Heuristic Value Function Revision

Mitchell Keith Bloch and John Edwin Laird

University of Michigan
2260 Hayward Street
Ann Arbor, MI. 48109-2121
bazald@umich.edu and laird@umich.edu

June 20, 2012
Motivation

- Possible to specify an arbitrary value function in Soar
- No way to revise an existing value function because reinforcement learning always make a decision
- **Given the opportunity, it may be possible to improve a value function as specified by RL-rules**
Reinforcement Learning

- Prefer actions leading to positive rewards to actions leading to negative rewards
- Outcomes are characterized as a discounted return, \(\sum_{t=0}^{\infty} \gamma^t r_t \)
- Deriving correct estimates of these returns is integral to many RL algorithms
 - What is essential, however, is learning an optimal policy
- Q-learning and Sarsa in the simplest case map \(S \times A \Rightarrow Q \) in a one-to-one fashion
Soar-RL

- Conditions on RL-rules encode which features to test and how to discretize continuous state, defining the mapping $S \times A \Rightarrow Q$.
Soar-RL

- Conditions on RL-rules encode which features to test and how to discretize continuous state, defining the mapping $S \times A \Rightarrow Q$
 - Can be one-to-one (if no continuous space)
Soar-RL

Conditions on RL-rules encode which features to test and how to discretize continuous state, defining the mapping $S \times A \Rightarrow Q$

- Can be one-to-one (if no continuous space)
- Can use coarse coding
Soar-RL

- Conditions on RL-rules encode which features to test and how to discretize continuous state, defining the mapping $S \times A \Rightarrow Q$
 - Can be one-to-one (if no continuous space)
 - Can use coarse coding
 - Potentially arbitrary, non-uniform abstraction
Soar-RL

- Conditions on RL-rules encode which features to test and how to discretize continuous state, defining the mapping $S \times A \Rightarrow Q$
 - Can be one-to-one (if no continuous space)
 - Can use coarse coding
 - Potentially arbitrary, non-uniform abstraction
- Traditionally bootstrapped from values set before execution, e.g. 0
 - Can be done simply with GPs or templates
 - Work in John’s talk uses chunking to take advantage of background knowledge instead, deciding ...
 - The mapping $S \times A \Rightarrow Q$
 - Initial Q-values
Decide

1. Reduce candidate set using non-numeric preferences
 - Possible to impasse here

2. Decide using numeric preferences (RL-rules)
 - Always results in a decision (will never impasse)
 - Cannot chunk new RL-rules to modify $S \times A \Rightarrow Q$
 - Prevents using overgeneral conditions early on to promote quick learning
 - Prevents adding conditions on relevant features which were previously believed to be irrelevant
[Munos and Moore, 2001] developed metadata to decide which Q-values...

- Might be important to split (influence)
- Are good candidates for changing values (variance)
Heuristic Value Function Revision

Beyond Initialization

Design Goals

- Initially Chunked RL-Rules
- Heuristically Triggered RL-Rules

- Specify initial value function
 - Condition on features of clear importance
 - Err on side of overgenerality to speed learning

- Track metadata until they indicate an opportunity to improve the value function

- Generate additional RL-rules in tie impasses until metadata indicate improvement
 - Generally condition RL-rules on a smaller part of the state space
blocks world (preliminary)

- Start with creating one RL-rule per move (e.g. A onto B)
- Tie impasse when variance is above a low threshold, 0.002
- Add RL-rules testing features (in-place, on-top)
- Achieved optimal consistently by 50 episodes, ignoring exploration
When Tie Impasses Occur

- Operators without numeric preferences can tie
 - Only acceptable preferences \rightarrow tie impasse
 - Multiple best, no better or worse preferences \rightarrow tie impasse
- Operators with numeric preferences (RL-rules) never tie
 - A somewhat random choice is always made
 - Of course, we can change this
Enabling Tie Impasses for RL-Rules

Figure: Depiction of Q-values, v_1 having high variance.

- Must track metadata which summarize experience on which a decision can be based
 - Values have high variance
 - Values have high influence
 - Other metrics...?
Build a Tie Impasse for RL-Rules

- Add subset of ^numeric (^tied <o> ^improve <o>) parallel to ^item <o> in the impasse state
 - ^tied indicates that the operator is involved in the tie
 - ^improve indicates that the operator needs a new preference to resolve the tie
 - Metadata may be exposed under ^numeric in future work, allowing the agent to reason about which preferences could resolve the impasse
Resolve Tie Impasse

- Figure: Depiction of Q-values, v_1 having high variance.

- Determine which preference(s) will resolve the impasse
 - The expected case is one RL-rule per operator
 - Current work just adds RL-rules with the value 0
Resolve Tie Impasse

Figure: Depiction of Q-values, v_1 now separated in different states

- Rely on chunking to allow improvement over time
 - Test a more complete set of features in blocks world
 - Test a smaller region of continuous state in cart pole
Nuggets and Coal

Nuggets:

- Tie impasses for RL-rules are happening (in a branch)
- Using a *simple* tie-detection procedure, blocks world can converge
- Code can be written fairly generally using an extended problem space description

Coal:

- Not currently achieving good performance in *cart pole*
- Open questions about general tie-detection procedure
 - Must balance need for improved discretization with need for experience
 - Must be feasible to resolve ties with RL-rules, including $= 0$