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Abstract Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface
when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700
to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms
of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the
efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly,
nitric oxide (NO) was producedmore efficiently in 20%H2 in spite of being a reducing agent and not likely to
increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave
raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen
fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial
concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2

−) and nitrate
(NO3

−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the
lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved
and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The
nitrogen content sharply decreases in younger sediments of the Murray formation suggesting a decline of H2

in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative
microbial life.

Plain Language Summary Climate models are able to warm early Mars when CO2 sources were
strong but fail at later times when liquid water still flowed on the surface. A possible solution for the climate
puzzle is the presence of abundant H2 arising from volcanic emissions that could have kept the planet
from freezing. H2 could have also played a key role in the chemistry of the atmosphere. Curiosity discovered
the presence of nitrites and nitrates, forms of fixed nitrogen that are required for the origin and sustainability
of life in sediments in Gale crater. Here we present theoretical and experimental data that quantify the
conversion of molecular nitrogen into fixed nitrogen in the presence and absence of H2 by the entry shocks of
asteroids in the Martian atmosphere and surface. Fixed nitrogen was originally deposited on the surface of
Gale crater and then transported to the lake during favorable wet climatic conditions. We found that H2

is required to yield sufficient fixed nitrogen to explain its detection. The levels of fixed nitrogen sharply
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dropped in younger sediments suggesting a decline of H2 in the atmosphere and the rise of oxidizing
conditions causing a nitrogen crisis to putative microbial communities.

1. Introduction

The presence of fluvial landforms on the Martian surface provides indirect evidence that an active hydrolo-
gical cycle took place at the early stage of evolution of the planet (Luo et al., 2016). This implies that the
atmosphere was denser and contained greenhouse gases that allowed a wet and warmer climate. The chemi-
cal composition of the early Martian atmosphere is uncertain. Carbon dioxide (CO2) is generally believed to
be the principal gas from the Pre‐Noachian (4500 to 4100 Myr) to the Noachian when the young Sun was
fainter by ~30% (Gough, 1981). It is estimated that between 0.1 and 3 bars of CO2 were outgassed during pla-
netary accretion (Kahn, 1985). Climate models required 1–5 bars of CO2 to keep Mars from freezing (Pollack
et al., 1987). Nevertheless, CO2 escaped to space by photochemistry (Hu et al., 2015), sputtering (Johnson &
Liu, 1998), and impact erosion (Melosh & Vickery, 1989; Pham & Karatekin, 2016) as well as sequestered as
carbonates (CO3

2−) by surface weathering (Tomkinson et al., 2013). A dense atmosphere (0.5–1 bar) could
have persisted from the Pre‐Noachian to the Noachian only if atmospheric CO2 was being continuously
resupplied by recycling of CO3

2− by volcanism (Grott et al., 2011; Pollack et al., 1987) and impact degassing
(Carr, 1989). As the CO2 levels dropped below 1 bar, climate models that consider only CO2 and water are
incapable to heat up the Noachian and Hesperian periods in the proximity of the freezing point of water
(Wordsworth, 2016). Furthermore, geochemical evidence from sedimentary rocks in Gale crater reveals aqu-
eous alteration but a lack of CO3

2− minerals, suggesting very low levels of CO2 (0.01–0.1 bar) at the time of
deposition, around 3500 Myr ago (Bristow et al., 2017). A possible solution for the Martian climate puzzle is
the presence of 10–20% molecular hydrogen (H2) from volcanic emissions that would have warmed the
atmosphere episodically by collision‐induced absorption with CO2 (Ramirez et al., 2014; Sagan, 1977;
Wordsworth et al., 2017) or N2 (Wordsworth & Pierrehumbert, 2013). The total inventory of N2 in the
Martian atmosphere is estimated to range from 0.03 to 0.3 bar (McKay & Stoker, 1989). If N2 found in the
atmosphere of Venus is scaled to Mars, the total inventory of N2 increases to 0.5–0.6 (von Paris et al.,
2013). Such levels of N2 would have also provided additional warming of the atmosphere by pressure broad-
ening and collision‐induced N2‐N2 absorption (von Paris et al., 2013). Using the size distribution of ancient
craters as a proxy for paleopressure, it is inferred that Mars had a total pressure of 0.9–1.9 bars around 3600
Myr ago (Kite et al., 2014).

In addition to its greenhouse effect, H2 may have had a role in N fixation, for example, the conversion of N2

into fixed forms of N, such as NO3
− and hydrogen cyanide (HCN). The key parameters determining the type

of N species formed and their rates of fixation are the ratios of carbon (C), oxygen (O), and hydrogen (H)
atoms in the atmosphere (Chameides & Walker, 1981; Navarro‐González, McKay, & Nna Mvondo, 2001;
Stribling &Miller, 1987): for instance, a methane‐ and H2‐rich atmosphere (high C and H) produces reduced
forms of fixed nitrogen, such as HCN, while neutral (CO2) or oxidized atmospheres (O2) generate oxidized
forms of fixed nitrogen, such as NO. N is a necessary element for life and is frequently inaccessible to micro-
bial communities as it is present in the kinetically inert state, as N2 in the atmosphere (Postgate, 1996).
Because the energy required to break the triple bond in N2 is high, N fixation, is kinetically limited in spite
of being thermodynamically favorable (Howard & Rees, 1996). Therefore, processes that transform N2 into
biologically accessible chemical forms, such as NO3

−, restrict the supply of N to microorganisms. The N fixa-
tion was probably triggered by volcanic lightning, ultraviolet light, and bolide impacts on early Mars
(Manning et al., 2009; Segura & Navarro‐González, 2005), but the role of H2 has not yet been explored. So
far the Sample Analysis at Mars (SAM) instrument suite of the NASA Mars Science Laboratory (MSL) has
discovered the presence of NO3

− in Hesperian sediments along a stratigraphic transect investigated by the
Curiosity rover at Gale crater (Ming et al., 2014; Navarro‐González et al., 2013; J. C. Stern et al., 2015,
2017, 2018; Sutter et al., 2017); the origin of NO3

− is thought to be from the shocks of bolide impacts (J. C.
Stern et al., 2015).

In this study we present experimental data and theoretical calculations that investigate the efficiency of
shocks from bolide impacts for N fixation in atmospheres (1 bar) containing different CO2/(CO2 + N2) ratios
with or without H2. These values are used to derive the lower and upper boundaries of the N fixation rate by

10.1029/2018JE005852Journal of Geophysical Research: Planets

NAVARRO‐GONZÁLEZ ET AL. 2



bolide impacts. In addition we have reexamined the SAM data to search for the presence of NO2
− and NO3

−,
determine the amount of fixed nitrogen present in the stratigraphic sequence investigated by the Curiosity
rover up to date, and estimate the N deposition rate. The rate of N fixation by bolide impacts and other forms
of energy are examined to account for the supply of the observed N deposition at Gale crater.

2. Materials and Methods
2.1. Theoretical Estimate of NO

The equilibrium concentrations of N, O, NO, and N2 as a function of temperature were calculated using a
computer program that models chemical speciation at thermodynamic equilibrium (Bale et al., 2016). The
program predicts the chemical species and their mixing ratios that are in thermochemical equilibrium at
a given temperature and pressure (1 bar) based on the chemical composition of the initial gas mixture.
The rates of reactions as a function of temperature were obtained from the National Institute of Standards
and Technology Chemical Kinetics Database (Manion et al., 2015).

2.2. Preparation of Simulated Atmospheres

Simulated atmospheres of different composition containing CO2 (99.8% purity), N2 (99.998% purity), and H2

(99.999% purity) were prepared using a computerized gas‐blending system equipped with eight gas lines
regulated by high accuracy and fast response mass flow controllers that operate with a maximum rate of
20 cm3/min at 4 bars. Each gas tank is connected to a two‐stage regulator, a particle filter (2 μm), and stain-
less steel tubing. At the end of the line there is a pneumatic switch valve connected to the mass flow control
and a check valve which merges into a 4‐L stainless steel container for filling up the simulated atmosphere
and which restricts the backflow of the gases preventing contamination of the gas lines. The gas‐blending
system was connected into a manifold gas line with vacuum, pressure, and temperature meters. The gas‐
blending system and the manifold were evacuated to 8.6 × 10−3 mbar before opening the gas cylinder valves.
Finally, the gas‐blending system was filled to 4 bars (value restricted by the operation of the mass flow con-
trol modules) with the desired atmosphere in about 8 hr. Once the simulated atmosphere was ready for use,
it was transferred into previously vacuum‐evacuated round borosilicate (Pyrex) reactors of 1‐L capacity
equipped with high vacuum stopcocks and filled to 1 bar at room temperature (21 °C).

