FALL 06 PE#3

Newton's second law for Block: \[\vec{F}_{\text{net}} = m \vec{a} \]

\[Mg - T = ma \] (I)

Newton's second law for Pulley:

\[\vec{F}_{\text{net}} = I \alpha \]

\[\tau = RT = I \alpha \]

\[\frac{R}{I} = \frac{a}{R} \]

\[T = \frac{R^2 T}{I} \] (II)

\[R = 0.50 \text{m/} \frac{1}{2} = 0.25 \text{m} \]

\[I = 0.4 \text{kg-m}^2 \]

\[a = 6.4 \text{ m/s} \]

\[\alpha = 6.4 \text{ m/s} \]

Cord does not slip ⇒ \[R \alpha = a \]

Eliminate \(T \) and solve for \(m \)
\[T = \frac{aI}{R^2} \rightarrow I \]

\[M_g = \frac{aI}{R^2} = ma \]

\[m(g-a) = \frac{aI}{R^2} \]

\[M = \frac{\frac{aI}{R^2(g-a)}}{(0.25 \text{ m})^2(9.8 - 6.4) \text{ m/s}^2} = \frac{12.047 \text{ kg}}{\text{check}} \]