Voyager 2 ultraviolet spectrometer solar occultations at Neptune: photochemical modeling of the 125–165 nm lightcurves

James Bishop, Paul N. Romani and Sushil K. Atreya

Computational Physics, Inc., 2750 Prosperity Avenue, Suite 600, Fairfax, VA 22031, U.S.A.
Code 693.7. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Received 1 November 1996; accepted 24 May 1997

Abstract. Ingress and egress Voyager 2 ultraviolet spectrometer (UVS) solar occultation lightcurves at wavelengths longward of H I Lyman α acquired during the Neptune encounter are compared with one-dimensional methane photochemical–transport models to infer hydrocarbon abundances and the strength of eddy mixing in the stratosphere. Previous modeling of the 125–140 nm lightcurves indicated eddy mixing coefficient \(K \) values of \(3-10 \times 10^6 \text{cm}^2\text{s}^{-1} \) near the 0.2 \(\mu \)bar level and methane mixing ratios in the lower stratosphere on the order of \(1-3 \times 10^{-4} \); these results should be insensitive to photochemical details, provided methane is the main source of opacity at these wavelengths. The UVS lightcurves at the longer wavelengths, which probe beneath the \(\text{CH}_4 \) photolysis peak, are expected to be dominated by the opacity of \(\text{C}_2 \) species (ethane, acetylene, ethylene) and perhaps higher order organics. At wavelengths > 152 nm, \(\text{H}_2 \) Rayleigh scattering is also a major opacity source. Modeled \(\text{C}_2 \) species abundances are sensitive to modeling details, especially the strength and height profile of eddy mixing. The current photochemical model incorporates several updates, including a recent revision in \(\text{CH}_4 \) photolysis branching ratios at Lyman \(\alpha \). In the photochemical modeling reported here, various forms for the eddy mixing profile have been tested, with the constraint that the models for ingress conditions remain consistent with the \(\text{C}_2\text{H}_6 \) and \(\text{C}_2\text{H}_2 \) abundances near 0.5 \(\mu \)bar derived from IRIS measurements. Superior fits are obtained with models exhibiting a stagnant lower stratosphere \((K \approx 2 \times 10^5 \text{cm}^2\text{s}^{-1} \text{ for pressures } > 2 \mu \text{bar}) \) with a rapid transition to a localized level of vigorous eddy mixing in the upper stratosphere \((K \approx 10^8 \text{cm}^2\text{s}^{-1} \text{ near } 10 \mu \text{bar, decreasing at higher altitudes}) \). In line with our earlier work, methane mixing ratios on the order of \(10^{-4} \) are required to obtain good agreement between the photochemical models and the UVS lightcurves. © 1998 Elsevier Science Ltd. All rights reserved

1. Introduction

During the Voyager 2 flyby of Neptune, both ingress and egress solar occultations were recorded with the ultraviolet spectrometer (UVS) instrument (Broadfoot et al., 1989). The transmission profiles or lightcurves defined by the progressive absorption with decreasing minimum tangent ray height \((MTRH) \) of the solar irradiance within each UVS channel probed the Neptune atmosphere at two latitudes (61° N near the winter hemisphere arctic circle, 49° S in the summer hemisphere at the time of encounter). At wavelengths longward of H I Lyman \(\alpha \) (151.6 nm), the lightcurves penetrated to stratospheric levels (0.1 \(\mu \)bar > \(p > 0.1 \mu \text{mbar} \)). In a previous paper (Bishop et al., 1992, hereafter referred to as Paper 1), we presented a modeling analysis of the UVS lightcurves at wavelengths of 125–140 nm using a one-dimensional steady-state methane photochemical–transport code, based on the expectations that methane \((\text{CH}_4) \) and its photochemical progeny were the species responsible for the measured opacity and that the source of methane in the stratosphere was upward transport from deeper levels. The main results were estimates of the strength of eddy mixing in the vicinity of the half-light altitudes of the 125–140 nm lightcurves \((K \approx 3-10 \times 10^6 \text{cm}^2\text{s}^{-1} \text{ at } 550-600 \text{ km above the } 1 \text{ bar levels}) \) and compatible methane mixing ratios in the lower stratosphere \((f_{\text{CH}_4} \approx 1-3 \times 10^{-4}) \). In this report, we discuss our attempts to model the occultation data at wavelengths 140–165 nm. These data probe the stratosphere at altitudes beneath the primary photochemical zone (identified by the level at which unit optical depth for Lyman \(\alpha \) absorption by methane occurs). As a consequence, it is
possible to use these data in conjunction with Voyager measurements pertaining to deeper pressure levels to constrain models for the eddy mixing coefficient throughout the stratosphere.

The photochemical model has been updated since Paper 1. More recently, it has been used in a combined study of Voyager measurements at Neptune on stratospheric hazes and hydrocarbon species (Romani et al., 1993, hereafter referred to as Paper 2). Even though Paper 2 was not concerned with detailed modeling of the UVS lightcurves, comparisons of the various model cases with the UVS egress occultation data were presented to illustrate the impact on modeling results of the adoption of different eddy mixing and atmospheric temperature height profiles; alternate low-temperature rate coefficients for several key reactions were also tested. The form adopted for the height variation of the eddy mixing coefficient is of crucial importance. The form introduced in Paper 2 characterizing the most successful models derived from preliminary explorations in modeling the longer wavelength UVS lightcurves. While a variety of different K profiles have been explored, the form illustrated by Models B, C, and D of Paper 2, with a localized zone of rapid mixing overlying a stagnant lower stratosphere, has proven to be the most successful at replicating the UVS lightcurves while, in the egress case, remaining consistent with the IRIS measurements analyzed by Béard et al. (1991).

In the following sections, the UVS lightcurves used in our modeling are presented and the simulation procedure is described, including a complete listing of modeling inputs and chemical reaction rates. Photochemical models and data–model lightcurve comparisons are then presented and discussed.

2. UVS lightcurves

Our handling of the UVS data is described in Paper 1, although for the current modeling we have decided not to rescale the data. In Fig. 1, a subset of the UVS solar occultation data used in our modeling is shown as transmission lightcurves $I(z_\perp, \lambda)/I_0(\lambda)$, where z_\perp is the minimum tangent ray height) averaged over 0.96 s intervals and ordered according to the channel center wavelengths λ_\perp at 500 km MTRH. Altitude resolutions, defined by the change in MTRH over a data-accumulation interval, are 9.6 km (ingress) and 12.3 km (egress), and the spectral resolution is 2.5 nm. The apparent solar diameter for both occultations (4 km at ingress, 20 km at egress) is small relative to the MTRH range over which total opacities drop from 0.9 to 0.1 and has been ignored. Other aspects of the occultation (e.g., channel center offsets as functions of M1KH stemming from the limit cycle motion, convolution of model transmission spectra at 0.1 nm resolution with the UVS slit function) are incorporated in our modeling using the information provided to us by B. Sandel and R. Vervack (personal communication).

In addition to measurement noise, the data are afflicted by two main sources of error: internal instrument scattering, primarily of the solar Lyman α line, and pointing uncertainties which introduce uncertainties in the ratioing. These errors and the derivation of a corresponding standard deviation σ_D are discussed by Yelle et al. (1993). In recognition of this, we display the UVS data as data ranges defined by $I(z_\perp, \lambda)/I_0(\lambda) \pm \sigma_D$ when making comparisons with model lightcurves.

