Problem 1. Tarun decided to run a marathon. However, he started off way too fast and so his speed decreased throughout the race. Below is a table showing how many miles he had run at various times during the race:

<table>
<thead>
<tr>
<th>time (min.)</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance (miles)</td>
<td>5</td>
<td>9</td>
<td>12.5</td>
<td>15.5</td>
<td>18.5</td>
<td>21</td>
<td>23.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

Let \(s(t) \) denote Tarun’s distance from the starting line (in miles) \(t \) minutes after the beginning of the race.

(a) What is the practical interpretation of \(s'(120) \) in the context of this problem? [3 pts.]

(b) Estimate \(s'(120) \). (Show your work.) [3 pts.]

(c) What is the practical interpretation of \(s^{-1}(7) \) in the context of this problem? [3 pts.]

(d) Estimate \(s^{-1}(7) \). [3 pts.]

(e) What does the derivative of \(s^{-1}(x) \) at \(x = 7 \) represent in the context of this problem? [3 pts.]

(f) Estimate the derivative of \(s^{-1}(x) \) at \(x = 7 \). [3 pts.]
Problem 2. Write the limit definition of $f'(a)$. [4 pts.]

Problem 3. Suppose f is a function with the following properties:
- f is continuous and has a derivative everywhere.
- $f'(x) < 0$ for all x in $[1, 5]$.
- $f''(x) > 0$ for all x in $[1, 5]$.
- $f(1) = 9$
- $f(5) = 3$

(a) Sketch a possible graph for f. [4 pts.]

(b) What is the average rate of change of $f(x)$ on the interval $1 \leq x \leq 5$? [3 pts.]

(c) Which is greater, $f'(2)$ or $f'(4)$? Explain. [3 pts.]

(d) What is the interval of all possible values for $f(3)$? Explain using the known properties of f. [4 pts.]

(e) What is the interval of all possible values for $f'(3)$? Explain. [4 pts.]