2.3. Simulation of Bolide Impacts

The effect of bolide impacts were simulated in the laboratory by shocks created under a controlled atmo-
sphere by concentrating a pulsed Nd:YAG laser beam of 1.06 μm photons inside a closed Pyrex reactor of
1‐L capacity at 1 bar using a planoconvex optical glass lens with antireflecting coating with a positive focal
length of 10 cm and a focal aberration of ~10 μm. Laser‐induced plasmas have been extensively used to study
the effect of shock waves in planetary atmospheres (Managadze et al., 2003; McKay & Borucki, 1997;
Scattergood et al., 1989). When the electric field of the infrared laser radiation becomes greater than that
of the binding electrons to their nuclei near the focus point of the lens, it triggers breakdown of the gas mole-
cules. This electric breakdown causes a cascade effect because the ionized gas becomes very absorbent to the
laser light so that more of the energy is absorbed (Panarella, 1974). The plasma generated in our facility using
air under similar experimental conditions was found to reach a temperature near 17000 K and creates a
shock wave with initial velocity of >60 km/s at 20 ns, as determined by interferometry and shadowgraphy
techniques (Sobral et al., 2000). Essentially this method is equivalent to a piston‐free shock tube with the
advantage of conducting the experiment on a tabletop setup with a good controllability of a small explosion
in a variety of confined atmospheres (Sasoh, 2016). The laser beam had an energy of 250 mJ per pulse in
5–7 ns operating at 10 Hz. The laser beam is not absorbed completely by the gas mixture in producing the
plasma. It was found that between 20% and 30% of the energy was transmitted out of the reactor. The energy
absorbed in the production of the plasma was calculated by eliminating the energy transmitted by the
plasma in the direction opposite of the incoming laser beam and was measured with an optical power system
(Labmaster Ultima, Coherent) using an optical sensor (LM‐P10). The reactors were exposed from 0 to 30 min
at intervals of 5 min.

2.4. Gas Chromatography Coupled to Mass Spectrometry Analysis

NO was analyzed by gas chromatography (GC)‐mass spectrometry (MS) using electron impact ionization.
The irradiated atmosphere was introduced into the injection port of an Agilent Technologies 7890A GC
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system held at 250 °C by an automatic six‐port gas‐sampling valve connected to a gas manifold with a
vacuum line, a gas sampling port, and a stainless steel loop of 5 ml capacity for sample injection. A
styrene‐divinylbenzene‐based porous polymer column was used (CP‐Porabond Q fused‐silica) of
50 m × 0.32 mm I.D. with a 5‐μm polymer thickness coating. The chromatographic separation was carried
out using a program temperature that was initially kept at 50 °C for 5 min and then increased at rate of
10 °C/min until a final temperature of 240 °C, which was held for 6 min. Helium was used as the carrier
gas with a flow of 1.2 ml/min. The sample split ratio was 1:100. The GC was interfaced at 250 °C with a mass
detector (Agilent Technologies 5975C inert XL EL/CI MSD with Triple Axis detector). The mass spectro-
meter operated in scan mode from 10 to 150 m/z with a mass resolution of 0.1 amu using electron impact
ionization mode at 70 eV. The temperature zones of the ion source and the quadrupole were kept at 230
and 150 °C, respectively. NO was identified by its retention time and its characteristic fragmentation pattern
in MS: NO+ (100%), N+ (7.5%), O+ (1.5%), and NO2+ (2.4%). Nitrous oxide (N2O) was detected in low yield,
representing ≤0.06% of the NO signal, and was therefore not surveyed. Nitrogen dioxide (NO2) was not
observed in the experiments. Reduced forms of nitrogen were not detected in the experiments, such as
ammonia (NH3), HCN, acetonitrile (CH3CN), and cyanoacetylene (HC ≡ C‐CN). These oxidized or reduced
forms of nitrogen are resolved chromatographically into individual peaks (Do & Raulin, 1989; Nna Mvondo
et al., 2001) and have sensitivities similar to or slightly higher than NO taking into account their ionization
cross sections.

2.5. NO Calibration

A calibration curve of NOwas constructed from the analysis of 10 gas mixtures of NO (18 to 4,036 ppm in N2)
that were prepared using the computerized gas‐blending system described above using two NO calibration
standards (390 and 4,036 ppm in N2).

2.6. SAM‐Like Laboratory Experiments

Several mixtures of NO2
− or NO3

− salts (10%) were mixed with different oxychlorine species (90%) in the
form of chlorates (ClO3

−) or perchlorate (ClO4
−) salts. The chemicals used were reagent grade: NaNO3

(Sigma Aldrich, >99.99%), KNO3 (Química Meyer, >99.0%), Mg (NO3)2 (Fluka, >99.0%), Ca
(NO3)2 (Sigma Aldrich, >99.0%), Fe (NO3)3 (Sigma Aldrich, >98.0%), NaNO2 (J. T. Baker,
>98.6%), NaClO4 (Sigma Aldrich, >98.0%), KClO4 (Sigma Aldrich, >99.0%), Mg (ClO4)2 (Sigma Aldrich,
99.0%), Ca (ClO4)2 (Sigma Aldrich, 99.0%), Fe (ClO4)2 (Sigma Aldrich, >98.0%), Fe (ClO4)3 (Sigma
Aldrich, <0.1 chloride content), and synthesized Mg (ClO3)2 and Ca (ClO3)2. Mg (ClO3)2 was not commer-
cially available and was synthesized by mixing stoichiometric ratios of magnesium sulfate (MgSO4 anhy-
drous, Sigma‐Aldrich, 99.5%) and barium chlorate (Ba (ClO3)·2H2O, Sigma‐Aldrich, 98.0%) according to
the method used by Hanley et al. (2012). Ba (ClO3)2 was dissolved in bidistilled water on a stirplate, and then
MgSO4 was slowly added. Since BaSO4 is highly insoluble, it quickly precipitated out of solution as a white
solid, leaving behind Mg2+ and ClO3

− in solution. The clear solution was decanted and filtrated through a
20‐ to 25‐μm filter paper. Then it was centrifuged twice to separate the residual BaSO4, and finally it was
freeze‐dried obtaining a solid powder. Ca (ClO3)2 was not commercially available, too, and was prepared
using the same method by replacing magnesium sulfate for calcium sulfate (CaSO4 anhydrous, Sigma‐
Aldrich, 99.0%). The purity of the synthesized Mg (ClO3)2 or Ca (ClO3)2 was confirmed by thermal analyses
carried out by simultaneous measurements of thermogravimetric analysis and differential scanning calori-
metry (DSC) coupled to evolved gas analysis by MS in the temperature range from 30 to 1450 °C.

Themixtures of NO2
− orNO3

− saltsmixedwith different oxychlorine species (ClO3
− or ClO4

−) were analyzed
in the laboratory under SAM‐like conditions in order to facilitate the interpretation of theMars data. Thermal
analyses were carried out by simultaneous measurements by thermogravimetric analysis‐DSC‐MS that was
configured to operate under SAM‐like conditions (Mahaffy et al., 2012). The instrument used was a
Netzsch STA 449 F1 Jupiter thermobalance (TG‐DSC/DTA Apparatus) utilizing two furnaces made of steel
or silicon carbide operating in the temperature range from −150 to 1550 °C which was interfaced to a
Netzsch mass spectrometer QMS 403 C Aëolos. The sample was ground and sieved to <75 μm using an agate
pestle and mortar set, and a portion (~15 mg) was introduced into alumina (Al2O3) crucibles. An identical
empty alumina crucible was used as referencematerial. The thermal analysis was carried out using the silicon
carbide furnace that was heated from 30 to 850 °C at a rate of 35 °C/min. A nitrogen flow of 2 cm3/min was
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used to transfer the evolved gases out of the thermobalance using an oven pressure of 35 mbar. The evolved
gases were scanned by MS from 14 to 120m/z using electron impact ionization mode operated at 70 eV.

2.7. Martian Samples

Curiosity has drilled 12 (1.6‐cm diameter, 6 cm deep) lacustrine mudstones during its traverse from the land-
ing site at Bradbury at the lowest stratigraphic layers encountered on Aeolis Palus to the upper strata of the
base of Aeolis Mons (see Figure 4): John Klein (Sol 182, 8 February 2013) and Cumberland (Sol 279, 19 May
2013) from the Yellowknife Bay formation, and Confidence Hills (Sol 759, 24 September 2014), Mojave (Sol
882, 29 January 2015), Telegraph Peak (Sol 908, 24 February 2015), Buckskin (Sol 1060, 30 July 2015),
Oudam (Sol 1361, 4 June 2016), Marimba (Sol 1422, 6 August 2016), Quela (Sol 1464, 18 September 2016),
Sebina (Sol 1495, 20 October 2016), Duluth (Sol 2057, 20May 2018), and Stoer (Sol 2136, 8 August 2018) from
the Murray formation. In addition, it has also drilled a sandstone in the Kimberley formation known as
Windjana (Sol 621, 5 May 2014) composed primarily of fluvial conglomerate and deltaic sandstone (see
Figure 4). Finally, it has also drilled four eolian sandstones of the Stimson formation that unconformably
lie above the Murray formation (see Figure 4, main text): Big Sky (Sol 1119, 29 September 2015),
Greenhorn (Sol 1137, 18 October 2015), Lubango (Sol 1320, 23 April 2016), and Okoruso (Sol 1332, 5 May
2016). The samples Lubango, Okoruso, and Sebina were not analyzed by SAM. The sampling sites have been
described in detail elsewhere (Hogancamp et al., 2018; J. C. Stern et al., 2017).