3. Modeling procedure

The model lightcurves are constructed using the H_2 density distributions provided by the model atmospheres and the hydrocarbon (CH$_4$, C$_2$H$_2$, C$_3$H$_4$, C$_4$H$_2$) density distributions obtained from solving the coupled I-D continuity equations.
for each species \(i\) assuming steady-state conditions. (Variables are defined in Table 1.) In terms of the mixing ratio for species \(i\), the flux is (ignoring the small thermal diffusion term)

\[
\Phi_i = -n_i \left((D_i + K_i) \frac{d\Phi_i}{dz} + D_i f_i (H_i^{-1} - H_{i,\text{ref}}^{-1}) \right) \tag{2}
\]

Once the hydrocarbon abundances are evaluated, simulated UVS lightcurves are given by

\[
I(r, \lambda) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} R(\lambda, \lambda_r) f(\lambda, \lambda) \exp \left[-2 \int_{r_{\text{min}}}^{r} \frac{r}{(r' - r_{\text{min}})^2} n(z) \sum_i f_i(z, \lambda_r) \right] d\lambda_r. \tag{3}
\]

The species included in the model undergoing photochemical production, loss, and transport are \(\text{CH}_4, \text{CH}_3, \text{C}_2\text{H}_2, \text{C}_2\text{H}_3, \text{C}_2\text{H}_4, \text{C}_2\text{H}_5, \text{C}_3\text{H}_6, \text{C}_4\text{H}_2, \) and atomic hydrogen. The following species are treated as being in local chemical equilibrium: \(\text{CH}, \text{C}_2\text{H}, \text{C}_3\text{H}, \text{C}_4\text{H}, \text{C}_5\text{H}, \text{C}_6\text{H}.\) Fixed-point (mixing ratio) boundary conditions are used for all transported species at the lower boundary (the tropopause); at the upper boundary \((p = 10^{-3}\text{mbar})\), flux values are specified. For the hydrocarbon species, the upper boundary fluxes are all set to zero; the nominal magnitude adopted for the downward flux of atomic hydrogen from thermospheric \(\text{EUV}\) processes is \(4 \times 10^7\text{cm}^{-2}\text{s}^{-1},\) adapted from Gladstone (1983).

The main fitting parameters are the mixing ratio of methane in the lower stratosphere \((f_1(\text{CH}_4))\) and the parameters defining the eddy mixing coefficient \((K)\) profile. We have explored several different profile forms for \(K.\) In seeking out successful model fits, our first step is to identify \([f_1(\text{CH}_4), K_{1,2}(\lambda, < 140\text{ nm})]\) pairs providing the best agreement with the UVS data at wavelengths shortwards of 140 nm (i.e. the procedure of Paper 1). As previously noted, these lightcurves are expected to be least sensitive to photochemical modeling details. The \(K\) profile is then systematically varied, as allowed by the adopted form while maintaining the fit at wavelengths < 140 nm, to try to improve the fit of the model transmission profiles to the UVS data at longer wavelengths. As in Paper 1, we rely on visual judgements in assessing the quality of model agreement with the data. The nominal values derived for the fitting parameters are not unique and can be modified by perhaps 50% without adversely affecting the data-model comparisons, provided the modifications compensate one another (e.g. an increase in \(f_1(\text{CH}_4)\) requires a compensating decrease in \(K_{1,2}(\lambda, < 140\text{ nm})\) in order to maintain the correct placement \((\lambda, < 140\text{ nm})\) half-light levels.)

The analysis by Bézard et al. (1991) of IRIS measurements of stratospheric hydrocarbon emissions obtained during the Neptune flyby is based on a large selection of low spatial resolution data with field-of-view centers ranging from 10°S to 50°S latitude, which contains the UVS egress occultation latitude. Consequently, the acetylene and ethane mixing ratios \((4 \times 10^{-9} (0.2\text{ mbar})\) and \(1.3 \times 10^{-6} (0.7\text{ mbar})\), respectively) derived by Bézard et al. have been adopted as important constraints for our photochemical models in the egress case.

4. Modeling inputs

4.1. Atmosphere model

The atmospheric mean molecular weight adopted in our modeling is 2.393, with a helium mixing ratio \(f(\text{He})\) of...
0.19 (Conrath et al., 1991a): the possibility that \(f(\text{He}) = 0.15 \) with \(f(\text{N}_2) \approx 0.003 \) (Conrath et al., 1993) does not impact the modeling results presented in Section 5. Atmospheric pressure-temperature \((p-T) \) profiles at pressures deeper than \(\approx 2 \text{ mbar} \) at the ingress and mean egress latitudes are taken from the RSS occultations analysis of Lindal (1992). These are extended to 1.0 \text{ mbar} using a profile of the form presented by Hubbard et al. (1987); after scaling to \(f(\text{He}) = 0.19 \), their analysis of the 20 August 1985 stellar occultation central flash indicates a temperature of 143 K near 0.42 mbar. The nominal 1 \text{ mbar} temperature is 168 K, taken from Orton et al. (1992). The high altitude segment is based on the preliminary analysis of the UVIS ingress solar occultation data presented by Broadfoot et al. (1989). The composite profile is shown in Fig. 2. The 1 \text{ bar} radii at the UVIS occultation latitudes, which are needed to place the \(p-T \) profiles on an altitude scale, are taken from Lindal (1992): 24445 km at the ingress latitude of 61 N and 24335 km at the mean egress latitude of 49 S.

Since the \(p-T \) profile is not well constrained by Voyager flyby data at pressures in the range 2 \text{ mbar} to 0.01 \text{ mbar}, "warm" and "cool" models have been used in the modeling. These are defined by shifting the 1 \text{ mbar} temperature of Orton et al. (1992) by \(\pm 20 \text{ K} \) as suggested by numerous stellar occultations (Roques et al., 1994). In these models, the RSS profiles and the Hubbard et al. 0.42 \text{ mbar} point are not modified.

4.2. Solar irradiance spectrum

Photolysis rates are calculated using solar irradiance fluxes summed over 10 A intervals spanning the wavelength range 1000–2500 A. At wavelengths longward of 1204 A, the fluxes are from the 1985 Spacelab-2 flight of SUSIM (VanHoosier et al., 1988); a scaled \((F_{10.7} = 207) \) Hinteregger spectrum is used at shorter wavelengths (Hinteregger et al., 1981). The composite spectrum at 1 \text{ AU} is shown in Fig. 3 and is representative of solar near-maximum conditions; the line-integrated Lyman \(z \) flux is \(6.5 \times 10^{11} \text{ ph.cm}^{-2}. \text{s}^{-1} \). (Note that although the SUSIM spectrum was obtained near solar minimum, the Lyman \(z \) flux value is relatively large. It is unfortunate that no FUV solar spectral irradiance measurements of comparable spectral resolution are available for the period of the Neptune encounter.) At Neptune’s distance from the Sun, the pervasive Lyman \(z \) skyglow associated with the local interstellar medium (LISM) is not negligible and has been included in the modeling; near-encounter measurements by the Voyager UVIS give an estimate of 420 \text{ R} for the sky-averaged LISM Lyman \(z \) brightness, giving a contribution to the \(\text{CH}_4 \) photolysis rate of \(4 \times 10^{-8} \text{ s}^{-1} \) at the top of the atmosphere. By comparison, the photolysis rate driven by the direct SUSIM solar flux is \(1.3 \times 10^{-8} \text{ s}^{-1} \). The SUSIM spectrum at 1 A resolution is also employed in the lightcurve simulations.

In our modeling, we adopt “local” conditions, i.e. model atmospheres and photolysis rates corresponding to conditions at the occultation latitudes at the time of encounter. Our modeling of the UVIS lightcurves suggests rapid eddy mixing at pressures 1 \text{ mbar} < \(p < 0.1 \text{ mbar} \), so that the timescale for mixing (\(\tau = h_{\text{mix}} / K \)) is significantly shorter than a solar cycle (and consequently much shorter than a Neptune season). The analysis of the UVIS data by Yelle et al. (1993) suggests \(K \approx 10^{5} \text{ cm}^{2}. \text{s}^{-1} \), which is smaller than the magnitude we infer at the same pressures; even with this value, though, the mixing timescales are significantly shorter than seasonal or solar cycle timescales. The effective solar zenith angles adopted in the ingress and egress modeling are 89.2 and 40.2, respectively, corresponding to diurnally averaged solar illumination conditions at the time of encounter.

4.3. Photoabsorption cross sections

The photoabsorption cross sections used in the opacity modeling are shown in Fig. 4, at roughly 2 A resolution.
These are taken from:

- CH₄: Lee and Chiang (1983); Mount et al. (1977)
- C₂H₆: Suto and Lee (1984); Wu et al. (1989); R. Wu, personal communication (T = 155 K)
- C₃H₄: R. Wu, personal communication (T = 155 K)
- C₄H₆: Mount and Moos (1978)
- C₅H₄: Glicker and Okabe (1987)

Superimposed are the cross sections convolved with the UVS instrument slit function. The channel center wavelengths for the ingress occultation data at a tangent altitude of 500 km are also indicated.

