base, nmemb, size, compare);
468  else if (size != WORD_BYTES)
469  qsort_aligned(base, nmemb, size, compare);
470  else
471  qsort_words(base, nmemb, compare);
472 }
473 
474 #endif /* !SDL_qsort */
475 
476 /* vi: set ts=4 sw=4 expandtab: */
#define SWAP_aligned(a, b)
Definition: SDL_qsort.c:282
static const char _ID[]
Definition: SDL_qsort.c:87
#define WORD_BYTES
Definition: SDL_qsort.c:92
#define TRUNC_aligned
Definition: SDL_qsort.c:107
#define PreInsertion(swapper, limit, sz)
Definition: SDL_qsort.c:250
#define memcpy
Definition: SDL_qsort.c:77
#define Pivot(swapper, sz)
Definition: SDL_qsort.c:208
GLboolean GLboolean GLboolean GLboolean a
Definition: glew.h:8736
return Display return Display Bool Bool int d
Definition: SDL_x11sym.h:30
#define SWAP_words(a, b)
Definition: SDL_qsort.c:287
#define STACK_SIZE
Definition: SDL_qsort.c:97
static char * pivot_big(char *first, char *mid, char *last, size_t size, int compare(const void *, const void *))
Definition: SDL_qsort.c:293
#define free
Definition: SDL_malloc.c:638
GLint first
Definition: gl2ext.h:1011
#define Recurse(Trunc)
Definition: SDL_qsort.c:196
static void qsort_nonaligned(void *base, size_t nmemb, size_t size, int(*compare)(const void *, const void *))
Definition: SDL_qsort.c:336
#define TRUNC_nonaligned
Definition: SDL_qsort.c:106
const GLfloat * c
Definition: glew.h:14913
#define assert(X)
Definition: SDL_qsort.c:65
#define SWAP_nonaligned(a, b)
Definition: SDL_qsort.c:277
unsigned int uintptr_t
static void qsort_words(void *base, size_t nmemb, int(*compare)(const void *, const void *))
Definition: SDL_qsort.c:404
#define TRUNC_words
Definition: SDL_qsort.c:108
#define Insertion(swapper)
Definition: SDL_qsort.c:259
#define qsort
Definition: SDL_qsort.c:85
GLdouble GLdouble GLdouble b
Definition: glew.h:8383
DECLSPEC void SDLCALL SDL_qsort(void *base, size_t nmemb, size_t size, int(*compare)(const void *, const void *))
#define Partition(swapper, sz)
Definition: SDL_qsort.c:232
#define malloc
Definition: SDL_qsort.c:69
static void qsort_aligned(void *base, size_t nmemb, size_t size, int(*compare)(const void *, const void *))
Definition: SDL_qsort.c:370
GLsizei size
Definition: gl2ext.h:1467