2.8. SAM Measurements

The SAM instrument suite has been described in detail previously (Mahaffy et al., 2012). SAM is positioned
in the front body of the rover and receives samples that have been drilled and then processed on the end of
Curiosity's robotic arm (Anderson et al., 2012). The analyses were carried out under the so‐called “nominal
solid‐sample analysis mode.” Prior to a sample run, a single‐quartz cup was preheated to >800 °C under He
flow with active pumping using SAM's wide‐range pumps to eliminate volatiles and potential contaminants
that were previously absorbed. Then the cup was rotated to be positioned underneath the SAM solid sample
inlet tube to acquire the sample from the Collection and Handling for In‐Situ Martian Rock Analysis
(CHIMRA) device. The rock powder was sieved (<150 μm) and delivered in single (~76 mm3), triple, or
quadruple aliquots into one of SAM's cups. Once the sample was received, the cup was hermetically sealed
andmoved inside the SAM pyrolysis oven. The sample cup contains a porous quartz frit on the bottomwhere
a stream of helium (∼0.8 cm3/min) flows vertically through the sample for efficient transport of evolved
gases out of the oven during the heating process. The sample was heated from Mars ambient temperature
to ∼870 °C at heating rate of 35 °C/min, maintaining an oven pressure of ∼25 mbar during the analysis.
The evolved gases were continuously analyzed by a quadrupole mass spectrometer operating with electron
impact ionization mode at 70 eV.

The ion with a mass to charge ratio (m/z) of 30 was selected to monitor and quantify NO, which is the major
product of thermal decomposition of nitrate. NO evolved at temperatures that was characteristic for the ther-
mal decomposition of NO3

− ormixtures of NO3
− and ClO4

−. NO2
− also thermally decomposes releasing NO,

but no studies were previously available to determine their presence in the Martian samples. Other plausible
interferences onm/z 30 include an isotopologue of CO, 12C18O arising from the electron impact ionization of
CO and CO2; however, the m/z 30 signal represents 0.2%, and 0.04% of the m/z 28 signal arising from the
electron impact ionization of CO and CO2, respectively. Even if CO2 was released in large quantities in
the Martian samples, the contribution of 12C18O to the m/z 30 signal is negligible (<1%). N‐methyl‐
N‐(tert‐butyldimethylsilyl) trifluoroacetamide, abbreviated as MTBSTFA, is a derivatization agent that
was brought to Mars in sealed cups for wet chemistry SAM‐GCMS analysis. Nonetheless, one cup was found
to leak and reacted with the samples during nominal solid‐sample analysis mode leading to the detection of
hydrocarbons and NO (Freissinet et al., 2015; Glavin et al., 2013; J. C. Stern et al., 2015; Sutter et al., 2017).
The interference of MTBSTFA in the NO measurement by SAM was calculated by the background correc-
tion method by J. C. Stern et al. (2015). Since each molecule of MTBSTFA has one N atom that can poten-
tially decompose into NO, its contribution can be subtracted from the total amount of NO measured in
the SAM experiments. This method was used to calculate the nitrogen content in the drilled samples from
John Klein up to Greenhorn (J. C. Stern et al., 2015, 2017). In order to decipher if nitrites are present in
the Martian samples, it is required to know the thermal evolution profiles of NO from nitrites and nitrates.
In this scenario, it is not possible to use the background correction method. Instead, it is required to
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eliminate the m/z 30 signal of MTBSTFA products as they thermally
evolve during the analysis. Laboratory experiments ofMTBSTFA degrada-
tion products under SAM‐like conditions indicate that the major interfer-
ences to the m/z 30 signal are formaldehyde (HCHO, m/z 29 [100%] and
m/z 30 [~60%]) and ethane (C2H6, m/z 29 [~20%] and m/z 30 [~20%]).
Therefore, it is possible to eliminate their contribution according to the
following empirical formula:

NO signal ¼ m=z 30−b m=z 29–m=z 43ð Þ

where b is a constant that varies from 0.6 (contribution fromHCHO) to 0.8
(contributions from both HCHO and C2H6) and even to 1.0 (contributions
from HCHO, C2H6, and unidentified species) depending on the run. The
m/z 43 signal is attributed to ketones, alkyladehydes, and/or hydrocar-
bons. Supporting information Figures S1 through S14 show the signals
for m/z 29, 30, and 43 and the resultant NO profiles for all the samples
investigated. These plots were dead time and background corrected.

The nitrogen content in the Martian samples was calculated from the NO
signal that was corrected taking into account its ionization cross section at
70 eV relative to the response of CO2 in the sample, for which a calibration

curve exists (Archer et al., 2014). The error reported for a single run includes the error in the determination
of the area of NO and the uncertainty in the mass of the sample delivered to SAM. For multiple sample ana-
lysis the error reported was the mean and standard deviation (1σ) of the measurements.

3. Results and Discussion
3.1. Theoretical and Experimental Production of NO by Shock Waves

The theoretical estimate for the production of NO takes into account that NO is formed at high temperature
as the air is suddenly heated by the shock wave. The concentration of NO rapidly reaches thermochemical
equilibrium with the temperature of the surrounding gas. As the shocked air expands and cools, a point in
time is reached when thermochemical equilibrium is no longer kept during the rapid cooling process and a
net amount of NO is “frozen” at a given temperature (Chameides et al., 1977). The formation of NO in shock‐
heated CO2/(CO2 +N2) atmospheres occurs at temperatures in excess of 2000 K (Navarro‐González, McKay,
& Nna Mvondo, 2001) and is initiated by the reaction of atomic oxygen (O), arising from the dissociation of
CO2, with N2 via reaction (R1):

Oþ N2⇆NOþN: (R1)

This reaction is part of the Zel'dovitch mechanism for the oxidation of N2 in air (Zel'dovitch & Raizer, 1966).
As the shock wave expands and the gas cools, the NO equilibrium mixing ratio (fNO) changes with tempera-
ture (Figure 1); fNO is locked at a characteristic temperature, usually referred to as the freeze‐out tempera-
ture (TF), when the relaxation time of NO (τNO) becomes equal to or greater than the cooling time of the
heated gas (Chameides et al., 1977). fNO and the equilibrium concentrations of N, O, NO, and N2 were cal-
culated as a function of temperature; τNO was determined using the rate constants (k) for the forward (f) and
reverse (r) pathways of reaction (R1). The relaxation time of NO (τNO) to establish equilibrium conditions to
a drop in temperature as the air expands and cools is given in equation (1):

τNO ¼ 1
kf O½ � þ N2½ �ð Þ þ kr NO½ � þ N½ �ð Þ ; (1)

where [O], [N], [NO], and [N2] are the equilibrium concentrations before the temperature change, and kf
and kr are the rates of reactions at the jump down temperature. The rates of reactions as a function of

temperature are kf ¼ 3:0 ×−10cm3·molecule−1·s−1 e−ð318:0 kJmole−1=RTÞ and kr ¼ 7:1 ×−11cm3·molecule−1·s−1

e−ð6:6 kJmole−1=RTÞ (Manion et al., 2015).

Figure 1. The NO equilibrium mixing ratio (fNO) and the relaxation time
for NO (τNO) as a function of temperature. fNO is expressed as the number
of moles of NO divided by the total number of moles of all gas constituents in
a mixture composed of 50% CO2 and 50% N2 without H2 at 1 bar.
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Figure 1 also shows how the relaxation time varies with temperature. TF
can vary depending on the instantaneous energy input delivered to pro-
duce the shock wave; for example, more energy results in faster cooling
time of the heated gas (Chameides, 1979) and the chemical composition
of the gas mixture (Chameides & Walker, 1981). The energy yield for
the production of NO produced by bolide impacts was estimated from a
revised version of the model of Chameides et al. (1977), in which about
50% of the energy of the impact was dissipated by the shock wave in the
form of heat, and the Cp for the gases in the mixture were taken into
account, according to the following equation (equation (2)):

ENO ¼ 0:5×NA×fNO TFð Þ
TF× CO2½ �CpCO2

þ N2½ �CpN2
þ H2½ �CpH2

� � ; (2)

where ENO refers to the number of NO molecules that formed per joule
absorbed; NA is the Avogadro constant; fNO (TF) is the predicted nitric
oxide equilibrium mixing ratio at TF; [gas] is the mole fraction of each
gas in the mixture; and Cp is the specific heat at constant pressure of each
gas. TF and fNO were not actually measured experimentally, but TF was
left as a free parameter to adjust the experimental value of ENO with that
computed using equation (2).