The photolysis channels and branching ratios included in the photochemical modeling are listed in Table 2. The recent revision in the direct quantum yield of CH₄ from the photolysis of methane at Lyman x (Mordaunt et al., 1993) has been folded into our modeling. However, since the story of CH₄ Lyman x photolysis is still incomplete, we have attempted to make reasonable estimates of the branching ratios for each energy-allowed channel. These estimates are discussed in detail in Appendix A.

4.4. Chemical reaction rates

The chemical reactions included in the modeling are listed in Table 3 along with the adopted rates. There have been several updates to the modeled chemistry since the study presented in Paper 2. The most notable changes are (1) the introduction of the photolysis channel CH₄ + hv → CH₃ + H using the results of Mordaunt et al. (1993) and (2) revision of the chemical pathways involving the vinyl radical (C₂H₃) (Romani, 1996). The chemical scheme is fairly complete for the C₂ hydrocarbons. An expanded chemical scheme with a more complete coverage of reaction paths involving C₃ and C₄ species was used by Moses et al. (1992) in their pre-encounter study of hydrocarbon photochemistry and condensation in Neptune's stratosphere. (A comparative discussion of the Romani et al. (1993) and Moses et al. (1992) studies is given in Bishop et al. (1995).)

4.5. Condensation

In the lower stratosphere, temperatures are cold enough to result in very high supersaturations (S) for several hydrocarbon species (principally C₂H₆ and C₃H₆) if these remained in the gas phase. Consequently, a condensation loss is included. Our handling of this loss mechanism is discussed in detail in Paper 2; the nominal placement for removal from the gas phase is dictated by the condition S ≥ 1. The study of the relative efficiency of condensation processes by Moses et al. (1992) suggests that the condensation levels of product hydrocarbons should lie deeper in the atmosphere than indicated by the S ≥ 1 condition; however, both the IRIS and UVS hydrocarbon data refer to pressure levels (p ≈ 0.5 mbar and
Table 2. Photolysis channels and references

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Branching ratios</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{J}_1^{b} \quad \text{CH}_4 + h\nu$</td>
<td>$q_d(\lambda < 153) = 0.30$</td>
<td>Lee and Chiang (1983); Mount et al. (1977); McNeishy and Okabe (1964); Calvert and Pitts (1966); Rebbert and Ausloos (1972); Gorden and Ausloos (1967); Slanger and Black (1982); Mordaunt et al. (1993); Laufer and McNeishy (1968)</td>
</tr>
<tr>
<td>$\text{J}_2 \quad \text{C}_2\text{H}_4 + h\nu$</td>
<td>$q_d(\lambda < 190) = 0.05$</td>
<td>Okabe (1981); Okabe (1983); Shin and Michael (1991); McDonald et al. (1978); Suto and Lee (1984); Wu et al. (1989), Nakayama and Watanabe (1964); R. Wu, personal communication, 1991</td>
</tr>
<tr>
<td>$\text{J}_3 \quad \text{C}_2\text{H}_6 + h\nu$</td>
<td>$q_d(\lambda < 170) = 0.27$</td>
<td>Mount and Moos (1978); Calvert and Pitts (1966); Akimoto et al. (1965); Lias et al. (1970); Hampson and McNeishy (1965)</td>
</tr>
<tr>
<td>$\text{J}_4 \quad \text{C}_2\text{H}_6 + h\nu$</td>
<td>$q_d(\lambda < 166) = 0.20$</td>
<td>Okabe (1981); Glicker and Okabe (1987); Allan (1984)</td>
</tr>
<tr>
<td>$\text{J}_5 \quad \text{C}_2\text{H}_6 + h\nu$</td>
<td>$q_d(\lambda < 216.4) = 1.00$</td>
<td>Arthur (1986)</td>
</tr>
</tbody>
</table>

a Wavelengths in nm.

$p < 0.1 \text{ mbar}$, respectively) well above the condensation levels so that modeling of these data are only indirectly affected by the exact placement of these levels. Within the context of the current study, the significance of condensation is in establishing an efficient loss mechanism acting at a deeper level resulting in downward fluxes of acetylene and ethane throughout the pressure regions sounded by the IRIS and UVS data.

5. Data–model comparisons

K profiles of the form

$$K(\lambda) = K_0 \left(\frac{n_c}{n(\lambda)} \right)^\beta$$

with $\beta = 0.5$ (the subscript 0 refers to a reference level) have been used in generating the model results shown Fig. 5, since this type of profile (Lindzen, 1971; Hunten, 1975) has been commonly used in photochemical modeling studies of outer planet stratospheres. The fits are determined by the $\lambda < 140 \text{ nm}$ channels, and it is apparent that the C_2 hydrocarbon abundances in these models are not consistent with the UVS data. In particular, the model light-curves with $\lambda < 152 \text{ nm}$ exhibit more acetylene (C_2H_2) opacity than is consistent with the data (these channels encompass the strong first vibrational member of the $3R-X$ Rydberg transition). At longer wavelengths, the excess opacity in the models is from ethylene (C_2H_4). At shorter wavelengths, where ethane (C_2H_6) is expected to contribute, the model light-curves are in fairly good accord with the data, except for the egress case at $\lambda = 148.2 \text{ nm}$, where the second member of the acetylene $3R-X$ system makes its appearance. Near the 0.5 mbar level, there is a marked discrepancy with the IRIS-retrieved ethane mixing ratio.
Table 3. Reactions, rates and references

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>$^1\text{CH} + H \rightarrow \text{CH}_2 + H$</td>
<td>$k = 9.24 \times 10^{-11}$</td>
</tr>
<tr>
<td>R2</td>
<td>$^1\text{CH}_2 + \text{CH}_3 \rightarrow \text{CH}_2 + \text{CH}_3 + \text{H}$</td>
<td>$k = 6.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R3</td>
<td>$\text{CH} + \text{H}_2 \rightarrow \text{CH}_2 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}e^{0.07T}$</td>
</tr>
<tr>
<td>R4</td>
<td>$\text{CH} + \text{H}_2 \rightarrow \text{CH}_2$</td>
<td>$k_{max} = 1.7 \times 10^{10}$</td>
</tr>
<tr>
<td>R5</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_2 + \text{H}_2$</td>
<td>$k_0 = 8.75 \times 10^{-31}e^{5.24T}$</td>
</tr>
<tr>
<td>R6</td>
<td>$\text{H}^2 + \text{H}_2$</td>
<td>$k = 9.24 \times 10^{-11}$</td>
</tr>
<tr>
<td>R7</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R8</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R9</td>
<td>$\text{CH}_3 + \text{H} \rightarrow \text{CH}_2 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R10</td>
<td>$\text{CH}_3 + \text{H} \rightarrow \text{CH}_2 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R11</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R12</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R13</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R14</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R15</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R16</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R17</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R18</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R19</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R20</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R21</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R22</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R23A</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R23B</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R24</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R25</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R26</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R27</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R28</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R29</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R30</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R31</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
<tr>
<td>R32</td>
<td>$\text{CH}_3 + \text{H}_2 \rightarrow \text{CH}_3 + \text{H}$</td>
<td>$k = 5.0 \times 10^{-11}$</td>
</tr>
</tbody>
</table>

Note: The reactions and rates are presented in a tabular format, with the rate expression and references provided for each reaction. The rates are given in the form $k = \text{rate constant}$. The references are cited in parentheses after each rate expression.
Table 3.—continued

