Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please check and approve the insertion of keywords from metadata.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations

Aswath Rangarajan a, Royan J. D’Mello a, Veera Sundararaghavan a, Anthony M. Waas b,c,*

a Dept. of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, United States
b Dept. of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, United States
c Dept. of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2140, United States

Abstract

Optimal fiber path configurations that minimize the sum of the coefficients of thermal expansion (CTE) along the principal material directions for a class of laminates are presented. Previous studies suggest that balanced, symmetric, angle ply laminates exhibit negative CTE values along the principal directions. Using the sum of the CTE values along the principal material directions as an effective measure of the coefficient of thermal expansion (CTE eff), we have shown and provided a proof that the smallest value of CTE eff is rendered by straight fiber path configurations. The laminates considered are sufficiently thin so as to neglect the thermal stresses induced through the thickness of the laminate. It is found that the minimal CTE eff values occur for [+45/−45]s lay-ups. This result is supported by numerical studies that consider curvilinear fiber paths. The possibility of obtaining zero CTE values along both principal material directions and the conditions that render this situation are also examined.

© 2011 Published by Elsevier Ltd.

Keywords:
A. Polymer-matrix composites
B. Laminate
C. Modelling
C. Deformation

1. Introduction

Failure by thermal fatigue can be mitigated by minimizing the coefficient of thermal expansion (CTE) of composite laminates along the principal material directions. Early work on characterization of CTE values in fiber reinforced composites was due to Craft and Christensen [1], Marom and Weinberg [2], Ishikawa and Chou [3], Bowles and Tompkins [4], Sleight [5], Lommens et al. [6], and references therein. More recent studies have focused on laminates with straight fiber configurations [7–10]. Among these, those which are balanced, symmetric angle ply configurations have been found to exhibit anomalous mechanical response. Analysis of these laminates have shown the existence of negative CTE for certain range of ply orientations [7,9]. Zhu and Sun [10], showed that the ratio of shear modulus G12 to the Young’s modulus E11 is an important parameter that determines the sign and magnitude of the CTE in the composite laminate. However, negative CTE values along both principal material directions (x, y) of the composite laminate were not obtained simultaneously for any ply angle. In this study, we relax the requirement of fibers having straight configurations and seek the optimum fiber path that yields the least value of CTE eff, maintaining the assumption of a balanced, symmetric, angle ply laminate. In the analysis to follow, the possibility of obtaining a zero value for CTE eff is investigated and conditions for obtaining such a CTE eff are derived.

2. Model description

Consider curvilinear fiber configurations in the x-y plane which are symmetric about the z-axis (Fig. 1) in the Representative Unit Cell (RUC) of in-plane dimensions A × B. The fibers are stacked parallel to the y-axis. Obliquely stacked configurations of the fibers are not considered since it reduces to the case under consideration as can be seen from Fig. 2. This would imply that for any infinitesimally small portion of the fiber curve with an orientation θ, there exists an infinitesimally small complementary fiber element with orientation −θ (Fig. 3). For every fiber at angle +θ at z = +z*, there is another fiber of same orientation at z = −z*. Also, for every fiber at an angle −θ at z = +z*, there is another fiber at z = −z with the same orientation. Hence, this configuration acts as a balanced symmetric laminate for which the moment resultants due to thermal expansion cancel out (see [11]), i.e. $M_\theta = 0$. Here, we use standard composite laminate nomenclature as given in [11]. Similarly, the effective shear force resultants due to thermal expansion also cancel out, i.e. $N_\theta = 0$. Therefore, the only non-zero stress resultants present are normal stresses along the principal directions (N_x and N_y) in the plane of the laminate. The curvilinear

*Corresponding author at: Dept. of Aerospace Engineering, University of Michigan, 201 S. State St., Ann Arbor, MI 48109-2140, United States. Tel.: +1 734 763 0578. E-mail addresses: aswatham@umich.edu (A. Rangarajan), rjdme@umich.edu (R.J. D’Mello), veeras@umich.edu (V. Sundararaghavan), dcw@umich.edu (A.M. Waas).

0266-3538/$ – see front matter © 2011 Published by Elsevier Ltd.

do:10.1016/j.compscitech.2011.03.016
fiber format in the RUC is invariant along the *y*-direction. Hence, the compliance matrix of an infinitesimal strip of width \(dx \) is a function of *x* alone. The continuity of fiber slopes across adjacent RUCs is ensured by the equality of slope at RUC boundaries.