Shock waves in the laboratory were generated by focusing a pulse laser inside a reactor with simulated atmo-
spheres (CO2, N2, and H2) at 1 bar (Navarro‐González, Villagrán‐Muniz, et al., 2001; Sobral et al., 2000). The
presence of H2 was expected to lead to the fixation of reduced forms of N, such as HCN and HC ≡ C‐CN.
Surprisingly, none of these species were detected. The net amount of NO produced in the experiments
was determined by GC coupled to MS, and the energy deposited was determined optically. ENO was derived
from the slope of a linear plot of the number of molecules formed as a function of the energy absorbed in the
experiments (Navarro‐González, McKay, & Nna Mvondo, 2001). ENO has been found to vary linearly with
pressure (Rahman & Cooray, 2008).

Tables S1 and S2 and Figure 2 show how the experimental and predicted energy yields for the production of
NO by shock waves vary with the CO2/(CO2 + N2) ratio in different simulated primitive Martian atmo-
spheres in the absence and presence of 10% and 20% H2. It also includes data from previous experiments
(Levine et al., 1982; Navarro, 2014; Navarro‐González, McKay, & Nna Mvondo, 2001) in the absence of
H2. In particular, the experimental data at 0% H2 indicate that the formation of NO increases from
~1.9 × 1015 molecules/J at CO2/(CO2 + N2) = 0.98 to ~1.3 × 1016 molecules/J at CO2/(CO2 + N2) from 0.8
to 0.5 and then drastically drops to ~4.9 × 1013 molecules/J at CO2/(CO2 + N2) = 0.01. The expected TF
for NO in shock‐heated air (N2/O2) is 2300 K (Navarro‐González, Villagrán‐Muniz, et al., 2001). The pre-
dicted trend using this value is in good agreement with experiments at CO2/(CO2 + N2) ≥ 0.5. At lower
CO2 levels TF for NO is probably much lower resulting in a diminishing in the NO yield. Surprisingly there
is a 1.7‐fold and 2.6‐fold increase in the experimental NO energy yield when 10% and 20% H2 are included in
the system, respectively. However, if TF for NO were to remain constant at 2300 K, the expected NO energy
yield would drop off at 69% and 88% in 10% and 20%H2, respectively. Consequently the discrepancy between
experimental data and theoretical trends shown in Figure 2 is due to the appropriate TF values used in the
computations. In order to explain the sudden increase in the NO energy yield when H2 is included, the TF for
NOmust change to 2650 and 3000 K in 10% and 20% H2, successively. This means that the shock wave cools
off much faster in the presence of H2 when fNO has a higher value resulting in an enhanced amount of NO
frozen in the heated gas by the shock wave. This is counterintuitive because H2 is a reducing agent and was
not expect to lead to an enhancement in the rate of nitrogen oxidation. This finding has important implica-
tions for the N fixation rate of the Martian atmosphere under reducing conditions.

3.2. The Nitrogen Fixation Rate by Bolide Impacts

The N fixation rate (NF) was estimated assuming that NO was quantitatively converted to NO2
− and/or

NO3
− and no losses occurred in either the atmosphere (Mancinelli & Banin, 2003; Summers & Khare,

Figure 2. Variation of ENO as a function of the CO2/(CO2 + N2) mole ratio
in shock waves simulating different possible compositions of the primitive
Martian atmosphere at 1 bar. Symbols are experimental data, and lines are
predictions. Ref. 1 = Navarro‐González, McKay, and Nna Mvondo (2001);
Ref. 2 = Levine et al. (1982); Ref. 3 = Navarro (2014).
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2007) or surface due to N2O (Samarkin et al., 2010). The impactor flux on
Mars was used to calculate the N fixation rate through time. This was
calculated by using the Hartmann and Neukum (2001) to derive the
cumulative number (N) of projectiles producing craters with diameters
≥1 km in an area of 1 km2 over the entire history of Mars. The
analytical description of the model is given by equation (3):

NF ¼ 2:68×10−14 e 6:93tð Þ
–1

� �
þ 4:13×10−4 t; (3)

where, t denotes time in billion years. The nature of the planetary objects
that impacted early Mars is not known. Analysis of crater size distribu-
tions indicates two populations of projectiles (Strom et al., 2005).
Population 1 has a radius centered at 2 km (Strom et al., 2005) and was
responsible for the late heavy bombardment (LHB): from ~4200 to
~3500 Myr (Bottke & Norman, 2017). The sources of these objects were
likely asteroids (Strom et al., 2005) and to a lesser extent comets (Gomes
et al., 2005) that were dynamically ejected by orbital migration of the giant
planets. Population 2 has a radius centered at 0.5 km, similar in size to the
near‐Earth asteroids, and was responsible for the impacts (Strom et al.,
2005) after the LHB. The mass (m) of projectiles from populations 1 and
2 was calculated using a density of 3 g/cm3, typical of a basaltic asteroid
(Kring & Cohen, 2002). The average impact velocity (v) estimated for
Mars is 9.8 km/s (Ivanov, 2001) and was assumed to be similar for both
populations of projectiles. The energy deposited into the atmosphere by
these two populations of impactors was calculated as mv2/2 (Melosh &
Vickery, 1989).

The estimated upper and lower boundaries for the N fixation rate by
bolide impacts are given in Table S3, and their trends are shown in
Figure 3 from the Pre‐Noachian to the Hesperian considering the pre-
sence or absence of H2 in the atmosphere. The abrupt change in the slopes
at 3500 Myr is due to the different size of projectiles during and after LHB.
The upper boundary ([CO2/(CO2 + N2)] = 0.5, and 20% H2) has a maxi-
mum rate of 10.8 g N·Myr−1·cm−2 at the start of the LHB in the Pre‐

Noachian, and then it rapidly decreased to 0.2 g N·Myr−1·cm−2 at the end of the LHB at the early
Hesperian (Figure 3). During this time the total accumulated mass of nitrogen in the surface is predicted
to be 22.4 g N/cm2, equivalent to a global deposit of 60 cm of purely solid sodium nitrate (NaNO3). In con-
trast, the lower boundary ([CO2/(CO2 + N2)] = 0.5, and 0% H2) has a maximum rate of 3.7 g N·Myr−1·cm−2

at 4200Myr ago, decreasing steadily to 0.07 g N·Myr−1·cm−2 at the end of the LHB (Figure 3). The total accu-
mulatedmass of nitrogen on theMartian surface is predicted to be 7.7 g N/cm2, equivalent to a global deposit
of 20 cm of purely solid NaNO3. In both scenarios it is possible that a significant fraction of the N fixed may
have been destroyed (Manning et al., 2008) or buried (Hartmann et al., 2001) due to resurfacing or gardening
during the LHB. After the LHB, the rate of N fixation slowly dropped from 3.3 × 10−3 to
1.8 × 10−3 g N·Myr−1·cm−2 and from 1.1 × 10−3 to 6.2 × 10−4 g N·Myr−1·cm−2 from the early to the end
of the Hesperian for the upper and lower boundaries, respectively (Figure 3). It is predicted that a mass of
nitrogen ranging from 4.4 to 12.8 mg N/cm2 would have been globally deposited on the surface during the
Hesperian, equivalent to a deposit of NaNO3 ranging from 12 to 34 mm for the lower and upper
boundaries, correspondingly.

3.3. Fixed Nitrogen Products Detected by MSL

The Phoenix mission landed in the northern plains of Mars on 25 May 2008. It has been the only spacecraft
designed to search for soil NO3

− but was unable to detect any by theWet Chemistry Laboratory and Thermal
and Evolved Gas Analyzer (Hecht et al., 2009). The Wet Chemistry Laboratory was equipped with an ion
selective electrode for measuring nitrate from an aqueous extract of Martian soil, but with the unexpected

Figure 3. The nitrogen fixation (NF) and the nitrogen deposition (ND) or the
nitrogen accumulation (NA) rates as a function of time in the Martian
atmosphere are shown by the red and blue lines and symbols, respectively.
The dash and solid lines constrain the lower (0% H2) and upper (20% H2)
boundaries in CO2/(CO2 + N2) atmospheres by bolide impacts, consecu-
tively. The abrupt change in slopes at 3500 Myr is due to different radius of
projectiles during (population 1 = 2 km) and after (population
2 = 0.5 km) the late heavy bombardment process. The stars show the rate by
ultraviolet light (after Yung et al., 1977; Smith et al., 2014). The triangles
show the rate by volcanic lightning (after Navarro‐González et al., 1998;
Segura & Navarro‐González, 2001, 2005). The square and diamond symbols
show ND rates determined for the Cumberland and John Klein at
Yellowknife Bay, in Gale crater assuming a sediment deposition rate of
20,000 cm/Myr (see section 3.5). The NA rates for bolide impacts, ultraviolet
light, and volcanic lightningwere calculated assuming that NO2

− andNO3
−

deposited entirely on the Gale's crater were ultimately transported to the
bottom of the lake (see sections 3.5 and 3.6).
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presence of perchlorate in the soil, the response of the electrode resulted to be stronger for perchlorate than
nitrate by a factor of 1,000. The Thermal and Evolved Gas Analyzer was unable to detect any evolved NO
from the thermal treatment of the arctic Martian soil at concentrations below the natural background
levels of 15N ≡ 15N present in the N2 (Yeung et al., 2017), which was used as the carrier gas to transfer the
evolved gases from the oven to the mass spectrometer. The first detection of NO3