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate expression</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>R33 $C_2H_4 + H \rightarrow C_2H_2 + H_2$</td>
<td>$k = 1.2 \times 10^{-31}$</td>
<td>Yung et al. (1984)</td>
</tr>
<tr>
<td>R34 $C_2H_4 + H \rightarrow C_2H_2 + H_2$</td>
<td>$k = 3.3 \times 10^{-11}$</td>
<td>Yung et al. (1984)</td>
</tr>
<tr>
<td>R35 $C_2 + H \rightarrow C_2H + H$</td>
<td>$k = 1.77 \times 10^{-19} e^{-297 T}$</td>
<td>Pitts et al. (1982)</td>
</tr>
<tr>
<td>R36 $C_2 + CH_2 \rightarrow C_2H + CH$</td>
<td>$k = 5.05 \times 10^{-11} e^{-297 T}$</td>
<td>Pitts et al. (1982)</td>
</tr>
<tr>
<td>R37 $CH_2 + C_2H_4 \rightarrow C_2H + H_2$</td>
<td>$k = 1.3 \times 10^{-10}$</td>
<td>Lander et al. (1990)</td>
</tr>
<tr>
<td>R38 $C_2H + C_2H_4 \rightarrow C_2H_2 + C_2H_3$</td>
<td>$k = 2.4 \times 10^{-12}$</td>
<td>Baulch et al. (1992)</td>
</tr>
<tr>
<td>R39 $^3C_2H + ^3CH_2 \rightarrow C_2H_2 + H + H$</td>
<td>$k = 3.1 \times 10^{-10}$</td>
<td>Lovejoy et al. (1990)</td>
</tr>
<tr>
<td>R40 $^3CH_2 + CH_4 \rightarrow ^3CH_2 + CH_3$</td>
<td>$k = 1.2 \times 10^{-11}$</td>
<td>(see R2)</td>
</tr>
<tr>
<td>R41 $CH_2 + C_2H_4 \rightarrow C_2H + C_2H_2$</td>
<td>$k = 3.4 \times 10^{-11}$</td>
<td>Fahr et al. (1991)</td>
</tr>
<tr>
<td>R42 $CH_2 + C_2H_4 \rightarrow C_2H_2 + C_2H_2$</td>
<td>$k = 1.28 \times 10^{-11} e^{-1040 T}$</td>
<td>Tsang and Hampson (1986); Baulch et al. (1992) (see note)</td>
</tr>
<tr>
<td>R43 $C_2H_5 + H \rightarrow C_2H_4 + H$</td>
<td>$k_c = 5.5 \times 10^{-23} e^{-1040 T}$</td>
<td>Gladstone (1983)</td>
</tr>
<tr>
<td>R44 $C_2H_5 + H \rightarrow C_2H_4 + H$</td>
<td>$k_c = 1.5 \times 10^{-11} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R45 $^3C_2H + H \rightarrow C_2H_2 + H$</td>
<td>$k_c = 9.5 \times 10^{-11} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R46 $C_2H_5 + C_2H_4 \rightarrow 1-C_4H_8$</td>
<td>$k_c = 6.59 \times 10^{-13} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R47 $C_2H_5 + C_2H_4 \rightarrow C_2H_4 + C_2H_2$</td>
<td>$k_c = 1.9 \times 10^{-11}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R48 $C_2H_5 + C_2H_4 \rightarrow C_2H_4 + C_2H_2$</td>
<td>$k_c = 2.5 \times 10^{-11}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R49 $C_2H_5 + C_2H_4 \rightarrow C_2H_4 + C_2H_2$</td>
<td>$k_c = (1 - F) k$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R50 $C_2H_5 + C_2H_4 \rightarrow C_2H_4 + C_2H_2$</td>
<td>$k_c = 6.59 \times 10^{-13} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R51 $C_2H_5 + C_2H_4 \rightarrow C_2H_4 + C_2H_2$</td>
<td>$k_c = 1.9 \times 10^{-11}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R52 $CH + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 3.5 \times 10^{-10} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R53 $CH + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 5.3 \times 10^{-10}$</td>
<td>Baulch et al. (1992)</td>
</tr>
<tr>
<td>R54 $CH + C_2H_4 \rightarrow 1-C_4H_8$</td>
<td>$k_c = 1.1 \times 10^{-10}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R55 $CH + C_2H_4 \rightarrow Products$</td>
<td>$k_c = F k$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R56 $p-C_3H_9 + H \rightarrow C_2H_4 + C_2H_4$</td>
<td>$k_c = 6.59 \times 10^{-13} e^{-1040 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R57 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 1.9 \times 10^{-11}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R58 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 2.5 \times 10^{-11}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R59 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 1.3 \times 10^{-22}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R60 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 1.2 \times 10^{-10}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R61 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 1.03 \times 10^{-12} e^{-1231 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R62 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 6.6 \times 10^{-11} e^{-1231 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R63 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 6.0 \times 10^{-11} e^{-1231 T}$</td>
<td>(see note)</td>
</tr>
<tr>
<td>R64 $C_2H_6 + C_2H_4 \rightarrow C_2H_3 + C_2H_2$</td>
<td>$k_c = 6.0 \times 10^{-11} e^{-1231 T}$</td>
<td>(see note)</td>
</tr>
</tbody>
</table>
J. Bishop et al.: Voyager 2 ultraviolet spectrometer solar occultations at Neptune

(egress case); the downward transport and loss (via condensation) of ethane in this model is too rapid to maintain the observed abundance. The model agreement with the UVS data at wavelengths 140–145 nm is actually fortuitous, with the overabundance of C2H2 and C2H4 in the models displayed at longer wavelengths compensating for an under-abundance of C2H6. The f1(C116) and resulting \(K_{\text{a}_{1}} \) values for the \(T_{\text{a}} < 140 \) nm channels are listed in Table 4 for the nominal \(p-T \) models. The tabulated values differ slightly from the corresponding values for the "a" models in Paper 1, owing to the updates in modeling inputs (solar irradiance spectrum, effective solar zenith angles, model atmospheres, etc.) and the fact that reratioing has not been performed.

We subsequently defined \(K \) profiles characterized by a small number of layers or zones over which \(K \) is held constant. and explored model fits by varying the width and placement of the constant \(K \) zones. The upper troposphere, lower stratosphere dynamics modeling of Conrath et al. (1991b) suggests a sluggish overturning timescale on the order of 10^8 s, corresponding to an eddy mixing coefficient value of \(2 \times 10^3 \) cm^2 s^{-1}. Photochemical modeling of the IRIS measurements of stratospheric acetylene and ethane emissions (Bézard et al., 1991; Paper 2) also strongly indicates a requirement for a sluggish lower stratosphere if the observed abundances are to be maintained. In view of this, \(K \) in the lowermost zone has been constrained to values on the order of \(2 \times 10^3 \) cm^2 s^{-1}, although the extent of this layer has been varied.

We have found that a minimum of three constant \(K \) zones are required to give a reasonably good fit to the UVS data, with the maximum \(K \) values belonging to the middle layer centered near 10^-2 mbar beneath the primary photochemical zone (where unit optical depth for Lyman \(\alpha \) absorption by CH4 occurs):

\[
K = K_1, \quad p \geq p_1
\]

\[
= K_1 \times \left(\frac{p}{p_1} \right)^{\gamma_1}, \quad p_1 > p \geq p_2
\]

\[
= K_2, \quad p_2 > p \geq p_3
\]

\[
= K_2 \times \left(\frac{p}{p_3} \right)^{\gamma_2}, \quad p_3 > p \geq p_4
\]

\[
= K_3, \quad p \leq p_4
\]

where \(\gamma_1 = \ln(K_1/K_2)/\ln(p_1/p_2) \) and \(\gamma_2 = \ln(K_2/K_3)/\ln(p_3/p_4) \). The placement of the rapid rise in \(K (p_1 > p \geq p_2) \) is chosen in part to reproduce a ratio of ethane-to-acetylene mixing ratios consistent with the Bézard et al. (1991) IRIS analysis and in part to avoid stifling the upward flow of CH4. Other types of profiles were explored (e.g., the profile form adopted by Yung et al. (1984) in their extensive Titan photochemical modeling study), but none were found to lead to fits as successful as models with \(K \) profiles defined by the above expression.

