NEPTUNE'S DEEP ATMOSPHERE REVEALED

Paul N. Romani
Science Systems and Applications, Inc.

Imke de Pater
Astronomy Department, University of California, Berkeley

Sushil K. Atreya
Department of Atmospheric, Oceanic and Space Sciences, The University of Michigan

Abstract. The brightness temperature of Uranus at 20 cm is \(260 \pm 10\) K, while for Neptune it is \(318 \pm 16\) K. Since \(\text{NH}_3\) is the dominant absorber at this wavelength we have modeled the microwave spectra of Neptune based upon an assumed deep gaseous mixing ratio of \(\text{NH}_3\) and subsequent loss into clouds. The difference between the two brightness temperatures implies that the \(\text{NH}_3\) mixing ratio below the level of cloud formation on Neptune compared to Uranus is lower by nearly 2 orders of magnitude. An alternative explanation is that the 20 cm radiation from Neptune is a combination of thermal plus synchrotron emission as proposed by de Pater and Goertz [1989].

Introduction

Since Neptune and Uranus both formed in the outer part of the solar nebula and are of similar masses, it is plausible to assume that they formed out of the same bulk material and underwent similar evolutions. There are observations that support this hypothesis. Analysis of the infrared spectrum of both planets yield similar \(\text{CH}_4\) mixing ratios of approximately 2% below the \(\text{CH}_4\) ice cloud (at \(80\) K and 1.3 bars) and approximately the same temperature-pressure structure in the 1 bar region [Orton et al., 1987]. Observations at radio wavelengths probe deeper into the atmospheres than the IR (up to 50-100 bars) with most of the opacity at centimeter wavelengths due to ammonia gas. At 3-6 cm (\(P \gtrsim 20\) bar) both planets show a depletion of ammonia gas [de Pater and Massie, 1985]. Recently, the thermal radio spectrum of Uranus has been shown to be consistent with \(\text{NH}_3\) enriched by \(\approx 1-10\) times above solar and \(\text{H}_2\text{S}\) enriched by a few hundred times above solar at \(P \gtrsim 50-100\) bars; the \(\text{NH}_3\)-gas mixing ratio is reduced at lower pressures in the atmosphere first by solution into a water cloud then by the formation of an \(\text{NH}_4\text{SH}\) cloud [de Pater et al., 1989].

There are, however, differences between the two planets. Neptune has an internal heat source in excess of 100% of the absorbed solar energy, while the internal heat source on Uranus is less than 13% of the absorbed solar [Conrath et al., 1988]. In the stratosphere of Neptune methane is supersaturated relative to the cold trap (tropopause) mixing ratio but on Uranus methane in the stratosphere is cold trap limited [Orton et al., 1987]. Uranus' radio spectrum is relatively flat at \(\approx 260\) K between 6 and 20 cm but Neptune's brightness temperature increases from \(\approx 200\) K at 6 cm to \(\sim 315\) K at 30 cm [de Pater et al., 1989; de Pater and Richmond, 1989].

In this paper we apply to Neptune's radio spectrum the models we developed to study Uranus' [de Pater et al., 1989]. This work is the first attempt ever to use a cloud model to produce an \(\text{NH}_3\) distribution in Neptune's atmosphere, compute the resultant synthetic radio spectrum, and compare it to observations. Recently de Pater and Goertz [1989] proposed that the higher brightness temperature at 20 cm on Neptune compared to Uranus was due to synchrotron emission on Neptune adding to a thermal flux that was the same for Uranus. The primary question we address here is: Can we model the radio spectrum of Neptune with an \(\text{NH}_3\) mixing ratio in the deep atmosphere which is equal to or larger than the solar value, such that we match the 20 cm brightness temperature as well as the temperature at shorter wavelengths, i.e. an \(\text{NH}_3\) distribution similar to Uranus.