− in soils and sediments
was carried out by the SAM instrument suite of the MSL Curiosity rover, after landing on Bradbury at
Gale crater on 6 August 2012 (Archer et al., 2014; Ming et al., 2014; Navarro‐González et al., 2013; J. C.
Stern et al., 2015, 2017, 2018; Sutter et al., 2017). NO3

− thermally decomposes releasing NO which has
been used to quantify it in the Martian surface. Curiosity has traversed a total distance of 19.809 km up
until Sol 2221 (5 November 2018), and during this time it has drilled 17 sedimentary rocks (see Figure 4).
Fourteen of these rock samples have been analyzed by SAM from the lowest stratigraphic unit Sheepbed

Figure 4. Rocks studied by NASA's Curiosity rover during its three‐Martian‐year traverse on Gale crater until Sol 2136 (8 August 8 2018). The inset on the right of
the base map is a composite image showing the drilled holes performed by Curiosity. The base map shows on the left the rover traverse with the locations of
the rocks surveyed (red dots). Upon landing on Aeolis Palus in August of 2012, Curiosity traversed east from the Bradbury landing site to Yellowknife Bay, and then
southwest toward Aeolis Mons reaching the base of the mountain on Sol 746. The total driven distance was 19.641 km until Sol 2156 (30 August 2018). North
is toward the upper left corner. The scale bar represents 2 km (1.2 miles). The basemap is from the High Resolution Imaging Science Experiment camera on NASA's
Mars Reconnaissance Orbiter. Drilled hole images were taken with the Mars Hand Lens Imager (MAHLI) camera on the end of the arm from a distance of about
5 cm. The drill holes are ~1.6 cm wide.
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mudstone encountered in Yellowknife Bay to the Murray and Stimson
formations located at the base of Aeolis Mons.

When NO3
− salts are subjected to thermal treatment, they first undergo a

phase transition to a liquid state, which are stable to various degrees above
their melting points, and then experience decomposition, releasing
mainly NO (K. H. Stern, 1972). Figure 5 shows the release of NO for pure
salts of nitrates and their mixtures with ClO4

−. Figure 5a shows the ther-
mal behavior for pure nitrates under SAM‐like conditions. The thermal
stabilities for nitrates increased with the order of Fe (NO3)3 < Mg
(NO3)2 < Ca (NO3)2 < NaNO3 < KNO3 and were characterized by the
release of NO in a broad temperature range spanning about 150 °C and
showing a maximum centered at 225, 475, 622, 675, and 780 °C, respec-
tively. Surprisingly, when these nitrates were blended with ClO4

−, with
a molar mixing ratio of 1/9, their thermal stabilities drastically shifted
and congregated around a characteristic temperature range spanning
from 490 to 530 °C and from 360 to 456 °C, for Ca (ClO4)2 (Figure 5b)
and Mg (ClO4)2 (Figure 5c), correspondingly. Such a behavior was first
observed by Navarro‐González et al. (2013) and is explained by a phase
transition from solid to liquid stage of the perchlorates prior to their
decomposition (Markowitz & Boryta, 1965). Once the liquid phase is
formed, nitrate salts dissolve and exchange their cations between perchlo-
rates and nitrates. This process can take place as soon as either nitrates or
perchlorates undergo the phase transition to the liquid stage. This
exchange resulted in a shift in the temperature of decomposition for
nitrates that is characteristic for each perchlorate salt.

NO2
− also thermally decomposes in a similar fashion as NO3

− (K. H.
Stern, 1972). We investigated the thermal stability of different nitrates
and nitrites in the absence or presence of various perchlorates and chlo-
rates to aid in the identification of these chemical species in the Martian
rocks investigated so far (Figure 6). Both NO3

− and NO2
− decompose at

characteristic temperatures depending on the cation present as shown
in Figures 6a and 6b, respectively. The occurrence of
perchlorate/chlorates results generally in a reduction in the temperature
of decomposition of NO3

− and NO2
−, and the characteristic temperatures

of evolution of NO are determined by the cation present in the oxychlor-
ine species and not in the nitrate or nitrite, as previously discussed. The temperature range shown in these
panels corresponds to the lower and higher evolutions of the NO peak signals, as seen in Figures 5b and 5c,
which were measured at 75% peak heights for the different nitrates/nitrites studied in the presence of a given
perchlorate/chlorate salt. The thermal stabilities of nitrates increased with the order of Fe (ClO4)2 < Fe
(ClO4)3 < Mg (ClO4)2 < Ca (ClO4)2 < NaClO4 < K (ClO4) (see Figure 6a). For nitrates mixed with chlorates,
their thermal stabilities increased in the same order (Mg (ClO3)2 < Ca (ClO3)2) but were not shifted to lower
temperatures as was found in the case for perchlorates (Figure 6a). Nitrates decompose below 300 °C in the
presence of Fe (ClO4)2 or Fe (ClO4)3 and above 350 °C in the presence Mg (ClO4)2, Ca (ClO4)2, NaClO4, K
(ClO4), Mg (ClO3)2, and Ca (ClO3)2. Figure 6b shows the thermal stabilities of nitrites with perchlorates
and chlorates. They show the same thermal stability order as for nitrates except that nitrites decompose
below 350 °C in the presence of Fe (ClO4)2, Fe (ClO4)3, Mg (ClO4)2, Ca (ClO3)2, and Mg (ClO3)2, and above
350 °C in the presence of Ca (ClO4)2, NaClO4, and K (ClO4) (see Figure 6b).

Figures 6c and 6d show the NO evolution trends for the different rocks investigated from the lowest sections
at JK‐BK (Figure 6d) to the highest layers at BS‐DL (Figure 6c) labeled by name sequentially across the strata
encountered from the Yellowknife Bay to the Stimson formations during the ascent of Curiosity to Aeolis
Mons. Surprisingly the samples from lowest layers (JK and CB) showed major releases of NO below
350 °C, and at higher layers, the release of NO gradually shifted to higher temperatures. Most of these

Figure 5. The evolution of NO during the thermal treatment of NaNO3,
KNO3, Mg (NO3)2, Ca (NO3)2, and Fe (NO3)3 under Sample Analysis at
Mars‐like conditions. Panel (a) corresponds to pure nitrates, whereas panels
(b) and (c) correspond to mixtures of nitrates (10%) in the presence of cal-
cium and magnesium perchlorate, respectively.
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samples released oxygen during SAM analyses that suggest the presence
of oxychlorine species (Sutter et al., 2017). Their concentrations were
higher than for fixed nitrogen species with a (nitrate or nitrite)/oxychlor-
ine mixing ratio from 0.06 to 0.49 (J. C. Stern et al., 2017). The oxygen evo-
lution temperatures are lower than what is typical of perchlorates (Sutter
et al., 2017) and appear to be more consistent with Mg (ClO3)2 and Ca
(ClO3)2 (Sutter et al., 2017) or ClO3

−/iron phases (Hogancamp et al.,
2018). Consequently, NO evolved below 350 °C in the Martian samples
could be assigned to NO2

− and iron‐NO3
−, and above 350 °C to NO3

−.

3.4. Altitudinal Variation of Fixed Nitrogen at Gale Crater

Figure 7a and Table S4 show the variation of amount of fixed nitrogen pre-
sent in the lacustrine mudstones and sandstone, as well as the eolian
sandstones surveyed by SAM (Figures 6c and 6d) from the lowest to the
highest stratigraphic column encountered by the Curiosity rover.
Curiosity typically drilled a new rock up in the stratigraphic column every
40 m or less in height depending on the interest of the horizon. However,
there was no drilling activity between −4,379 and −4,191 m due to a fail-
ure of the drill. The point‐to‐point plot shows evidence of three distinct
episodes centered at −4,436, −4,447, and −4,520 m, respectively, where
the concentration of fixed nitrogen reached maximum values and their
intensity increased with depth. The peak with the highest levels corre-
sponds to the Cumberland sample at Yellowknife Bay with a concentra-
tion of 71 ± 37 μg N/cm3, a mudstone obtained from a fluvio‐lacustrine
strata at the Sheepbed member, which is an embayment on the floor of
Gale crater. Multiple portions of this sample were analyzed several times,
and the amount of fixed nitrogen detected exhibited high variability (see
Table S4). Similar dispersion was observed for other volatiles present in
different runs for the sample (Ming et al., 2014). A plausible explanation
is that it was not well homogenized when supplied to SAM. The John
Klein sample was drilled only 3 m away in the Sheepbed mudstone and
within ~0.1 m of the same stratigraphic location (Ming et al., 2014). This
sample showed lower levels of fixed nitrogen (16 ± 7 μg N/cm3), possibly
because it was leached due to postdepositional aqueous alteration as evi-
denced by the presence of calcium sulfate veins. The levels of fixed nitro-
gen declined to ~10 ± 3 μg N/cm3 for theWidjana sample extracted from a
sandstone outcrop of likely eolian origin that occurs about 40 m above the
Sheepbed mudstone samples (Sutter et al., 2017). The second less intense
peak corresponds to the sample obtained from the Buckskin outcrop, with
a value of 35 ± 8 μg N/cm3. This mudstone contains tridymite, a SiO2

mineral that forms in environments dominated by high‐temperature mag-
mas enriched in silica, and consequently its presence provides evidence
for silicic volcanism in Mars (Morris et al., 2016). The concentration of
fixed nitrogen decreases up in the stratigraphy in sediments associated
with episodic lake drying (Bristow et al., 2018). The first sample where
NO2