The models shown in Fig. 6 illustrate the success (and model limitations) obtained with the form for \(K \) represented by equation (5); fitting parameter values for the

Notes:

Two body rates are in units of cm^3 molecule^{-1} s^{-1}

Three body rates are in units of cm^3 molecule^{-2} s^{-1}

If \(f_c \) and \(f_a \) values are presented, then the factor \(F \) is given by

\[
\log_{10} F = \log_{10}(f_c) - \left[1 + \left(\frac{\log_{10}(k_1 M)}{\log_{10}(k_2 M)} \right) f_a \right]^{\gamma_1}
\]

where \(M \) is the background atmosphere number density

\(k_1 \) upper limit is \(T = 167 \) K rate from Berman and Lin (1983)

\(k_2 \) \(f_c = 0.902 - 1.03 \times 10^{-3} T, f_a = 1 \)

\(k_3 \) \(f_c = 0.38e^{-T/45} + 0.62e^{-100T}, f_a = 0.75 - 1.27\log_{10}(f_c); \) bath gas is Ar

\(k_4 \) bath gas is H2

\(k_5 \) \(f_c = 0.44, f_a = 0.75 - 1.27\log_{10}(f_c); \) bath gas is He

\(k_{4,28} \) fast rate

\(k_{24,28} \) in lieu of firm evidence, estimating that C4H rates are the same as their C2H analogs. See: Kiefer and Von Drasek (1990); Tanzawa and Gardiner (1980); Frank and Just (1980)

\(k_{20,30} \) in lieu of firm evidence, estimating that C3H+CH2 and C2H+CH3 have the same rate as R20 (see references for R24–R28)

\(k_{31} \) estimating to be kinetic rate limit

\(k_{32} \) \(k_{32} = 0.04 \cdot k_3 \) from R60

\(k_{33,46} \) estimating that the disproportionation to recombination ratio is 0.23 (average of C3H1 and C3H6 self-reactions, 0.3 and 0.15 respectively, from Tsang and Hampson (1986)) and taking \(k_{46} = k_3 \)

\(k_{51} \) expression from NIST Chemical Kinetics Database V5.0 (Mallard et al., 1993); Laufer et al. (1983) presented tabulated data which is reproduced by the NIST expression to 1%

\(k_{52} \) upper limit is \(T = 171 \) K rate from Berman et al. (1982)

\(k_{53,54} \) upper limit is \(T = 160 \) K rate from Berman et al. (1982); \(F = 0.5 \)

\(k_{55} \) upper limit is \(T = 162 \) K rate from Berman and Lin (1983)

\(k_{56} \) estimating that \(k_{56} + k_{57} = k_4 \) from R46

\(k_{57} \) expression from NIST Chemical Kinetics Database V5.0 (Mallard et al., 1993); Laufer et al. (1983) presented tabulated data which is reproduced by the NIST expression to ~30%
\(\lambda_c < 140 \text{ nm} \) channels are given in Table 4. In the ingress case, models giving good fits for the \(\lambda_c < 140 \text{ nm} \) and \(\lambda_c > 151 \text{ nm} \) channels consistently failed to provide sufficient opacity at intermediate wavelengths, pointing to either an under-abundance of ethane or the presence of an unmodeled constituent. To gain an idea of the amount of \(\text{C}_2\text{H}_4 \) required to bring about agreement, the ethane mixing ratio profile was scaled by a constant factor; an increase of the model \(\text{C}_2\text{H}_4 \) abundances by a factor of 4.0 brings the model lightcurves into marginal alignment with the UVS data at \(\lambda_c = 144.7 \text{ nm} \) and \(\lambda_c = 148.4 \text{ nm} \), but the agreement at \(\lambda_c = 152.1 \text{ nm} \) is now worsened. It is
necessary to adopt a fast rate for R_1, the region of enhanced eddy mixing at pressures beneath the tropopause (referred to as the "stacked" χ_0) also contribute to ethane production. Even with the rapid mixing in the middle stratosphere indicated by our models is a manifestation of advection in a meridional circulation system, then the photochemical stability of ethane would suggest that its abundance should be more reflective of global solar illumination conditions.

The egress models are inherently close to such illumination conditions, and generating ethane abundances within the models sufficient to account for the opacities measured by the UVS is not difficult, using the K profile form with three constant layers. In the egress case, however, as in the ingress case, it is difficult to obtain consistent fits across the 140–153 nm interval, since ethane abundances yielding good fits at 140–148 nm result in too much total opacity at 152 nm where the main acetylene spectral signature lies. In Fig. 6 (lower panels) we show a compromise fit geared toward giving agreement with the IRIS-retrieved C_2H_6 mixing ratio at 0.7 mbar while maintaining a marginally acceptable fit to the UVS 152 nm lightcurve. A factor of 3 discrepancy with the IRIS acetylene results is noted.

The middle layer K values displayed in Fig. 6 are representative of the minimum values needed in our modeling explorations to avert excessive C_2H_6 abundances vis-à-vis the UVS data at wavelengths $\chi_0 > 153$ nm. Why is an enhanced K necessary?—briefly, to transport C_2H_6 out of the primary photochemical zone where it is generated by $CH + CH_2CH_2 \rightarrow C_2H_6 + H$ (R3 in Table 3) to deeper levels ($p > 10^4$ mbar) where it is more efficiently consumed in the three body reaction $C_2H_6 + H + M \rightarrow C_2H_5 + H$ (R11). The subsequent lase of C_2H_5 is $C_2H_5 + H \rightarrow CH_3 + CH_4$ (R12), after which methyl radical recombination (R6) can occur. Thus, enhanced K values in the vicinity of the primary photochemical zone (and beneath the nominal homopause) also contribute to ethane production. Even with $K > 10^8$ cm$^{-2}$ s$^{-1}$ in the middle layer, we have found it necessary to adopt a fast rate for R11, as described in Paper 2. Nevertheless, the inference of the existence of a region of enhanced eddy mixing at pressures beneath the nominal homopause is not critically dependent on the particular reaction rates we have adopted; it is based directly on the strong limits placed on ethylene abundances by the UVS data and on the displacement between C_2H_6 production and loss zones. A more complete description of the pertinent chemistry is given below.

Improved agreement with the UVS lightcurves can be obtained using the "warm" p-T models of Fig. 2 in conjunction with an increase in the downward flux of atomic hydrogen ($\phi^T(H)$) from the thermosphere, as illustrated in Fig. 7. The improvement over the egress case in Fig. 6 is most noticeable at the wavelengths affected by C_2H_6 opacity. Exploratory modeling with $\phi^T(H)$ magnitudes smaller than the adopted nominal value did not affect the photochemical model profiles or data–model comparisons in any notable way. Increasing $\phi^T(H)$, however, acts to reduce both C_2H_6 and C_2H_4 abundances in the primary zone in favor of ethane production and recycling back to CH_4. Use of the warm p-T atmosphere models also aids in improving the model fits to the UVS data, mainly through shifting the pressures sampled by the UVS light-curves to slightly higher values. Orton et al. (1992) (Figure 7 and Table 1) present results illustrating how $f(C_2H_4)$ and $f(C_2H_6)$ ratios derived from infrared spectral radiances measurements vary with the assumed mean stratospheric temperature on Neptune. Interestingly, increasing the mean temperature from 170 K to 200 K requires a compensating decrease in $f(C_2H_4)$ values of only 10%, while the required decrease in $f(C_2H_6)$ is by a factor of two or more. Adjustment of the IRIS data points in Fig. 7 to the warmer stratospheric temperatures characterizing this model should leave the ethane results in good agreement; however, a discrepancy in C_2H_6 mixing ratios appears to remain similar in magnitude to the discrepancy shown in the Fig. 6 egress case.