Models

Atmospheric Model

The cloud model used in this study is a simple lifting parcel model that has been described extensively before [de Pater et al., 1989]. The calculations start deep in the atmosphere below the formation of suspected clouds: aqueous ammonia solution, water ice, ammonia ice, hydrogen sulde ice, ammonium hydrosulfide solid, methane ice, and argon ice, with a specified composition, temperature, and pressure. The model steps up in altitude and the new temperature is calculated from the dry adiabatic lapse rate and the new pressure by assuming hydrostatic equilibrium. The partial pressures of all constituents are calculated assuming the atmosphere to be an ideal gas. From the new temperature and empirical formulas the equilibrium saturation vapor pressures of all possible condensates are calculated. If the partial pressure of a condensate in the atmosphere exceeds its respective saturation vapor pressure, then a cloud forms and the atmospheric partial pressure of the condensing species is set equal to its equilibrium saturation pressure. Since the \(\text{NH}_3\text{SH}\) cloud forms as a result of a reaction between \(\text{NH}_3\) and \(\text{H}_2\text{S}\), the test for cloud formation is that the equilib-
Fig. 1. Neptune's radio spectrum (from de Pater and Richmond) with superimposed model atmosphere calculations for assumed base level enrichments of H2O, NH3, and H2S relative to solar, as indicated on the figure. See text for further explanations.

rium constant is exceeded. And if the NH3SH cloud forms the NH3 and H2S mixing ratios are reduced in equal molar quantities so the product of their atmospheric pressures now equals the equilibrium constant. If the aqueous ammonia cloud forms H2S is dissolved into it. The model then steps up in altitude again using now either the dry or the appropriate wet adiabat. As the trace gases are removed from the atmosphere by condensation, "dry" air (an H2-He mixture) is entrained into the parcel to ensure the volume mixing ratios sum to one. This cycle is repeated until the tropopause temperature is reached.

The base level composition is for one mole of gas for which the He/H2 ratio is 0.18 by number, and the other trace gases H2O, CH4, NH3, H2S, and Ar are present in selected enrichments relative to solar. The He/H2 ratio is in conformity with our previous Uranus studies and is based on the Voyager 2 IRIS determination for Uranus [Conrath et al., 1987]. It is also within error bounds of the solar He/H2 ratio. From all studies CH4 was held at 30 times solar to reproduce approximately the observed 2% mixing ratio in the upper troposphere before the CH4 ice cloud begins to form. Studies in the IR indicate that Neptune and Uranus have similar temperatures at the 1 bar level [Orton et al., 1987], so we have chosen the temperature and pressure of the base level to reproduce the observed 101K at 2.3 bars on Uranus by the Voyager RSS [Lindal et al., 1987].

Radio Spectrum Model

We used the radiative transfer code developed by de Pater and Massic [1985] to calculate the microwave brightness temperatures from the atmospheric model. The opacity in the millimeter part of Neptune's spectrum is influenced by both the collision-induced absorption of hydrogen as well as absorption of ammonia gas, while in the centimeter part of the spectrum it is controlled by ammonia gas, water vapor, and droplets.

Data

Recently de Pater and Richmond [1989] presented VLA observations of Neptune at 1.3, 2, 6, and 20 cm. Along with their observations they updated previously reported measurements to the same flux density scale and then converted the flux densities to brightness temperatures using the best known size for Neptune. The data are shown in Figure 1, with the VLA data points being solid circles and other observations shown as X's.

In our attempts to fit the observations we will concentrate on matching the VLA results, as recommended by de Pater and Richmond (1989). These data points have a higher accuracy than the other data. This may be due, in part, to confusion problems in single dish observations of a weak source. The VLA measurements also form a self-consistent data set. Also note that the strong cluster of non VLA data points at 3 cm, as well as the interferometric observations by Webster et al. (1972) agree with our values.

Fitting Attempts

Along with the radio data in Figure 1, we present several attempts to fit the model spectrum. As shown before
(e.g. de Pater and Massie, 1985) the spectrum for a solar composition atmosphere is too cold; this is indicated by the dotted line. The spectrum can be represented well with a constant low \(3 \times 10^{-6}\) NH\(_3\) mixing ratio throughout the atmosphere [de Pater and Richmond, 1989]; this curve is indicated by the dashed line. Note that this NH\(_3\) mixing ratio is ~60 times below the solar value. The solid lines in Figure 1 are spectra for Neptune if it were to have a composition like we suggested for Uranus (de Pater et al., 1989): 500 x H\(_2\)O, 500 x H\(_2\)S, and 15 x NH\(_3\). The upper solid line is a calculation for an atmosphere in thermochromical equilibrium; the lower solid line for an atmosphere with the same composition, but in which the NH\(_3\) mixing ratio is held constant once it reaches 3.0 x 10^{-6} (T > 245K, P > 35 bars), i.e. NH\(_3\)SH is supersaturated. In a chemical equilibrium model, the formation of the NH\(_3\)SH cloud will completely remove NH\(_3\) from the atmosphere if there is excess H\(_2\)S relative to NH\(_3\), since this reaction is equal molar in H\(_2\)S and NH\(_3\). This results in no NH\(_3\) in the upper atmosphere and brightness temperatures too high to match the data. The spectrum of radio data (20 cm) for Neptune can only be matched with a constant low NH\(_3\) mixing ratio of 3.0 x 10^{-6} over the pressure region probed at these wavelengths (10 to 80 bars). So in all of our cloud model fits, once the NH\(_3\) mixing ratio was decreased to 3.0 x 10^{-6}, it was held constant at this value. This implies either supersaturation in the NH\(_3\)SH cloud (no NH\(_3\)SH forms even though the equilibrium constant is exceeded), or rapid vertical transport that mixes NH\(_3\) rich gas below the NH\(_3\)SH cloud with NH\(_3\) poor gas above. This requirement also occurred in modelling the Uranus spectrum but with NH\(_3\) at about 7 x 10^{-7} for a global model (de Pater et al., 1989).