− and/or NO3
− were not detected corresponds to Marimba

(−4,411 m), drilled from a ~30‐m‐thick structure composed of finely lami-
nated mudstones of the Karasburg member, which indicates the resume
of subaqueous deposition (Bristow et al., 2018). The third peak with the
lowest levels of fixed nitrogen (8 ± 4 μg N/cm3) corresponds to Quela, a
mudstone drilled ~31 m above Marimba in the same geologic formation.
Curiosity did not drill after Sol 1537 due to a mechanical issue that took

the drill offline in December 2016. The first drill site after the drill problem had been solved was Duluth
that is situated ~188 m above Quela, near Vera Rubin Ridge with high concentration of hematite. This

Figure 6. Evolution of NO for the thermal treatment of nitrates (a) and
nitrites (b) under SAM‐like conditions, and sedimentary facies (c and d)
measured by SAM along the stratigraphic column from the Yellowknife
Bay to the Stimson formations. The characteristic temperatures for the
evolution of NO are shown for pure nitrate (a) or nitrite (b) standards, as
well as for the mixtures of nitrates (10%) or nitrites (10%) in the presence
of different oxychlorine species (90%) in the form of perchlorates and chlo-
rates (a, b). The sedimentary facies analyzed by SAM from the lower to the
upper stratigraphic column: John Klein (JK), Cumberland (CB), Windjana
WJ), Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin
(BK), Big Sky (BS), Greenhorn (GH), Oudam (OD), Marimba (MB), Quela
(QL), Duluth (DL), and Stoer (ST). The SAM data shown in panels (c) and
(d) have been normalized to single portions, and the signals were smoothed
using the Savitzky‐Golay filter of 25 points. SAM= Sample Analysis at Mars.
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sample was successfully delivered to SAM using a new feed‐extended sample transfer technique. The
concentration of fixed nitrogen was slightly lower (4 ± 3 μg N/cm3) than Quela, consistent with a sharp
decline of available nitrogen. The last rock sampled was Stoer which again showed no evidence of fixed
nitrogen in the form of NO2

− and NO3
−.

Figures 7b and 7c and Table S5 show the release of NO below and above 350 °C by the thermal treatment of
the rock samples. At the lowest stratigraphic layers, the release of NO below 350 °C dominates, representing
about 60–66% of the total NO evolved at−4,519 m; this value drops to ~9% at−4,479 m, then rises to ~27% at
−4,455 m, and finally decreases with altitude reaching 0% at −4,428 m (Figure 7b). High values for NO
released below 350 °C are associated to the largest numbers of fixed N detected at Gale crater (Figure 7a).
The low‐temperature release of NO is attributed to NO2

− and iron‐NO3
−. The opposite behavior was

observed for the NO released above 350 °C: Low percentage (34–40%) at −4,519 m, increasing to ~85% at
−4,479 m, then declining again ~69% at −4,460 m, and finally rising with altitude reaching 100% at
−4,428 m (Figure 7c). High values for NO released above 350 °C are linked to the lowest numbers of fixed
N found in the sedimentary rocks at Gale crater (Figure 7a). The high‐temperature release of NO is attribu-
ted to NO3

−. The amount of fixed nitrogen found at Gale crater is not as high as previously expected for Mars
(Manning et al., 2008), equivalent to the NO3

− ore deposits found in the subsurface of the hyperarid regions
on the Earth (Ericksen, 1983). However, this value falls within the range of abundances reported for the sur-
face of hyperarid environments, such as the Atacama Desert (Sutter et al., 2007) and the Dry Valleys of
Antarctica (Michalski et al., 2005).

There are two possible scenarios that could explain the decline of fixed nitrogen of about 2 orders of magni-
tude along the stratigraphic record in Gale crater: (1) diagenesis and leaching of fixed nitrogen in the sedi-
mentary rocks or (2) change in the rate of nitrogen deposition.

Figure 7. Variation of the amount of nitrogen evolved as NO (a) and its release below (b) and above (c) 350 °C in sedimen-
tary facies measured by SAM along the stratigraphic column from the Yellowknife Bay to the Stimson formations com-
piled for rocks encountered during the ascent of Curiosity to Aeolis Mons. The upper horizontal axis of panel (a) shows the
nitrogen deposition (ND) and nitrogen accumulation (NA) rates of nitrogen estimated for Gale crater assuming that all
fixed nitrogen deposited over the entire surface of Gale crater was transported into the bottom of the lake using a sediment
deposition rate of 20,000 cm/Myr (see section 3.5). The pink line in panel (a) shows the predicted nitrogen deposition
for ultraviolet light, whereas the rectangle with the rainbow shows the predicted nitrogen deposition rate by bolide
impacts in the absence or presence of H2 in the atmosphere. The CB sample showed the highest concentration with high
variability possibly because it was not well homogenized when supplied to SAM. SAM = Sample Analysis at Mars.
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3.4.1. Diagenesis and Leaching of Fixed Nitrogen in the Sedimentary Rocks

Nitrites and/or nitrates present in soils and sedimentary rocks can be leached and transported to lower hor-
izons by the influx of water fluids due to their water solubility. In wet environments they do not accumulate
in the surface; however, in hyperarid deserts like the Atacama in Chile, soil nitrates are concentrated below
the surface at discrete layers by sporadic rain events. For instance, in Yungay, the driest area in the Atacama
with an annual precipitation below 2 mm rain, nitrate is found in a layer between 122 and 146 cm in depth,
where the highest concentration is 6.6 mg N/g (Ewing et al., 2006). Below and above this layer the concen-
tration of nitrate sharply decreased. In the historic nitrate deposits of the Atacama that were mined during
the early part of the last century, this layer reached concentrations as high as >90 mg N/g for Caliche
and > 170 mg N/g for ore grade nitrate (Ericksen, 1983; Semper et al., 1908). In contrast in the wettest part
of the Atacama, for example, Copiapó with an annual precipitation of 21 mm, the levels of nitrate are much
lower (~83 μg N/g), but interestingly there are two distinctive layers of nitrates centered at 15 and 174 cm,
respectively, due to multiple rain events (Ewing et al., 2006). An important feature of these deposits is that
all water‐insoluble or less soluble salts remain in the upper horizons, whereas the water‐soluble salts are lea-
ched to lower horizons with nitrate.

The decline of fixed nitrogen found along the stratigraphic record in Gale seems to resemble the leaching of
nitrate from the upper stratigraphic layers to the lowest one, as seen in the driest region of the Atacama with
three distinct nitrogen layers centered at −4,436, −4,447, and −4,520 m with the lowest exhibiting the high-
est concentration. No information was available in the literature on the retention and permeability proper-
ties of different sedimentary rocks to nitrites and nitrates. Indeed, the sedimentary rocks at Gale crater have
been subjected to multiple influxes of ground and underground waters that have altered to various degrees
their mineralogy (McLennan et al., 2014; Rampe et al., 2017; Vaniman et al., 2014). However, the evidences
against extensive leaching of nitrite and nitrates in the sedimentary rocks at Gale crater are the following: (1)
the sedimentary layer retaining NO2

− and NO3
− should exhibit a concentration of 103 to 104 fold greater

than the highest value found at Gale crater as found in Atacama; (2) there is a reduced layer of fixed nitrogen
(nitrite) below an oxidized layer of nitrate which suggests different deposition conditions; (3) the evolution
of NO above 350 °C occurs at different temperatures which indicates the existence of diverse
nitrate/oxyclorine salts that were deposited under different geologic settings; (4) there are water‐soluble
(chlorides, chlorates, perchlorates, nitrites, and nitrates) as well as less soluble (sulfates, sulfides, carbonates,
etc) salts in almost all of the layers investigated; and (5) the Sheepbed formation had postdepositional aqu-
eous alteration but with a low water/rock interaction (McLennan et al., 2014; Vaniman et al., 2014).
Consequently, this scenario is considered less likely but still possible.