3. Mathematical formulation

3.1. Straight Fibers

For a straight fiber, balanced, angle ply laminate, if the fiber is oriented at an angle \(\theta \) with respect to *x*-direction [7,10], we have

\[
\begin{align*}
\alpha'_x &= \alpha_1 \cos^2 \theta + \alpha_2 \sin^2 \theta + \frac{\tilde{S}_{16}}{\tilde{S}_{66}} (\alpha_2 - \alpha_1) \sin 2\theta \\
\alpha'_y &= \alpha_1 \sin^2 \theta + \alpha_2 \cos^2 \theta + \frac{\tilde{S}_{26}}{\tilde{S}_{66}} (\alpha_2 - \alpha_1) \sin 2\theta
\end{align*}
\]

where

\[
\tilde{S}_{16} = 2(\tilde{S}_{11} - \tilde{S}_{12}) - \tilde{S}_{66} \cos^3 \theta \sin \theta \\
+ (2(\tilde{S}_{12} - \tilde{S}_{22}) + \tilde{S}_{66}) \cos \theta \sin^3 \theta \\
\tilde{S}_{26} = 2(\tilde{S}_{11} - \tilde{S}_{12}) - \tilde{S}_{66} \cos \theta \sin^3 \theta \\
+ (2(\tilde{S}_{12} - \tilde{S}_{22}) + \tilde{S}_{66}) \cos^3 \theta \sin \theta \\
\tilde{S}_{66} = 2(2(\tilde{S}_{11} + \tilde{S}_{22} - 2\tilde{S}_{12}) - \tilde{S}_{66}) \cos^2 \theta \sin^2 \theta \\
+ \tilde{S}_{66} (\cos^4 \theta + \sin^4 \theta)
\]

For no thermal expansion, we should have \(\alpha'_x = 0 \) and \(\alpha'_y = 0 \) simultaneously. This leads to \(\langle \alpha'_x - \alpha'_y \rangle = 0 \).

\[
\langle \alpha'_x - \alpha'_y \rangle = \langle \cos 2\theta - \frac{\tilde{S}_{16} - \tilde{S}_{26}}{\tilde{S}_{66}} \sin 2\theta \rangle = 0
\]
In the above expression, \(x_1 \neq x_2 \). We inspect the term in the parenthesis which is expanded as

\[
\cos 2\theta \left(1 - \frac{\sin^2 \theta (S_{11} + S_{22} - 2S_{12})}{(S_{11} + S_{22} - 2S_{12}) \sin^2 \theta + S_{66} \cos^2 \theta} \right) = 0
\] (5)

By inspection, \(\theta = \pi/4 \) is a solution to Eq. (5). Adding Eqs. (1) and (2) we get

\[
\alpha_x^2 + \alpha_y^2 = (\alpha_1 + \alpha_2) + (\alpha_1 - \alpha_2) \left(\frac{S_{16} + S_{26}}{S_{66}} \right) \sin 2\theta = 0
\] (6)

Setting \(\theta = \pi/4 \), the above expression is written as

\[
\frac{S_{11} - S_{22}}{S_{11} + S_{22} - 2S_{12}} = \frac{S_{11} - S_{22}}{S_{11} + S_{22} - 2S_{12}}
\] (7)

Writing the compliance quantities in terms of elastic constants, we have \(S_{11} = 1/E_1, S_{22} = 1/E_2 \), and \(S_{12} = -v_1/E_1 \). Therefore,

\[
\alpha_1 + \alpha_2 = \left(\frac{1}{E_1} + \frac{1}{E_2} \right)
\] (8)

Since \(E_1 > E_2 \), right hand side (RHS) \(\alpha_1 + \alpha_2 < 0 \Rightarrow \alpha_1 < \alpha_2 \).

Next, assuming \((\alpha_1 + \alpha_2) > 0 \),

\[
\alpha_1 - \alpha_2 = \left(\frac{1}{E_1} + \frac{1}{E_2} \right)
\] (9)

A similar result has also been presented in Zhu and Sun [10]. Using Eqs. (8) and (9),

\[\alpha_1 < 0 < \alpha_2\]
(10)

3.2. Curved fibers

Now, consider a single curvilinear fiber path in the xy plane and represent it by a function \(y = f(x) \). If \(\theta \) is the angle made by any infinitesimally small segment of the curve with the x-axis, the sine and cosine terms for this segment can be written in terms of the slope of the curve \(y' = \frac{dy}{dx} = \tan \theta \).

