Relational Blocks World Experiments in Carli

Mitchell Keith Bloch

University of Michigan
2260 Hayward Street
Ann Arbor, MI. 48109-2121
bazald@umich.edu

June 4, 2015
Carli ≠ Soar – https://github.com/bazald/carli

What’s offered:

- A Soar-like execution cycle
What’s offered:

- A Soar-like execution cycle

Meaning:

1. `^io.input-link`
2. elaboration cycle
3. numeric preferences (and implicit operator proposal)
4. decide
 - impasses
5. act
Carli ≠ Soar – https://github.com/bazald/carli

What’s offered:
- A Soar-like execution cycle
- Soar-RL-like reinforcement learning support
- Architectural support for efficiently creating more specific RL-rules over time – a generative model for a value function

What’s missing or different:
- Manipulating WMEs from the RHS has not been tested yet
- Operators (as you know them) and impasses do not exist
- SMem, EpMem, and SVS do not exist
Carli ≠ Soar – https://github.com/bazald/carli

What’s offered:

- A Soar-like execution cycle
- Soar-RL-like reinforcement learning support
- Architectural support for efficiently creating more specific RL-rules over time – a generative model for a value function

What’s missing or different:

- Manipulating WMEs from the RHS has not been tested yet
- Operators (as you know them) and impasses do not exist
- SMem, EpMem, and SVS do not exist
Reinforcement Learning, Part I of II

- Must learn how to act, given experience perceiving states, trying actions, and receiving rewards
- Explore with an ϵ-greedy exploration strategy
- At the most abstract:
 - $\pi(s, a)$ represents the target policy
 - $\phi(i)$ represents the set of possible features
 - $\theta(i)$ stores weights which sum to provide value estimates for different actions
Reinforcement Learning, Part II of II

- Learn using Sarsa(λ), Q(λ), or GQ(λ)
 - On-policy: Can maximize over the exploration policy
 - Off-policy: Or over the target—typically greedy—policy
- Actions can be compared using estimates of discounted return

$$\sum_{t=0}^{\infty} \text{discount_rate}^t \cdot \text{reward}_t$$
Temporal Difference Methods

Briefly:

- **On-policy—Sarsa:** \(Q(s, a) \leftarrow r + \gamma Q(s', a') \)
- **Off-policy—Q-learning:** \(Q(s, a) \leftarrow r + \gamma \max_{a^*} Q(s', a^*) \)
- **Modern—GQ(\(\lambda\))**: More elaborate

Listen to my next talk!
Relational Reinforcement Learning

- Each state is described by a set of relations, such as \(<\text{stack}> \top \text{top} <\text{block}>\)
- Each feature in \(\phi(i)\) represents a conjunction of any number of such relations
- Value function computation could dominate CPU time since variable bindings are expensive
- The Rete algorithm can be used
 - It was designed for expert system rules
 - Handles variable bindings very efficiently
 - CPU time proportional to changes in environment rather than the total size of the environment
 - Shares work between similar rules
Given $\phi(i)$, $\theta(i)$, and other metadata, which features are most likely to improve the value function?

Many approaches have been explored. We’ve explored the following criteria:

- Cumulative Absolute Temporal Difference Error
- Policy – Maximal change in $\pi(s, a)$
- Value – Maximal change in $\theta(i)$
Typical Relational Blocks World

Typical state description visual

- No direct knowledge of the goal presented by the environment
- All knowledge comes from the reward function
- Only simple training goals possible for variable configurations
 - Place all blocks on the table
 - Place one specific block on one other block
 - Create a tower of a certain height
My Relational Blocks World

Blocks
Complete state description visual

Goal

- Full representation of the goal presented by the environment
- Significantly more complex training goal
 - Must test more than one relation
sp {blocks-world*rl-fringe*s38
 :feature 3 split blocks-world*rl-fringe*s16
 (<s> ^blocks <blocks>)
 (<s> ^goal <goal>)
 :
 # Rule abbreviated
 -{(<goal> ^stack <goal-stack>)
 (<stack> ^matches <goal-stack>)}
 +{(<goal> ^stack <goal-stack>)
 (<dest-stack> ^matches <goal-stack>)}
 -->
 = 0.3290046905701842217
}
A Carli Agent

- Executes quickly, using a rete implementation for its value function
- Learns using the TD methods we described earlier
- Tackles the problem of feature selection
 - Which conditions to add to new RL-rules, i.e.
 \[+\{(<\text{goal}> \ ^{\text{stack}} \ <\text{goal-stack}>)\]
 \[(<\text{dest-stack}> \ ^{\text{matches}} \ <\text{goal-stack}>)\}\]
- Efficiently adds new rules to the rete using the chosen conditions
Results – Rete Scaling for a Value Function

![Graph showing CPU time in \(\log_{10}(\mu s) \) vs. number of blocks for different scaling methods.]

- Full Deoptimization
- Disabled Node Sharing
- Flushing WMEs
- Optimized
Using a learned policy:

- Test scalability of the Rete when reasoning over complex relations
- The deoptimized Rete takes 100 seconds per move at 26 blocks
- The optimized Rete takes only 1 second per move at 26 blocks
 - 16 blocks is the cutoff for reasoning in 50 ms
 - With 10 blocks, 100 moves take half a second
- This is quite fast, and it’s actually a degenerate, bad case for Rete
 - Multivalued block and stack attributes cause exponential explosions
Results – Flat / Non-Hierarchical

![Graph showing cumulative reward and CPU time over step number for Flat/Non-Hierarchical Blocks World experiments.](image)
Results – Full Hierarchy

![Graph showing cumulative reward and CPU time for different step numbers and episode counts. The graph exhibits trends in cumulative reward and CPU time across various step numbers, with distinct lines for different episode counts. The x-axis represents the step number, ranging from 0 to 5,000, while the y-axis shows the cumulative reward and CPU time, ranging from -500 to 2,000 and 0.0 to 2.0, respectively.]
Results – Value Criterion
Results – Policy Criterion

Cumulative Reward / # Episodes

Step Number

CPU Time / Step (Milliseconds)

- Rel Policy
- Mixed Policy
- Prop Policy
- CPU: Rel Policy
- CPU: Mixed Policy
- CPU: Prop Policy

Mitchell Keith Bloch (University of Michigan) Relational Blocks World Experiments in Carli
We test the learning ability of our system
- With only inadequate propositional features
- With only good relational features
- With a mix of both

With only good relational features, all agents succeed quickly
Propositional features distract the agents to a degree, but all recover
- The flat agent handles the distractors the least well
Nuggets and Coal

Nuggets:
- Rete enables RRL agents to solve tasks quickly
- Dynamically specializing a value function has a negligible CPU cost, and the resulting suboptimality in the policy is temporary
- We have developed and implemented a rule grammar to specify dynamically specializable relational reinforcement learning agents

Coal:
- Could still improve our feature selection criteria
- Haven’t yet implemented sophisticated restructuring of the value function
- A higher order grammar for adding variables and new relations using these variables would be helpful
- Not a part of Soar