As mentioned above the 500 x H\(_2\)O, 500 x H\(_2\)S, and 15 x NH\(_3\) saturation model is typical of models that give a good fit to the Uranus spectrum. However, the calculated brightness temperature at 20 cm falls well below the observed value of 318 ± 15K. A decrease in the NH\(_3\) mixing ratio in the deep atmosphere to the solar value does not change the spectrum shortward of 6 cm and increases the 20 cm temperature only by 8K, still below the lower error bar.

While the NH\(_3\) mixing ratio is decreased considerably from that specified in Neptune's deep atmosphere by solution of NH\(_3\) into an aqueous ammonia cloud (up to 65% of the initial NH\(_3\) mixing ratio for H\(_2\)O enrichments greater than about 100 x solar), the aqueous ammonia cloud alone cannot remove enough NH\(_3\) for even large water mixing ratios. In cases in which H\(_2\)O is 500 times solar, the NH\(_3\) mixing ratio is 5 x 10^{-6} at ~300K. Since in our model NH\(_3\)SH is at 300% relative humidity, it can be interpreted that the cloud model would match the radio data if the relative humidity is on the order of 1%. While in small areas this is possible, the radio data are global averages implying an unrealistically globally dry Neptune. Increasing the water enrichment to 1000 x solar would only allow the global relative humidity to rise to 10%.

Increasing the H\(_2\)S and/or NH\(_3\) mixing ratio will push the formation of the NH\(_3\)SH cloud to deeper levels, thus decreasing the NH\(_3\) mixing ratio at higher temperatures and pressures, and increasing the brightness temperature of the planet at longer wavelengths. An increase in the H\(_2\)S mixing ratio from 500 to 2000 x solar results in the 20 cm brightness temperature barely touching the lower error bounds, regardless of the ammonia mixing ratio (0.1, 1 or 15 x solar). A similar result can be obtained with H\(_2\)S at 500 x solar, and NH\(_3\) at 0.1 times solar. Hence, the lower error bounds at 20 cm can be matched if either the H\(_2\)S mixing ratio in the deep atmosphere is increased to 2000 x solar, or the NH\(_3\) is decreased to 0.1 x solar. At no time did the resultant curves go through the 20 cm data points, unless the NH\(_3\) mixing ratio was at least a factor of ~60 below the solar value.

The formation of NH\(_3\)SH is incapable of reducing the NH\(_3\) to a mixing ratio of 3 x 10^{-6} at ~300K for the following reason. The equilibrium constant, K\(_{eq}\), for the formation of NH\(_3\)SH is:

\[
\log_{10}(K_{eq}) = 14.83 - \frac{4715}{T}
\]

at equilibrium this is equal to:

\[
K_{eq} = P^2 \cdot NH_3 \cdot H_2S
\]

where P is the atmospheric pressure in atmospheres and NH\(_3\) and H\(_2\)S are the volume mixing ratios of ammonia and hydrogen sulfide respectively. In our model atmospheres ~300K occurs at ~80 bars (the precise value depends upon the enrichment and whether or not a dry or wet adiabatic lapse rate was used). If at this level ammonia has been reduced to 3 x 10^{-6} by NH\(_3\)SH formation, then by using Equations 1 and 2 the H\(_2\)S mixing ratio must be ~ impossible. (We discuss the possibility of a non-adiabatic atmosphere in the next section).

Thus we are forced to assume that NH\(_3\) is subsolar throughout Neptune's atmosphere, unlike Uranus where a subsolar NH\(_3\) provided a poor fit and an above solar NH\(_3\) mixing ratio coupled with removal into clouds gave the best fits to the data. Our calculation show that the mixing ratio on Neptune should be ~1/60 x solar value.