\[
\cos \theta = \frac{1}{\sqrt{1 + (y')^2}}, \quad \sin \theta = \frac{y}{\sqrt{1 + (y')^2}} = \tan \theta
\] (11)

The compliance matrix \([S] \) terms are obtained from

\[
\tilde{S}_{16} = \int_0^{L} \frac{y^2}{A} dxdy, \quad \tilde{S}_{26} = \int_0^{L} \frac{y^2}{A} dxdy, \quad \tilde{S}_{66} = \int_0^{L} \frac{y^2}{A} dxdy
\] (12)

Since the fibers are stacked along the y-direction in the RUC, there is no variation of \(\tilde{S}_{16}, \tilde{S}_{26} \) and \(\tilde{S}_{66} \) along the y-direction. Thus, we make the assumption of constant strain along the x-axis of the RUC.

Hence, the compliance matrix \([S] \) terms reduce to

\[
\tilde{S}_{16} = \frac{\int_0^{L} y^2 dx}{A}, \quad \tilde{S}_{26} = \frac{\int_0^{L} y^2 dx}{A}, \quad \tilde{S}_{66} = \frac{\int_0^{L} y^2 dx}{A}
\] (13)

where the compliance terms of the infinitesimal segment are given by

\[
\tilde{S}_{16} = 2(\tilde{S}_{11} - \tilde{S}_{12}) c^3 s + (2\tilde{S}_{12} - 2\tilde{S}_{22}) c^3 s
\]
\[
\tilde{S}_{26} = 2(\tilde{S}_{11} - \tilde{S}_{12}) c^3 s^3 + (2\tilde{S}_{12} - 2\tilde{S}_{22}) c^3 s
\]
\[
\tilde{S}_{66} = 2(\tilde{S}_{11} + \tilde{S}_{22}) - 2\tilde{S}_{12}) c^2 s^2 + S_{66} (c^4 + s^4)
\] (14)

The CTE in the principal material directions of the laminate are obtained as \([21]\).

\[
\alpha_x = \frac{1}{A} \int_0^{L} (\alpha_1 + \alpha_2) dx - \frac{1}{A} \int_0^{L} \int_0^{L} 2cs(y_1 - y_2) dx dy
\]
\[
\alpha_y = \frac{1}{A} \int_0^{L} (\alpha_1 + \alpha_2) dy - \frac{1}{A} \int_0^{L} \int_0^{L} 2cs(y_1 - y_2) dx dy
\] (15)

Define a scaled measure of CTE, \(G = \alpha_x^2 + \alpha_y^2 \).

\[
G = \frac{A(\alpha_1 + \alpha_2)}{2} + 4(\frac{S_{22} - S_{11}}{A}) \left(\frac{\int_0^{L} y^2 dx}{A} \right)^2
\] (16)

From Eq. (16),

\[
G = A(\alpha_1 + \alpha_2 + K_2(\alpha_1 - \alpha_2))
\] (17)

As \(S_{11} = 1/E_1, S_{22} = 1/E_2 \) and \(S_{12} = -v_1/E_1 \), we get

\[
\tilde{S}_{66} = 2 \left(\frac{1}{E_1} + \frac{1}{E_2} \right) c^2 s^2 + \frac{1}{G_1} (c^2 - s^2)^2 > 0
\] (18)

Also,

\[
(S_{22} - S_{11}) = \left(\frac{1}{E_2} - \frac{1}{E_1} \right) > 0
\] (19)

We write \(G \) in the manner \(G = A(\alpha_1 + \alpha_2) + K_2 A(\alpha_1 - \alpha_2) \), where

\[
K_2 = 4 \left(\frac{S_{22} - S_{11}}{A} \right) \left(\frac{\int_0^{L} y^2 dx}{A} \right)^2
\] (20)

From Eqs. (18) and (19) it follows that

\[
K_2 > 0
\] (21)

3.2.1. Inspecting the behavior of \(K_2 \)

We inspect if \(K_2 < 1 \) or \(K_2 > 1 \). Suppose \(K_2 > 1 \), then

\[
4 \left[\frac{1}{A} \int_0^{L} (\frac{S_{22} - S_{11}}{A}) \left(\frac{\int_0^{L} y^2 dx}{A} \right)^2 - 4 \int_0^{L} (S_{11} + S_{22} - 2S_{12}) (c^2 s^2 - c^2 s^2) dx \right] > 0
\] (22)

Invoke an integral inequality, which is obtained as a special case of the Cauchy–Schwarz inequality,

\[
\frac{1}{A} \left(\frac{\int_0^{L} y^2 dx}{A} \right)^2 < \frac{1}{A} \int_0^{L} (f(x))^2 dx, \quad f(x) = cs
\] (23)

Hence,
We again start with the same assumption as in the previous section, i.e., $x_2 > x_1$. The value of $C_T e f f$ is minimum when K_2 is minimum. We have already shown the lower bound for K_2 to be 0 (Eq. (21)). It can be seen that when $y^\prime = 0$, i.e., when the fibers in all the plies are in the same orientation, the minimum value of K_2 occurs.