3.4.2. Change in the Rate of Nitrogen Deposition

The abrupt decline of the amount of fixed nitrogen by 1 or 2 orders of magnitude in the stratigraphic record
could alternatively imply that the chemistry of the Martian atmosphere drastically changed if it is assumed
that energy sources responsible for its formation remained constant during the period when these lacustrine
and eolian deposits formed. Our experimental results suggest that a high N fixation rate was possible in the
presence of H2 in the atmosphere. Episodic inputs of H2 into the atmosphere reaching levels of 10–20% have
been proposed as a possible solution for keeping Mars from freezing (Batalha et al., 2015; Ramirez et al.,
2014; Wordsworth et al., 2017). The plausible sources of H2 include (1) serpentinization of minerals contain-
ing a high proportion of iron and magnesium, such as olivine ((Mg,Fe)2SiO4) and pyroxenes ((Mg,Fe)SiO3),
which produce H2‐rich fluids (Holm et al., 2015); (2) volcanic emissions of H2 and reduced carbon from the
middle Noachian to the early Amazonian (Batalha et al., 2015; Craddock & Greeley, 2009); (3) impact abla-
tion of meteoritic material impacting the Martian surface (Mimura et al., 2005); (4) iron oxidation by way of
UV irradiation of surface waters (Batalha et al., 2015); and (5) photolysis of water (Krasnopolsky & Feldman,
2001). It is generally believed that hydrogen was rapidly lost to space by its decomposition into H by iono-
spheric processes; however, the hydrogen escape rate is poorly constrained partly because it is not known
how water rich early Mars was (Batalha et al., 2015). The D/H ratio of water strongly bounded to clays in
the Cumberland mudstone analyzed by SAM at Yellowknife Bay provides evidence that hydrogen escaped
slowly from the early Martian atmosphere (Mahaffy et al., 2015). In order to maintain a H2‐rich atmosphere
for tens to hundreds of thousands of years, it is necessary to remove oxidized compounds from the atmo-
sphere to the surface by wet or dry deposition, and the primordial mantle was considerably more reduced
as suggested from the Martian meteorites (Batalha et al., 2015). As H2 sources were depleted, the rate of
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nitrogen fixation by bolide impacts is expected to decline about 10‐fold as observed in Figure 7a. Evidence
that the early Martian atmosphere was indeed H2 rich is supported by the speciation of nitrogen in the form
of reduced and oxidized layers found in the rock samples investigated by Curiosity. Nitroxyl (HNO) formed
in the Martian atmosphere from the reaction of NO with hydrogen atoms arising from the photolysis of
water or H2 (Mancinelli & McKay, 1988) according to reaction (R2):

NOþH→HNO: (R2)

Since HNO is extremely soluble in water, it was efficiently transported by rain onto the Martian surface
where it was transformed into NxOx

− species that rapidly decayed into NO3
− and NO2

− (Mancinelli &
Banin, 2003; Summers & Khare, 2007). Both of these species are observed in the lowest stratigraphic layers
sampled by Curiosity. As H2 depleted from the atmosphere, NO reacted with oxygen atoms arising from the
photolysis of CO2, according to reaction (R3):

NOþ O→NO2: (R3)

Dinitrogen oxide (NO2) reacted with hydroxyl radicals originating from the photolysis of water, according to
reaction (R4):

NO2 þ OH→HNO3→NO3
− þHþ: (R4)

Nitric acid (HNO3) is extremely soluble in water and would have been efficiently carried to the surface by
rain. In this scenario, the N fixation rate by bolide impacts became less efficient and the NO formed con-
verted exclusively to NO3

−, as observed in the altitudes from −4,427 to −4,192 m (see Figure 7).

The caveat of this scenario is that there are other greenhouse gases that could have kept Mars from freezing
(Wordsworth et al., 2017), and possibly the evolution of other reduced atmospheres could lead to a drop in
the rate of N fixation and a shift in the type of N species formed, such as CO2‐CH4‐N2 (Wordsworth et al.,
2017) and CO2‐CO‐N2‐H2 (Sholes et al., 2017). Therefore, further laboratory work is required to determine
the rate of N fixation by bolide impacts in these atmospheres.

3.5. Nitrogen Deposition and Accumulation Rates Measured by MSL

The nitrogen deposition rate (ND) for the rocks analyzed by SAM at Gale crater was calculated by multiply-
ing the concentration of fixed nitrogen in the rock ([N] expressed as grams nitrogen per cubic centimeter) by
the sediment deposition rate (D is given in centimeters per million years) according to equation (4):

ND ¼ N½ �×D; (4)

This implies no losses of fixed nitrogen during the sedimentation process, and consequently ND represents
an upper limit. D is an unknown variable. On Earth D can vary up to 11 orders of magnitude depending
on the environmental conditions and geologic time (Sadler, 1981). Kite et al. (2017) have estimated aD value
taking into account different alluvial fan deposits on the Martian surface using the occurrence of craters as a
fluvial‐process chronometer. They derived a D value of <(400–800) cm/Myr. Theoretical modeling for the
evolution of Mount Sharp has used D values from 500 to 3,700 cm/Myr, which are consistent with other
Mars locations (Borlina et al., 2015). Grotzinger et al. (2014) has used a D value of 100,000 cm/Myr to esti-
mate the length of the lacustrine deposition of the Sheepbed member at Gale crater. We have selected to
use an intermediate D value of 20,000 cm/Myr which results in a reasonable fitting of measured values of
fixed nitrogen measured for John Klein and Cumberland as can be seen in Figures 3 and 7. ND varies from
0.3(±0.1) to 1.4(±0.7) g N·Myr−1·cm−2 for John Klein and Cumberland, respectively. In contrast, NF by
bolide impacts was calculated to vary from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 at 3250 Myr for the lower
and upper and boundaries, respectively (see section 3.2 and Figure 3). These values are significantly smaller
by factors of 461 and 711, consecutively. Therefore, it is concluded that atmospheric deposition of nitrogen
from bolide impacts directly on the lake surface cannot account for the observed nitrogen concentrations in
these sediments. If on the other hand it is considered that nitrogen deposited over the entire surface of Gale
crater (SG = 1.77 × 104 km2) was dissolved, transported, and homogeneously distributed over the entire
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surface of the lake (SL = 30 km2, Grotzinger et al., 2014) by superficial and ground waters during favorable
wet climatic conditions, the nitrogen accumulation rate by bolide impacts (NA) can be calculated
using equation (5).

NA ¼ NF×SG
SL

; (5)

NA increases to 0.4 and 1.2 g N·Myr−1·cm−2 for the lower and upper boundaries, correspondingly (see
Figures 3 and 7). The upper boundary is, to a first‐order approximation, similar to the observed value at
Cumberland using a D value of 20,000 cm/Myr. Therefore, our results could imply that the nitrogen found
at the Sheepbed unit formed in a H2‐rich atmosphere (up to 20%) was deposited on the entire crater's surface,
and then it was dissolved, transported, and concentrated into the lake.

The decrease of the nitrogen levels up in the stratigraphic column surveyed by Curiosity (see Figure 7) could
indicate a decline of H2 in the atmosphere causing a change in the Martian climate and chemistry of the
atmosphere. The predicted NA values for bolide impacts shown in Figure 7 are the highest possible yields
of NO obtained in atmosphere with a CO2/(CO2 + N2) mole ratio of 0.5 with or without H2. Several data
points fall below the lower predicted boundary by bolide impacts under this condition. This could indicate
that nitrogen fixation by bolide impacts took place in an atmosphere without H2 and a CO2/(CO2 + N2) ratio
greater than 0.75 or lower than 0.4 resulting in a reduction in the rate of nitrogen fixation (see section 3.1) as
documented for the lack of CO3

2− in the sedimentary rocks found in Gale crater (Bristow et al., 2017). The
value obtained from the Cumberland sample is greater than the maximum predicted value for bolide
impacts. Possible explanations for this variation include (1) The nitrogen that was dissolved and transported
to the lake extended the confines of Gale crater; (2) the sediment deposition rate was not constant along the
stratigraphic column investigated by Curiosity; and 3) some degree of diagenesis and leaching of fixed nitro-
gen took place.