Discussion

Sub solar N

One possible explanation is that Neptune is depleted in NH\(_3\) relative to Uranus. While a best fit to the Uranus microwave data at 20 cm requires a minimum mixing ratio of 10 x solar NH\(_3\), a poor fit is possible with solar NH\(_3\). However the Neptune spectrum can only be matched at 20 cm by an NH\(_3\) mixing ratio ~1/60 times solar. This requires nearly a 100 fold gradient in N content in the primitive solar nebula from Uranus to Neptune. Since at present there is no compelling theory on the origin of these planets that supports this, we do not favor this explanation. We also note that the spectrum of Neptune can be fit at other wavelengths by a composition similar to Uranus with only the 20 cm brightness temperature being a problem.

Another possibility is that N is present on both planets in the same mixing ratios but in the form of N\(_2\) on Neptune and NH\(_3\) on Uranus. While the dominant form of N in the outer solar system was probably N\(_2\), this was likely converted back to NH\(_3\) in the formation of the giant planets [Prinn and Fegley, 1981]. To photolyze NH\(_3\) back to N\(_2\) requires a warmer Neptune in the past enabling NH\(_3\) to get to the one bar level and above so it can absorb the solar UV before Rayleigh scattering blocks the penetration of solar UV. Also the interior of Neptune must be cold (a non-adiabatic atmosphere) and H\(_2\) poor so N\(_2\) is
not converted back to NH$_3$ by the Haber process. Scaling the NH$_3$ photolysis loss rate from Jupiter (4.0×10^{-12} grams cm$^{-2}$ sec$^{-1}$, (Atreya, et al., 1977) to Neptune gives a loss rate of 1.2×10^{-13} grams cm$^{-2}$ sec$^{-1}$. Assuming Neptune's atmosphere to be at least 1 Earth mass, photolysis can convert only 0.2 of a solar mixing ratio of NH$_3$ on Neptune over the age of the solar system. So we consider this unlikely. If N turns out to be in the form of N$_2$ on Neptune then Voyager 2 will be able to detect it; N$_2$ will not freeze out at Neptune's tropopause (saturation mixing ratio $- 6.7 \times 10^{-5}$) and the Voyager 2 Ultraviolet Spectrometer can detect N$_2$ as low as 10 ppb at the microbar level.

Non-adiabatic atmosphere

In all our calculations we assumed that the thermal structure was adiabatic. This was important in showing that NH$_3$SH formation is incapable of reducing the NH$_3$ mixing ratio to 3×10^{-6} at 300K. But we can ask the question: what is the pressure for a given temperature (300K), H$_2$S mixing ratio (10^{-2}, ≈ 500 x solar) and NH$_3$ mixing ratio (3×10^{-6}). From Equations 1 and 2, the pressure must be 2000 bars. In an adiabatic atmosphere, the temperature at this pressure level is 600K, twice 300K. Thus Neptune's atmosphere would have to be more energetic than an adiabatic one with a lapse rate nearly half the adiabatic. However, Neptune emits more energy than it receives from the Sun, and it is likely that in the deep atmosphere the heat transport is done by convection. This implies an adiabatic thermal structure, so we consider this alternate thermal structure unlikely.

Synchrotron radiation

De Pater and Goertz (1989) have proposed that Uranus and Neptune do have similar compositions and that the difference between the two 20 cm brightness temperatures is that Neptune's is a combination of thermal and synchrotron emission while Uranus' is thermal alone. This seems to be the likeliest explanation. The electron population and magnetic field required for this interpretation will be directly verifiable by Voyager 2 experiments.

Acknowledgements. P. N. Romani acknowledges support at NASA Goddard Space Flight Center, Greenbelt, Maryland, from NASA contract NAS5-30134. I de Pater from NSF grant AST-8405358 and AST-8900156 to the University of California in Berkeley and the Alfred P. Sloan Foundation, S. K. Atreya from NSF-7404 and NASA grant NAGW-1771.

References

de Pater, I., and M. Richardson, Neptune's microwave spectrum from 1 mm to 20 cm, Icarus, In press, 1989.

Atreya, Sushil K., Department of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143.

de Pater, Imke, Astronomy Department, Campbell Hall 601, University of California, Berkeley, CA 94720.

(Received May 22, 1989; revised: June 26, 1989; accepted: June 26, 1989.)