To validate these analytical findings, a numerical study was carried out by modeling the curvilinear fiber configurations using cubic polynomials. The curved fiber paths are selected so as to represent the majority of fiber orientations. The RUC domain under consideration varies from 0.01 × 0.01 sq.m to 1 × 1 sq.m. A sample from the curved fiber paths used for the study is shown in Fig. 4.

The numerical simulations show that the thermal expansivity along each of the principal axes directions is the least when the fiber configuration is approximately linear, i.e., straight fiber configurations. The material used for the numerical study is a glass polypropylene composite having $E_1 = 34.5 \times 10^9 \text{ Pa}$, $E_2 = 3.1 \times 10^9 \text{ Pa}$, $v_{12} = 0.25$, $x_1 = 6 \times 10^{-6}/\text{C}$ and $x_2 = 100 \times 10^{-6}/\text{C}$. The study shows that the minimum value of x_2^e is obtained for a straight fiber configuration. Similarly, the minimum value of x_1^e is also obtained for a straight fiber configuration, which is complementary to the fiber configuration at which x_2^e was a minimum. Furthermore, when both x_1^e and x_2^e are combined such that the area expansion is minimized (in-plane dilatation) to find an optimal path, again an approximate straight fiber path is obtained. These findings compare well with analytical results presented in Ito et al. [7]. Further details of our study are contained in Rangarajan et al. [12].

5. Conclusions

We have shown and provided a proof that amongst all curvilinear fiber configurations, the fiber configuration with straight fiber paths yields the least value of $C_T e f f$ for symmetric, balanced, angle ply laminates. This configuration is independent of lamina principal material parameters, E_1, E_2, v_{12}, G_{12}, x_1 and x_2. Additionally, bounds for the values of x_1 and x_2 are presented which can lead to the values of $C_T e f f$ along the principal material directions (parallel to the fiber axis) to be zero simultaneously. This implies that there would be no change in the in-plane dimensions (along both principal laminate axes) of the laminates on applying thermal loads, if Eq. (9) is satisfied. The bounds also show that x_1 has to be negative and x_2 has to be positive in order to obtain zero thermal expansion along both the laminate principal axes simultaneously. Amongst the straight fiber path configurations, laminates with $[45^\circ/-45^\circ]_{ns}$ lay-up have the least measure of $C_T e f f$. In such cases, the laminate
has isotropic values of CTE in the plane of the laminate. The degree to which CTE\textsubscript{eff} can be minimized is a function of the material parameters mentioned above.

Appendix A

A.1. Finding fiber paths to maximize K_2

$$K_2 = 4 \left(\frac{S_{22} - S_{11}}{A} \right) \left(\frac{\int_0^A cs \, dx}{\int_0^A S_{66} \, dx} \right)^2$$ \hspace{1cm} (35)

Replacing c and s in terms of y' from Eq. (11) and using the Cauchy–Schwarz inequality as in Eq. (23), we get

$$K_2 = 4 \left(\frac{S_{22} - S_{11}}{A} \right) \times \left(\frac{\int_0^A \left(\frac{\nu'}{1+\nu'} \right)^2 \, dx}{\int_0^A \left(\frac{4(S_{11} + S_{22} - 2S_{12})}{(1+\nu')^2} \right)^2 + S_{66} \left\{ \frac{(1-\nu')^2}{1+\nu'} \right\}^2 \, dx} \right)^2$$ \hspace{1cm} (36)

$$\leq 4 \left(\frac{S_{22} - S_{11}}{A} \right) \times \left(\frac{\int_0^A \left(\frac{\nu'}{1+\nu'} \right)^2 \, dx}{\int_0^A \left(\frac{4(S_{11} + S_{22} - 2S_{12})}{(1+\nu')^2} \right)^2 + S_{66} \left\{ \frac{(1-\nu')^2}{1+\nu'} \right\}^2 \, dx} \right)$$ \hspace{1cm} (37)

References