3.6. Comparison With Other Energy Sources

NO was observed in the upper atmosphere by Mars Express (Gagné et al., 2013) and Mars Atmosphere and
Volatile EvolutioN Mission (Stiepen et al., 2017). NO and N form in the thermosphere through N2 photodis-
sociation in the wavelength from 80 to 100 nm, photoelectron impact dissociation of N2, recombination of
N2

+ and NO+, the reaction of N2
+ with O, and the reaction of O+(2P) with N2 (Smith et al., 2014; Yung

et al., 1977). Subsequently, N and NO flow toward the lower atmosphere where they are oxidized to NO2,
which then reacts with HO2 leading to pernitric acid (HNO4) (Smith et al., 2014). On the Earth, HNO4 is
formed in the South Pole's atmosphere by a similar process which is favored at low temperature (Slusher
et al., 2002) in a similar temperature regime as to Mars (Smith et al., 2014). This acid is deposited into the
Martian surface where it reacts and decomposes into NO3

− salts. Today this is the most important source
of fixed nitrogen to the Martian surface. The NF by ultraviolet light has been estimated to be
2 × 10−4 g N·Myr−1·cm−2 throughout the Amazonian (the last 3000 Myr) when the atmosphere is thought
to have been similar to today's cold and hyperarid environment (Smith et al., 2014). The available photoche-
mical models have not considered such high levels of H2 in the Martian atmosphere. Its presence can alter
the chemical coupling of N and O in the atmosphere and shift the rate and type N fixed (e.g., HNO, Batalha
et al., 2015). However, if we extrapolate this value of NF to the Hesperian, and if all HNO4 deposited over the
entire surface of Gale crater was transported into the lake, NA would increase to 0.1 g N·Myr−1·cm−2. These
values are situated below the lower and upper boundaries set by bolide impacts and consequently are insuf-
ficient to account for the N deposition rate derived for Yellowknife Bay (see Figures 3 and 7). The NA value
for UV light corresponds to the lowest levels of ND depected by SAM (Figure 7). It is estimated that the total
mass of N accumulated on the surface of Gale crater during the Amazonian by ultraviolet light alone would
be 0.5 g N/cm2 (Smith et al., 2014), equal to a global deposit of 1.6 cm of sodium nitrate (NaNO3). This is an
important amount of nitrate that Curiosity did not detect (J. C. Stern et al., 2015, 2018). Possible explanations
to account for its loss in the surface include (1) wind‐driven erosion that resulted in partial exhumation of
the crater‐filling strata (Grotzinger et al., 2015); (2) radiation‐induced degradation of nitrates (Zakharov &
Nevostruev, 1968) by cosmic rays; and (3) diagenesis and leaching of nitrates into lower sedimentary layers
as discussed in section 3.4.
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Episodic explosive volcanic eruptions probably occurred in Tharsis and Elysium volcanic provinces, lasting
from the Hesperian to the Amazonian (3000 Myr to present) (Xiao et al., 2012). Such eruptions were prob-
ably accompanied by copious lightning discharges causing the conversion of N2 into HCN and/or NO3

− at
high temperatures depending on the nature of the gases emitted by volcanoes (Navarro‐González et al.,
1998; Segura & Navarro‐González, 2001, 2005). The energy flux delivered by volcanic lightning has been cal-
culated during the Hesperian period (Segura & Navarro‐González, 2001) considering a global magma pro-
duction of 5 km3/year (Xiao et al., 2012). Assuming that all compounds containing fixed N were finally
converted into NO3

−, NF by volcanic lightning is estimated to be 5 × 10−8 g N·Myr−1·cm−2 (Segura &
Navarro‐González, 2005). If all NO3

− deposited over the entire surface of Gale crater was transported into
the lake, the NA value would increase to 3 × 10−5 g N·Myr−1·cm−2. These values are below the lower bound-
ary limit set up by bolide impacts by 2 orders of magnitude and therefore are inadequate to account for the
NO3

− deposition rate derived for the Cumberland sample (see Figure 3).

Other energy sources such as cosmic rays, corona and lightning discharges from thunderstorms, and heat
from volcanoes had a minor role in N fixation, contributing to a NF value of <2 × 10−9 g N·Myr−1·cm−2

(Segura & Navarro‐González, 2005). Recently, it has been argued that coronal mass ejection events from
the young Sun, referred to as superflares, generated energetic particles that initiated reactions converting
molecular nitrogen, methane, and carbon dioxide into HCN, NO, and N2O in the early Earth (Airapetian
et al., 2016). This is a well‐known mechanism where HCN is produced photochemically from N sourced
from the ionosphere in a pathway that depends on CH4 (Tian et al., 2011; Zahnle, 1986). This process was
potentially relevant to early Mars, particularly because methane was probably another greenhouse gas pre-
sent in the atmosphere (Wordsworth et al., 2017), but the type of products fixed and their yields have not
been evaluated yet. An additional source of fixed N arises from the exogenous delivery of organics by comets
and interplanetary particles to the Martian surface, but its contribution was negligible, for example,
<10−9 g N·Myr−1·cm−2 (Segura & Navarro‐González, 2005).

4. Conclusions and Implications

A sharp decline on the amount of fixed nitrogen was found of about 2 orders of magnitude in the rocks
sampled by the Curiosity rover during its traverse from the lowest stratigraphic layers encountered on
Aeolis Palus to the upper strata of the base of Aeolis Mons. Two possible scenarios were discussed to account
for the decline of fixed nitrogen in the stratigraphic record in Gale crater: (1) diagenesis and leaching of fixed
nitrogen in the sedimentary rocks or (2) change in the rate of nitrogen deposition.

The decline of fixed nitrogen found in Gale crater seems to resemble the leaching of nitrate from the upper
stratigraphic layers to the lowest one, as seen in the driest region of the Atacama with three distinct nitrogen
layers centered at −4,436, −4,447, and −4,520 m with the lowest exhibiting the highest concentration.
However, the evidences against extensive leaching of nitrite and nitrates in the sedimentary rocks at Gale
crater are the following: (1) The concentration of NO2

− and NO3
− in the sediments should be higher by

103 to 104 orders than the highest value observed considering the Atacama nitrate deposits; (2) the existence
of a reduced layer of fixed nitrogen (nitrite) below an oxidized layer of nitrate indicates different deposition
conditions; (3) the release of NO in the nitrate layer occurs at various temperatures in the different strata
investigated indicating the presence of several nitrate/oxychlorine salts and the existence of a variety of sedi-
mentary environments; (4) there are water‐soluble as well as less soluble salts in almost all of the layers
investigated; and (5) the Sheepbed formation experienced postdepositional aqueous alteration but with a
low water/rock interaction. Therefore, diagenesis and leaching of fixed nitrogen in the sedimentary rocks
is considered less likely but still possible.

On the other hand, the abrupt decline of the amount of fixed nitrogen could alternatively imply that the
chemistry of the Martian atmosphere drastically changed if it is assumed that the energy sources responsible
for its formation remained constant during the period when these lacustrine and eolian deposits formed. Our
experimental results suggest that a high N fixation rate was possible in the presence of H2 in the atmosphere.
The presence of H2 from volcanic emissions could have resulted in an enhanced yield in the formation of
NO2

− and NO3
− by collisions of asteroids into the Martian atmosphere and surface. This enhancement

was due to a faster cooling rate of the shock wave freezing NO when its concentration was higher in the
heated gas. The impactor flux was used to calculate the nitrogen fixation rate and was found to vary from
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7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 around 3250 Myr ago in the absence or presence of H2, respectively. In
contrast, the nitrogen deposition rate derived from the SAM data at the lowest stratigraphic unit encoun-
tered by Curiosity was estimated to vary from 0.3(±0.1) to 1.4(±0.7) g N·Myr−1·cm−2 for John Klein and
Cumberland, respectively. This value was too high to explain atmospheric NO2

− and NO3
− deposition

directly on the surface of the lake at Gale crater. It was inferred that fixed nitrogen found at the Sheepbed
unit formed in a H2‐rich atmosphere (up to 20%) and was deposited on the entire crater's surface. Upon
favorable wet climatic conditions, it was dissolved, transported, and concentrated into the lake by superficial
and ground waters. The nitrogen accumulation rate by bolide impacts increases to 0.4 and
1.2 g N·Myr−1·cm−2 for the lower and upper boundaries, correspondingly. The value obtained from the
Cumberland sample is greater than the maximum predicted value for bolide impacts. Possible explanations
for this variation include (1) The nitrogen that was dissolved and transported to the lake extended the con-
fines of Gale crater; (2) the sediment deposition rate was not constant along the stratigraphic column inves-
tigated by Curiosity; and (3) some degree of diagenesis and leaching of fixed nitrogen took place.

The nitrogen accumulation rate by ultraviolet light was found to be similar to the lowest nitrogen deposition
values derived from the SAM data. Other sources of fixed nitrogen were found to be too small compared to
that supplied by bolide impacts to Gale crater.

The caveats of this scenario are that other atmospheric compositions are possible forMars, such as CO2‐CH4‐

N2 and CO2‐CO‐N2‐H2. Such atmospheres could potentially have an impact on the rate of N fixation and a
shift in the type of N species formed as they evolved into CO2‐N2. Therefore, further laboratory studies are
required to determine the rate of N fixation by bolide impacts in these atmospheres.

If the decline of amount of fixed nitrogen found in Gale crater was due to a change in the rate of N deposi-
tion, this caused a shortage in the accessibility of fixed nitrogen that could have led to a crisis to microbial life
at Gale crater and could have triggered the development of biological nitrogen fixation. A similar nitrogen
crisis was inferred for early Earth based on a sharp decline in the NO rate by lightning during the conversion
of the atmosphere from mostly CO2 to primarily N2 (Navarro‐González, McKay, & Nna Mvondo, 2001).

The study of the N and O isotopes present in NO2
− and NO3

− from the sediments investigated by Curiosity
and other future missions could provide clues on its origin. For instance, nitrate found in the Atacama
Desert is known to have been formed in the atmosphere based on mass independent fractionation of O iso-
topes (Catling et al., 2010). Similar future isotopic analysis of samples returned from Mars may reveal the
relative contributions of fixed nitrogen by photochemical or bolides sources in different strata.
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