MATH 776 GROUP COHOMOLOGY

ANDREW SNOWDEN

1. G-MODULES

Let G be a group. A G-module is an abelian group M equipped with a left action $G \times M \rightarrow M$ that is additive, i.e., $g \cdot(x+y)=(g \cdot x)+(g \cdot y)$ and $g \cdot 0=0$. A G-module is exactly the same thing as a left module over the group algebra $\mathbf{Z}[G]$. In particular, the category Mod_{G} of G-modules is a module category, and therefore has enough projectives and enough injectives.

We note that one can pass between left and right G-modules: if M is a right G-module then defining $g x=x g^{-1}$ gives M the structure of a left G-module. For this reason, we always work with left G-modules.

Suppose that M and N are two left G-modules. Then $M \otimes_{\mathbf{z}} N$ has the structure of a G-module via $g(x \otimes y)=(g x) \otimes(g y)$. We also define a second tensor product, denoted $M \otimes_{G} N$, by regarding M as a right G-module and then forming the tensor product over $\mathbf{Z}[G]$. Explicitly, $M \otimes_{G} N$ is the quotient of $M \otimes_{\mathbf{Z}} N$ by the relations $g^{-1} x \otimes y=x \otimes g y$.

2. GROUP COHOMOLOGY

Given a G-module M, we let M^{G} denote the set of invariant elements:

$$
M^{G}=\{x \in M \mid g x=x \text { for all } g \in G\} .
$$

One easily verifies that $M \mapsto M^{G}$ is a left-exact functor of M. We define $\mathrm{H}^{i}(G,-)$ to be the i th right derived functor of this functor. These functors are called group cohomology. To be completely clear, group cohomology is computed as follows. Let $M \rightarrow I^{\bullet}$ be an injective resolution. Then $\mathrm{H}^{i}(G, M)$ is the i th cohomology group of the complex $\left(I^{\bullet}\right)^{G}$.

We regard \mathbf{Z} as a G-module with trivial action. For a G-module M, one clearly has

$$
M^{G}=\operatorname{Hom}_{G}(\mathbf{Z}, M)
$$

Thus the invariants functor is just the Hom functor $\operatorname{Hom}_{G}(\mathbf{Z},-)$. It follows that group cohomology is simply an Ext group:

$$
\mathrm{H}^{i}(G, M)=\operatorname{Ext}_{G}^{i}(\mathbf{Z}, M)
$$

Thus, by properties of Ext, we can compute group cohomology using a projective resolution of the trivial G-module \mathbf{Z}. This is a useful observation, since it means we can find just a single resolution (the projective resolution of \mathbf{Z}) and use it to compute the group cohomology of any module; we don't need to find injective resolutions of each module separately. Of course, this raises the problem of finding a projective resolution of \mathbf{Z}. Fortunately, there is a general construction that applies uniformly to all groups.

Let P_{r} be the free Z-module with basis G^{r+1}; we write $\left[g_{0}, \ldots, g_{r}\right]$ for the element of P_{r} corresponding to $\left(g_{0}, \ldots, g_{r}\right) \in G^{r+1}$. We give P_{r} the structure of a G-module by defining $g\left[g_{0}, \ldots, g_{r}\right]=\left[g g_{0}, \ldots, g g_{r}\right]$. Define a differential $d: P_{r} \rightarrow P_{r-1}$ by

$$
g\left[g_{0}, \ldots, g_{r}\right]=\sum_{i=0}^{r}(-1)^{i}\left[g_{0}, \ldots, \hat{g}_{i}, \ldots, g_{r}\right]
$$

where the hat indicates omission. One readily verifies that $d^{2}=0$. Let $\epsilon: P_{0} \rightarrow \mathbf{Z}$ be the augmentation map, i.e., the additive map defined by $\epsilon([g])=1$ for all $g \in G$.