To see whether the nominal model fits shown in Fig. 6 could be improved, we have constructed models using piecewise constant K profiles partitioned by scale height above the tropopause (referred to as the "stacked K" case in Table 4). Given the rather large number of free parameters (more than can be uniquely specified by the data), we have simply patterned these K profiles on our previous results and attempted to refine the fits with the data. Typical results are shown in Fig. 8. It has not been possible, with the current set of reactions included in the photochemical model, to improve substantially upon the models based on K profiles of the form given by equation

Table 4. Specifications of displayed models

<table>
<thead>
<tr>
<th>Case</th>
<th>p-T model</th>
<th>$\phi^T(H)$</th>
<th>K profile</th>
<th>$K_{12}(\lambda < 140 \text{ nm})$</th>
<th>$f(C_2H_4)$</th>
<th>$f(CH_4(z_1/2))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGRESS</td>
<td>Fig. 5</td>
<td>nominal</td>
<td>4×10^7</td>
<td>equation (4)</td>
<td>8.1×10^{10}</td>
<td>12×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>Fig. 6</td>
<td>nominal</td>
<td>4×10^7</td>
<td>equation (5)</td>
<td>5.1×10^{10}</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>Fig. 8</td>
<td>nominal</td>
<td>4×10^7</td>
<td>stacked K</td>
<td>3.0×10^9</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>EGRESS</td>
<td>Fig. 5</td>
<td>nominal</td>
<td>4×10^7</td>
<td>equation (4)</td>
<td>1.7×10^7</td>
<td>10×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>Fig. 6</td>
<td>nominal</td>
<td>4×10^7</td>
<td>equation (5)</td>
<td>1.7×10^7</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td></td>
<td>Fig. 7</td>
<td>warm</td>
<td>10^6</td>
<td>equation (5)</td>
<td>4.0×10^6</td>
<td>4×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>Fig. 8</td>
<td>nominal</td>
<td>4×10^7</td>
<td>stacked K</td>
<td>6.0×10^6</td>
<td>5×10^{-5}</td>
</tr>
</tbody>
</table>

* $z_{1/2} = 585 \text{ km}$, $p(z_{1/2}) = 2.4 \times 10^{-4} \text{ mbar}$, $D(CH_4(z_{1/2})) \approx 1.5 \times 10^6 \text{ cm}^2 \text{s}^{-1}$
* $z_{1/2} = 608 \text{ km}$, $p(z_{1/2}) = 1.8 \times 10^{-4} \text{ mbar}$, $D(CH_4(z_{1/2})) \approx 2.0 \times 10^6 \text{ cm}^2 \text{s}^{-1}$
* $z_{1/2} = 601 \text{ km}$, $p(z_{1/2}) = 3.4 \times 10^{-4} \text{ mbar}$, $D(CH_4(z_{1/2})) \approx 1.1 \times 10^6 \text{ cm}^2 \text{s}^{-1}$
Ingress Case

![Eddy Mixing Coefficient and Transmission Profiles](image)

Fig. 6. "Best-fit" photochemical models for \(K\) profiles given by equation (5) and corresponding UVS lightcurve comparisons. (See caption to Fig. 5.) In the ingress case, the family of lightcurves obtained by increasing the model-generated ethane mixing ratios uniformly by a factor of 4.0 is also shown (long-dash curves, see text).

(5), suggesting that the use of more sophisticated parameterizations for \(K\) are not warranted by the data. The relative under-abundance of ethane is still apparent in the ingress model. The egress model in Fig. 8 is geared toward agreeing with both the IRIS \(C_2H_6\) and \(C_2H_2\) data points while remaining marginally consistent with the UVS data over the 140-153 nm range; the most obvious difficulty is with the UVS 151.9 nm channel, owing to the abundance of acetylene required by the IRIS data.

Column-integrated rates for \(CH_4\) photolysis, net \(C_2H_2\) and \(C_2H_6\) vapor phase production, total hydrocarbon haze mass production (from \(C_2H_6\), \(C_2H_2\), and \(C_2H_4\) condensation), and column-average ratios for \(CH_4\) recycling are given in Table 5 for the models displayed in Figs 5-8. The relevance of column mass production rates of condensible hydrocarbons in the modeling of stratospheric haze distributions on Neptune has been discussed in Paper 2 and is outside the scope of this paper. Recycling of methane following photolysis is a major branch in the chemistry, particularly in the model (shown in Fig. 7) offering our "best fit" to the UVS egress data when the constraints of the IRIS data points are ignored. Net production of ethane is also a significant fraction of \(CH_4\) photolysis in a column sense, but much of the \(C_2H_6\) production actually occurs at pressures >0.1 mbar in the secondary photochemical zone discussed below. A notable difference between the ingress and egress cases is the reduced role of \(C_2\) species photolysis at the longer wavelengths under ingress conditions, resulting in reductions in acetylene abundances larger than exhibited
by ethane and ethylene (which are produced directly from CH₄ photolysis products) when moving from egress to ingress illumination geometries. Results for cases based on the models shown in Fig. 6 but with the LISM Lyman α skyglow "turned off" are also presented in Table 5. The LISM constitutes a minor component to CH₄ photolysis under egress conditions, and its neglect reduces ethane abundances by 30%. Neglecting the LISM in our ingress models severely reduces the photochemical activity; model lightcurves in these cases are dominated almost entirely by H₂ Rayleigh scattering at wavelengths down to 145 nm, with CH₄ photoabsorption dominating at shorter wavelengths. It is actually somewhat surprising how effectively the LISM-driven photolysis of methane in the ingress models shown in Figs 5, 6 and 8 leads to C₃ species abundances comparable to the egress counterparts.

5.1. Synopsis of C₃-hydrocarbon chemistry

The photochemistry in the model shown in the lower panels of Fig. 6 (egress case), hereafter treated as our standard model, will be described in more detail. The rates for the main reaction and photodissociation pathways directly determining the mixing ratio distributions of CH₄ and the stable C₃ species are shown in Fig. 9. The corresponding chemical timescales are compared with the eddy mixing and molecular diffusion transport timescales in Fig. 10; the former is given by

\[\tau_K = \frac{h_{\text{mix}}^2}{K} \]

where \(h_{\text{mix}} \) is the density scale height of the background atmosphere, and the latter by

\[\tau_D = \frac{h_i}{w_D} = \left[\frac{D_i}{n_i} \frac{dn}{dz} + \frac{n_i}{h_i} \right] \]

where \(n_i - Nf_i, h_i \) is the diffusive equilibrium density scale height for minor species \(i \), and \(w_D \) is the diffusive speed.

Two distinct photochemical zones can be identified. Photolysis of methane by Lyman α (11 in Table 2) initiates the chemistry in the primary zone at pressures \(p \leq 3 \times 10^{-2} \) mbar. CH₂ is for the most part quickly transformed to CH₃ via R1 (see Table 3), with some conversion to \(^3\)CH₂ via R22. \(^3\)CH₂ formed from direct methane photodissociation and from \(^1\)CH₂ de-excitation establishes a condition of near-balance with CH via the reactions R45 and R61 (particularly at pressures < 10⁻³ mbar), but some \(^3\)CH₂ goes on to form C₂H₄ via R14. Removal of CH is dominated by R3 at pressures < 10⁻² mbar and by R4 at deeper pressure levels; note that in Fig. 9 R3 is the main route to C₂H₄ in the primary zone and is a minor but significant loss channel for methane. Once CH₃ is formed, production of ethane follows: R6 is the main methyl loss channel at pressures \(2 \times 10^{-4} - 10^{-1} \) mbar (R14 and J7 are more important only at lower pressures where mixing ratios are falling off rapidly) and is the only significant ethane production channel at all altitudes. Acetylene is produced mainly via photolysis of ethane (J4a) and ethylene (J3), with \(^3\)CH₂ recombination (J39) contributing at the highest altitudes. Ethane photolysis also contributes to recycling of methane (J4c) and to ethylene generation (J4b + J4d). While photolysis constitutes the major loss channel for C₂H₄ and C₂H₂, reaction with CH in each case is nonnegligible (R53 + R54, and R55, respectively); in the case of C₂H₂, R52 is as important as photolysis.