Proposition 2.1. $\epsilon: P_{\bullet} \rightarrow \mathbf{Z}$ is a projective resolution.
Proof. It is clear that each P_{r} is a free $\mathbf{Z}[G]$-module, since G freely permutes a basis. It thus suffices to prove that the augmented complex is exact. Pick an arbitrary element $h \in G$, and define a map $s_{r}: P_{r} \rightarrow P_{r+1}$ by

$$
s_{r}\left(\left[g_{0}, \ldots, g_{r}\right]\right)=\left[h, g_{0}, \ldots, g_{r}\right]
$$

Similarly, define $s_{-1}: \mathbf{Z} \rightarrow P_{0}$ by $1 \mapsto[h]$. We thus have the following diagram:

One easily verifies that $d s_{r}+s_{r-1} d$ is the identity on P_{r}, and similarly, that $d s_{-1}$ is the identity on \mathbf{Z}. We thus see that the identity map on the augmented complex is null-homotopic, and so the complex is acyclic.

Remark 2.2. Note that the maps s_{r} in the above proof are not maps of G-modules. Thus we have not shown that the complex is null-homotopic in the category $\mathbf{C h}\left(\operatorname{Mod}_{G}\right)$, and it typically is not (just think about trying to make s_{-1} a G-map). The proof does show that the complex is null-homotopic in $\mathbf{C h}(\mathbf{A b})$ though, and that's sufficient for checking it is exact.

Corollary 2.3. Let M be a G-module. Then $\mathrm{H}^{i}(G, M)=\mathrm{H}^{i}\left(\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)\right)$.
Let's examine the above formula a bit more closely. An element of $\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)$ can be identified with a function $\varphi: G^{r+1} \rightarrow M$ that is G-equivariant, i.e., that satisfies

$$
\varphi\left(g\left[g_{0}, \ldots, g_{r}\right]\right)=g \varphi\left(\left[g_{0}, \ldots, g_{r}\right]\right)
$$

Such a function φ is called a homogeneous r-cochain of G with values in M. The group of such objects is denoted $\widetilde{C}^{r}(G, M)$. If φ is such an r-cochain then $d \varphi$ is the $(r+1)$-cochain given by

$$
(d \varphi)\left(\left[g_{0}, \ldots, g_{r+1}\right]=\sum_{i=0}^{r+1}(-1)^{i} \varphi\left(\left[g_{0}, \ldots, \hat{g}_{i}, \ldots, g_{r+1}\right]\right)\right.
$$

We say that φ is a homogeneous r-cocycle if $d \varphi=0$, and a homogenous r-coboundary if $\varphi=d \psi$ for some $(r-1)$-cochain ψ. The corollary identifies $\mathrm{H}^{r}(G, M)$ with the group of homogeneous r-cocycles modulo homogeneous r-coboundaries.

Define an inhomogeneous r-cochain to be any function $G^{r} \rightarrow M$, and let $C^{r}(G, M)$ be the group of them. We associated to a homogeneous r-cochain φ the inhomogeneous r-cochain given by

$$
\left(g_{1}, \ldots, g_{r}\right) \mapsto \varphi\left(\left[1, g_{1}, g_{1} g_{2}, \ldots, g_{1} \cdots g_{r}\right]\right)
$$

One easily verifies that this gives an isomorphism $\widetilde{C}^{r}(G, M) \rightarrow C^{r}(G, M)$. We can therefore transfer the differential on the latter to the former. The result is as follows: given an inhomogeneous r-cochain φ, the inhomogeneous $(r+1)$-cochain $d \varphi$ is

$$
\begin{aligned}
(d \varphi)\left(g_{1}, \ldots, g_{r+1}\right)= & g_{1} \varphi\left(g_{2}, \ldots, g_{r+1}\right) \\
& +\sum_{i=1}^{r}\left[(-1)^{i} \varphi\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{r+1}\right)\right] \\
& +(-1)^{r+1} \varphi\left(g_{1}, \ldots, g_{r}\right)
\end{aligned}
$$

We thus have an isomorphism of complexes $C^{\bullet}(G, M) \cong \widetilde{C}(G, M)$. Therefore, letting $Z^{r}(G, M)$ be the kernel of d (the group of inhomogeneous r-cocycles) and $B^{r}(G, M)$ denote the image of d (the group of inhomogeneous r-coboundaries), we find:

Proposition 2.4. $\mathrm{H}^{r}(G, M)=Z^{r}(G, M) / B^{r}(G, M)$.
Remark 2.5. Let us verify that the differentials on homogeneous and inhomogenous 1-chains agree. Let $\varphi: G \rightarrow M$ be an inhomogeneous 1-cochain. Then $d \varphi$ is given by

$$
(d \varphi)\left(g_{1}, g_{2}\right)=g_{1} \varphi\left(g_{2}\right)-\varphi\left(g_{1} g_{2}\right)+\varphi\left(g_{1}\right)
$$

The corresponding homogeneous 1-cochain $\psi: G^{2} \rightarrow M$ is given by $\psi\left(\left[g_{0}, g_{1}\right]\right)=g_{0} \varphi\left(g_{0}^{-1} g_{1}\right)$. Thus

$$
(d \psi)\left(\left[g_{0}, g_{1}, g_{2}\right]\right)=\psi\left(g_{1}, g_{2}\right)-\psi\left(g_{0}, g_{2}\right)+\psi\left(g_{0}, g_{1}\right)
$$

and so

$$
(d \psi)\left(\left[1, g_{1}, g_{1} g_{2}\right]\right)=\psi\left(g_{1}, g_{1} g_{2}\right)-\psi\left(1, g_{2}\right)+\psi\left(1, g_{1}\right)=g_{1} \varphi\left(g_{2}\right)-\varphi\left(g_{2}\right)-\varphi\left(g_{1}\right)
$$

3. Group homology

Given a G-module M, let M_{G} be the group of coinvariants:

$$
M_{G}=M /\{x-\sigma x \mid \sigma \in G, x \in M\}
$$

One easily verifies that $M \mapsto M_{G}$ is a right-exact functor of M. We define $\mathrm{H}_{i}(G,-)$ to be the i th left derived functor of this functor. These functors are called group homology. We quickly recall the definition: $\mathrm{H}_{i}(G, M)$ is the i th homology group of the complex $\left(P_{\bullet}\right)_{G}$ where $P_{\bullet} \rightarrow M$ is a projective resolution of M.

We have an identification

$$
M_{G}=M \otimes_{G} \mathbf{Z}
$$

Indeed, recall that $M \otimes_{G} \mathbf{Z}$ is by definition the quotient of $M \otimes \mathbf{Z}=M$ by the relations $\sigma x \otimes 1=x \otimes \sigma^{-1}=x \otimes 1$, which is exactly the definition of M_{G}. It follows that group homology can be viewed as Tor:

$$
\mathrm{H}_{i}(G, M)=\operatorname{Tor}_{i}^{G}(G, \mathbf{Z})
$$

In particular, we can compute group homology using a projective resolution of \mathbf{Z}. Using the resolution from the previous section gives a description of group homology in terms of chains, cycles, and boundaries. We skip the details, but mention one important case:

Proposition 3.1. If M is a trivial G-module then $\mathrm{H}_{1}(G, M)=G^{\mathrm{ab}} \otimes_{\mathbf{Z}} M$. In particular, $\mathrm{H}_{1}(G, \mathbf{Z})=G^{\mathrm{ab}}$.

4. Induced and coinduced modules

Let $H \subset G$ be groups and let M be an H-module. We define the induction of M to G by

$$
\operatorname{Ind}_{H}^{G}(M)=\mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} M
$$

where the action of G comes from its (left) action on $\mathbf{Z}[G]$. Similarly, we define the coinduction of M to G by

$$
\operatorname{CoInd}_{H}^{G}(M)=\operatorname{Hom}_{H}(G, M)
$$

Thus $\operatorname{CoInd}_{H}^{G}(M)$ consists of all functions $f: G \rightarrow M$ satisfying $f(h g)=h f(g)$ for $g \in G$ and $h \in H$. The G-action is given by $(g f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)$. We say that a G-module is (co)induced if it is (co)induced from the trivial subgroup.

Suppose that $G=\amalg_{i \in I} g_{i} H$ is the decomposition of G into cosets of H. Then $\mathbf{Z}[G]$ is free right $\mathbf{Z}[H]$-module with basis g_{i}, and so

$$
\operatorname{Ind}_{H}^{G}(M)=\bigoplus_{i \in I} g_{i} \otimes M
$$

In particular, we see that $\operatorname{Ind}_{H}^{G}(M)$ is an exact functor of M. Similarly, if $G=\amalg_{i \in I} H g_{i}^{\prime}$ then

$$
\operatorname{CoInd}_{H}^{G}(M) \cong \prod_{i \in I} M, \quad f \mapsto\left(f\left(g_{i}^{\prime}\right)\right)_{i \in I}
$$

In particular, $\operatorname{CoInd}_{H}^{G}(M)$ is an exact functor of M.
Proposition 4.1. Suppose that H has finite index in G. Then we have a natural isomorphism of G-modules

$$
\operatorname{Ind}_{H}^{G}(M) \cong \operatorname{CoInd}_{H}^{G}(M)
$$

Proof. Define a function

$$
\Phi: \operatorname{CoInd}_{H}^{G}(M) \rightarrow \operatorname{Ind}_{H}^{G}(M), \quad f \mapsto \sum_{g \in H \backslash G} g^{-1} \otimes f(g) .
$$

It is clear that Φ is well-defined and G-equivariant. By the above descriptions of induction and coinduction, it is an isomorphism. (We are essentially taking $g_{i}^{\prime}=g_{i}^{-1}$ here.)

Suppose that N is a G-module. Then we can obviously regard N as an H-module. We sometimes denote this H-module by $\operatorname{Res}_{H}^{G}(N)$, and refer to it as the restriction of N to H. It is clear that $\operatorname{Res}_{H}^{G}(N)$ is an exact functor of N.

Proposition 4.2 (Frobenius reciprocity). Let M be an H-module and let N be a G-module. We have natural isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(M), N\right) & =\operatorname{Hom}_{H}\left(M, \operatorname{Res}_{H}^{G}(N)\right), \\
\operatorname{Hom}_{G}\left(N, \operatorname{CoInd}_{H}^{G}(M)\right) & =\operatorname{Hom}_{H}\left(\operatorname{Res}_{H}^{G}(N), M\right) .
\end{aligned}
$$

In other words, induction is left adjoint to restriction and co-induction is right adjoint. When H has finite index in G, induction and restriction are adjoint to each other on both sides.

Proof. Exercise.
Corollary 4.3. If M is an injective H-module then $\operatorname{CoInd}_{H}^{G}(M)$ is an injective G-module. Similarly, if M is a projective H-module then $\operatorname{Ind}_{H}^{G}(M)$ is a projective G-module.

Proof. Suppose M is injective. Then

$$
\operatorname{Hom}_{G}\left(-, \operatorname{CoInd}_{H}^{G}(M)\right)=\operatorname{Hom}_{H}\left(\operatorname{Res}_{H}^{G}(-), M\right)
$$

is an exact functor, and so $\operatorname{CoInd}_{H}^{G}(M)$ is injective.
Corollary 4.4. We have natural isomorphisms $\left(\operatorname{CoInd}_{H}^{G}(M)\right)^{G} \cong M^{H}$ and $\left(\operatorname{Ind}_{H}^{G}(M)\right)_{G} \cong$ M_{H}.

Proof. For the first isomorphism, apply the proposition with $N=\mathbf{Z}$. For the second, note that

$$
\left(\operatorname{Ind}_{H}^{G}(M)\right)_{G}=\mathbf{Z} \otimes_{\mathbf{Z}[G]}\left(\mathbf{Z}[G] \otimes_{\mathbf{Z}[H]} M\right)=\mathbf{Z} \otimes_{\mathbf{Z}[H]} M=M_{H} .
$$

Proposition 4.5 (Shapiro's lemma). Let $H \subset G$ be groups and let M be an H-module. Then we have a canonical isomorphism

$$
\mathrm{H}^{i}\left(G, \operatorname{CoInd}_{H}^{G}(M)\right) \cong \mathrm{H}^{i}(H, M) .
$$