In brief, the production rates for the major C₃-hydrocarbons outstrip the loss rates in the primary zone except...
Ingress Case

Fig. 8. "Best-fit" ingress and egress photochemical models and corresponding UVS lightcurve comparisons, using models wherein the eddy mixing coefficient is held constant over each scale height displacement above the tropopause ("stacked K" case). (See caption of Fig. 5.)

for ethane at pressures $p < 10^{-4}$ mbar where photolysis is relatively fast (Fig. 10) owing to the lack of shielding by CH$_4$. Eddy mixing carries these species downward to denser levels where the rates for the 3-body association reactions $C_2H_2 + H + M \rightarrow C_2H_3 + M$ (R8) and $C_2H_4 + H + M \rightarrow C_2H_5 + M$ (R11) become relatively efficient; this defines the secondary photochemical zone, centered near $p = 0.5$ mbar. Most of the C_2H_4 recycles to C_2H_2 via R9 but some ends up as ethylene via R64. Most of the C_2H_4 quickly goes on to $C_2H_4 + H \rightarrow CH_2 + CH_2$ (R12), leading to the production peaks in ethane (R6) and methane (R5) and a net local loss of ethylene, although some recycling occurs (R62). (We can go on to identify a "tertiary" zone, identified by the methane production and loss peaks near 5 mbar, which are initiated by $C_2H_4 + h\nu \rightarrow C_2H + H$, $C_2 + H_2$ (J2a,b in Table 2) with the latter followed by $C_2 + H_2 \rightarrow C_2H_2 + H$ (R35) and $C_2 + CH_4 \rightarrow C_2H + CH_2$ (R36), leading to acetylene recycling (via R17, R18, and R19) and a net conversion of ethane to methane owing to the local release of atomic hydrogen. In terms of the observations, however, this zone has no real significance.)

6. Summary and discussion

The focus in Paper 1 was on the UVS lightcurves expected to be dominated by CH$_4$ photoabsorption. Although some recycling occurs (via $CH_2 + H + M \rightarrow CH_4 + M$), the vertical distribution of CH$_4$ is relatively immune to the photochemistry that follows photolysis, and the main uncer-
Table 5. Column-integrated photochemical rates

<table>
<thead>
<tr>
<th>Case</th>
<th>K profile</th>
<th>CH$_4$ photolysis loss (cm$^{-2}$ s$^{-1}$)</th>
<th>CH$_4$ recycling</th>
<th>CH$_2$ (cm$^{-2}$ s$^{-1}$)</th>
<th>C$_2$H$_4$ (cm$^{-2}$ s$^{-1}$)</th>
<th>Total haze (g cm$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 5</td>
<td>equation (4)</td>
<td>1.1×10^9</td>
<td>39%</td>
<td>2.9×10^8</td>
<td>4.3×10^7</td>
<td>2.3×10^{-15}</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>equation (5)</td>
<td>1.1×10^9</td>
<td>46%</td>
<td>3.7×10^7</td>
<td>4.1×10^7</td>
<td>2.1×10^{-15}</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>stacked K</td>
<td>1.1×10^9</td>
<td>45%</td>
<td>2.8×10^7</td>
<td>4.1×10^7</td>
<td>2.1×10^{-15}</td>
</tr>
<tr>
<td>no LISM</td>
<td>equation (5)</td>
<td>6.9×10^6</td>
<td>78%</td>
<td>9.0×10^4</td>
<td>1.6×10^6</td>
<td>8.3×10^{-17}</td>
</tr>
<tr>
<td>EGRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 5</td>
<td>equation (4)</td>
<td>4.3×10^9</td>
<td>37%</td>
<td>1.4×10^7</td>
<td>1.5×10^8</td>
<td>8.2×10^{-15}</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>equation (5)</td>
<td>4.2×10^9</td>
<td>48%</td>
<td>3.5×10^6</td>
<td>1.4×10^8</td>
<td>7.1×10^{-15}</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>equation (5)</td>
<td>4.2×10^9</td>
<td>64%</td>
<td>2.6×10^6</td>
<td>1.0×10^8</td>
<td>5.1×10^{-15}</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>stacked K</td>
<td>4.2×10^9</td>
<td>42%</td>
<td>6.2×10^6</td>
<td>1.4×10^8</td>
<td>7.4×10^{-15}</td>
</tr>
<tr>
<td>no LISM</td>
<td>equation (5)</td>
<td>3.3×10^9</td>
<td>49%</td>
<td>3.2×10^6</td>
<td>1.1×10^8</td>
<td>5.4×10^{-16}</td>
</tr>
</tbody>
</table>

Fig. 9. Photochemical production and loss rates for the major hydrocarbon species, for the egress case of Fig. 6. Both total (thick solid curves) and individual reaction rates are displayed; reaction labels refer to Tables 2 and 3.

...tainty in the modeling of the UVS 125–140 nm lightcurves lies in the characterization of the background pressure-temperature (p–T) structure. However, at wavelengths longward of 140 nm, CH$_4$ photoabsorption cross sections fall rapidly and the observed atmospheric opacity in both the ingress and egress UVS data sets stems from other species. As shown in Fig. 1, these lightcurves probe progressively deeper into the atmosphere, to 400 km beneath the half-light altitudes of the 125–140 nm lightcurves. The modeled distributions of the species likely to be responsible for the observed opacity (primarily the C$_2$ hydrocarbons acetylene (C$_2$H$_2$), ethylene (C$_2$H$_4$), and ethane (C$_2$H$_6$)) depend on model inputs that are not directly observed, especially the strength of vertical eddy mixing...
CH₄

C₂H₆

CH₄

C₄H₆

Fig. 10. Timescales for photochemical production (dash curves), photochemical loss (dot-dash curves), transport via molecular diffusion (thin solid curves), and transport via eddy mixing (thick solid curves) for the ingress case of Fig. 6.

and its variation with altitude. In the current study, photochemical models conforming to the constraints imposed by the 125-140 nm lightcurves and (in the egress case) IRIS measurements (Bézard et al., 1991) have been used in forward modeling simulations of the 140-165 nm UVS lightcurves. A variety of eddy mixing coefficient height profiles have been explored in seeking model fits to the UVS data. The only models exhibiting agreement with the data, shown in Figs 6-8, are those characterized by a vigorously mixed upper stratosphere (K ≈ 10⁻⁶ cm² s⁻¹ near 100 pa, decreasing at higher altitudes) overlaying a stagnant lower stratosphere. In line with our earlier work, methane mixing ratios in the lower stratosphere on the order of 10⁻⁵ are required to obtain good agreement between the photochemical models and the UVS lightcurves.

The estimates of f₄(CH₄) derived in our modeling are somewhat at odds with the infrared measurements and analysis of Orton et al. (1992), who determined values 7.5⁻¹⁸⁺¹⁸ 10⁻⁴ for a mean stratospheric temperature of 168 ± 10 K near 1-100 pa. Use of the warm model atmospheres (Fig. 2) in our UVS lightcurve simulations permits good fits at the λ > 140 nm channels, as illustrated in Fig. 7. Once f₄(CH₄) and K₁₂ are adjusted (as described in Paper 1) to replicate the correct half-light altitudes. Consequently, a warmer mean stratospheric temperature eases the disagreement, but a sizable discrepancy seems to remain. The analysis of high spatial resolution ground-based imagery data by Innes and Hammel (1994) yielded a nominal value for f₄(CH₄) of 3.5⁻¹⁸⁺¹⁸ 10⁻⁴, between and in marginal agreement with both Orton et al. and our modeling results. The independent analysis of the Voyager UVS solar occultation data by Yelle et al. (1993), however, led to an inferred f₄(CH₄) range of 0.6⁻⁵.0 10⁻⁴, higher even than the Orton et al. estimates. As can be seen in all our model fits, we have no difficulty in fitting the UVS lightcurves at wavelengths below 140 nm with f₄(CH₄) values near 10⁻⁴. At longer wavelengths, our photochemical models are apparently a little deficient in C₂H₆ compared with the data, and a little overabundant in C₃H₆ in the egress case. The “deficiency” in C₃H₆ in the model lightcurves may actually be due to the neglect of propane in the lightcurve modeling; propane is likely to be a prominent hydrocarbon in the stratosphere of Neptune (Moses et al., 1992) and exhibits a photoabsorption spectrum similar to that of ethane (mean cross section values of a few 10⁻¹⁷ cm² at wavelengths <145 nm with a rapid fall-off at longer wavelengths). Certainly, the large C₂H₆ abundances invoked by Yelle et al. (1993) at pressures <0.1 mbar are difficult to understand photochemically.

Yelle et al. (1993) also attempted to infer the height variation in eddy mixing in Neptune’s stratosphere. The values for K derived by Yelle et al. from the egress data for 550 km altitude (K = 2⁻³⁻¹⁰⁻⁶ cm² s⁻¹) are lower than our K₁₂(λ > 140 nm) values listed in Table 4. It should be noted, however, that the nominal p-T models used by Yelle et al. are warmer than those used in our analysis, which impacts the values for K implied by the UVS lightcurves as discussed in Paper 1. Correcting the Yelle et al. values for the difference in assumed mean stratospheric temperature and adjusting to an altitude of 608 km (the nominal egress altitude) reduces the apparent disagreement considerably. Thus, the values of K(550 km) given by Yelle et al. (1993) are roughly in line with our results. There is real disagreement at lower altitudes, however. Yelle et al., using an imposed form for the K profile, claimed that K decreases with decreasing altitude down to p = 0.04 mbar where our modeling points to maximum K values.

The form of the eddy mixing coefficient profile (given in equation (5)) yielding the most successful model fits to the UVS and IRIS data sets has been discussed in greater detail in Paper 2 (see also Bishop et al. (1995)). At both ingress and egress, the placement of the rapid increase in K is roughly consistent with the analysis of probable wave signatures in the RSS occultation data by Hinson and Magalhães (1993). Their analysis relied on the parameterization for wave-driven eddy diffusivity of Lindzen
J. Bishop et al.: Voyager 2 ultraviolet spectrometer solar occultations at Neptune

(1981), despite its limitations (as discussed by Hinson and Magalhães). Interestingly, Lindzen (1981) also argued for a decrease in K as the homopause is approached. However, we are not in a position to explain the large values of K in the middle layer of our models in terms of a particular mixing mechanism; in this work, K is simply a fitting parameter. Nevertheless, it is our belief that, by and large, the chemistry is well accounted for, at least to the extent that our ignorance of dynamical conditions in Neptune’s stratosphere introduces greater modeling uncertainties than remaining uncertainties in key reaction rates. Our K profiles yielding good agreement between models and data will hopefully provide useful constraints in dynamical modeling studies. We note in passing that additional constraints on the height profile of eddy mixing in Neptune’s stratosphere may be forthcoming from further detailed analysis and modeling of HCN observations at millimeter wavelengths (Lellouch et al., 1994).

Unlike the situation with CH$_4$, agreement among the various infrared data sets (Kostiuk et al., 1992; Orton et al., 1992; Bishop et al., 1995) and the current photochemical modeling simulations of the egress UVS data shown in Figs 6–8 is reasonably good for C$_2$H$_6$ and C$_2$H$_5$. A more complete handling of higher order organics, as in the photochemical modeling of Moses et al. (1992) and Gladstone et al. (1996), may be the key to bringing modeled acetylene and ethane abundances into better joint agreement with available IR and UV data. A severe test will be to see if inclusion of opacity contributions from prominent C$_3$ species (propane, allene, methylacetylene) will impact the lightcurve modeling while keeping ethylene abundances low enough to remain consistent with the UVS lightcurves at wavelengths longward of 152 nm. Detailed temperature-dependent UV photoabsorption cross sections for these species are currently being measured (R. Wu, personal communication). Once these are available, detailed modeling with an expanded handling of C$_2$ and C$_3$ organics will be warranted.

Acknowledgements. We would like to thank Dr. R. Wu for providing us with temperature-dependent C$_2$H$_2$ and C$_2$H$_5$ photoabsorption cross section data prior to publication, and Lisa DeJong for programming and data modeling assistance. We would also like to thank Dr. B. Sandel and R. Vervack for discussions and data regarding the UVS instrument and occultation measurements. J.B. acknowledges support by NASA under NDAP (grant NAGW-1504). S.K.A. acknowledges support received from NASA’s Planetary Atmospheres Program.

References

Conrath, B. J., Gautier, D., Owen, T. C. and Samuelson, R.,

Shriver, K. S. and High, J. V. (1991) Rate constants (296–1700 K) for the reactions C$_2$H$_2$+H$_2$=C$_2$H$_4$+H and C$_2$D$_2$+C$_2$D$_2$=C$_2$D$_4$+D. J. Phys. Chem. 95, 5864–5869.

Appendix A

Quantum yields in methane photolysis

The recent work of Mordaunt et al. (1993) by itself is incomplete, in that it does not provide sufficient information to unequivocally assign branching ratios (q) at Lyman α for all possible photolysis channels:

$$\text{CH}_4 + h\nu \rightarrow \text{CH}_3 + \text{H} + \text{H}$$

$\overset{a}{\rightarrow} \text{CH}_2 + \text{H}_2$

$\overset{b}{\rightarrow} \text{CH} + \text{H}_2 + \text{H}$

$\overset{c}{\rightarrow} \text{CH} + \text{H}$

$\overset{d}{\rightarrow} \text{CH}_3 + \text{H} + \text{H}$

Furthermore, no measurements of CH_2 or CH_3 quantum yields are available and the data we currently have on CH_3, CH_2, H_2, and H yields are contradictory. The experimental results on which we rely in our attempt to derive reasonable estimates of the branching ratios at 121.6 nm are:

- net CH_3 yield of 0.5 (Mordaunt et al., 1993).
- net H_2 yield of 0.5 (Lauffer and McNesby, 1968). *Note*: the experiment was actually performed at 123.6 nm with a reported quantum yield of 0.58, giving rise to the contradiction that $q_a + q_b = 0.58$ but $q_d = 0.5$.
- net H yield of 1.0 (Slanger and Black, 1982).
- net CH_2 yield of 0.08 (Rebbert and Ausloos, 1972). *Note*: the measurements were at 123.6 nm (yield = 0.059) and 104.8–106.7 nm (yield = 0.23); the estimate at Lyman α is from simple linear interpolation.

These results, along with the requirement that the branching ratios for channels a–e sum to 1.0, are summarized by the following linear equation:

$$\begin{align*}
q_a + q_b + q_c + q_d + q_e &= 1.0 \\
0 &= 0.50 \\
0 &= 0.50 \\
q_e &= 0.08
\end{align*}$$

This matrix is singular, owing to the lack of constraints on CH_3 or CH_2 yields, with channels a and e each yielding two hydrogen atoms. We choose to neglect channel e, which results in the overdetermined system:

$$\begin{align*}
q_a + q_b + q_c + q_d &= 1.0 \\
0 &= 0.50 \\
0 &= 0.50 \\
q_e &= 0.08
\end{align*}$$

We solved this system by a least squares method, allowing for...
the variations in quantum yields given above, and searched for
the “best” solution such that \(|1 - \sum q_j| \) was minimized. It was
necessary to renormalize the branching ratios to a sum of 1.0
once the “best” solution had been found; the loss of initial
normalization stems from the dropping of one channel and
from the “scatter” associated with the least squares solution
technique. The result is

\[
\begin{align*}
q_1 &= 0.212 & \text{CH}_3 \text{ yield } 0.406 \\
q_2 &= 0.282 & \text{H}_2 \text{ yield } 0.382 \\
q_3 &= 0.100 & \text{H yield } 0.930 \\
q_4 &= 0.406 & \text{CH yield } 0.100
\end{align*}
\]

To extend these results to other wavelengths, we have adopted
the following assumptions and constraints:

- for \(\lambda \geq 107 \) nm, the branching ratios for the various channels
 are constant with wavelength (the CH yield is 0.23).
- for longer wavelengths, the CH quantum yield varies linearly
 with wavelength to reproduce the measured variation, while
 the CH, H, & H yields remain independent of wavelength
 (where energetically allowed).
- \(q_4(\lambda > 132) = 0 \) and \(q_4(\lambda > 133) = 0 \).
- photolysis branching ratios sum to 1.0.

The laboratory measurements most needed are (1) the yield of
\(^1\text{CH}_2\) or \(^1\text{CH}_3\) and (2) the yield of CH, both at Lyman \(\alpha \).