There is a similar statement for homology and induced modules.
Proof. Let $M \rightarrow I^{\bullet}$ be an injective resolution of M as an H-module. Since co-induction is exact and takes injectives to injectives, we see that $\operatorname{CoInd}_{H}^{G}(M) \rightarrow \operatorname{CoInd}_{H}^{G}\left(I^{\bullet}\right)$ is an injective resolution. Thus $\mathrm{H}^{\bullet}\left(G, \operatorname{CoInd}_{H}^{G}(M)\right)$ is computed by the complex $\left(\operatorname{CoInd}_{H}^{G}\left(I^{\bullet}\right)\right)^{G}$. But this is just $\left(I^{\bullet}\right)^{H}$, by the relationship between co-induction and invariants, which computes $\mathrm{H}^{\bullet}(H, M)$.

Corollary 4.6. Suppose that M is a co-induced G-module. Then $\mathrm{H}^{i}(G, M)=0$ for $i>0$. Similarly for induced modules and homology.

5. Extended functoriality

Let (G, M) and $\left(G^{\prime}, M^{\prime}\right)$ be pairs consisting of a group and a module over the group. A morphism $(G, M) \rightarrow\left(G^{\prime}, M^{\prime}\right)$ consists of a group homomorphism $\alpha: G^{\prime} \rightarrow G$ and an additive map $\beta: M \rightarrow M^{\prime}$ satisfying $\beta(\alpha(g) x)=g \beta(x)$ for all $g \in G^{\prime}$ and $x \in M$. Given such a pair, one obtains a map of complexes

$$
C^{\bullet}(G, M) \rightarrow C^{\bullet}\left(G^{\prime}, M^{\prime}\right), \quad \varphi \mapsto\left(\left(g_{1}, \ldots, g_{r}\right) \mapsto \beta\left(\varphi\left(\alpha\left(g_{1}\right), \ldots, \alpha\left(g_{r}\right)\right)\right)\right)
$$

and thus a map on cohomology

$$
\mathrm{H}^{\bullet}(G, M) \rightarrow \mathrm{H}^{\bullet}\left(G^{\prime}, M^{\prime}\right)
$$

Thus we can say that group cohomology is functorial in (G, M).
There are a number of important special cases of this general construction:
(a) Let $H \subset G$ be groups and let M be a G-module. We then have a morphism $(G, M) \rightarrow$ $\left(H, \operatorname{Res}_{H}^{G}(M)\right)$, where $\alpha: H \rightarrow G$ is the inclusion and $\beta: M \rightarrow \operatorname{Res}_{H}^{G}(M)$ is the identity. We thus obtain a map

$$
\text { res: } \mathrm{H}^{i}(G, M) \rightarrow \mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right)
$$

called restriction. It simply restricts a cocycle on G to one on H.
(b) Let $H \subset G$ be a normal subgroup and let M be a G-module. We then have a morphism $\left(G / H, M^{H}\right) \rightarrow(G, M)$ where $\alpha: G \rightarrow G / H$ is the quotient map and $\beta: M^{H} \rightarrow M$ is the inclusion. We thus obtain a map

$$
\inf : \mathrm{H}^{i}\left(G / H, M^{H}\right) \rightarrow \mathrm{H}^{i}(G, M)
$$

called inflation.
(c) Again, let $H \subset G$ be a normal subgroup and let M be a G-module. For $g \in G$, let $\alpha_{g}: H \rightarrow H$ be the map $h \mapsto g^{-1} h g$ and let $\beta_{g}: M \rightarrow M$ be the map $\beta_{g}(x)=g x$. Then α_{g} and β_{g} define an endomorphism of $\left(H, \operatorname{Res}_{H}^{G}(M)\right)$. In this way, we get an action of G on $\mathrm{H}^{i}(H, M)$. Exercise: show that the action of H on $\mathrm{H}^{i}(H, M)$ is trivial; thus the action of G can really be regarded as an action of G / H.
(d) Let $H \subset G$ be a subgroup and let M be an H-module. We then have a morphism $\left(G, \operatorname{CoInd}_{H}^{G}(M)\right) \rightarrow(H, M)$ where $\alpha: H \rightarrow G$ is the inclusion and $\beta: \operatorname{CoInd}_{H}^{G}(M) \rightarrow$ M is given by $\beta(f)=f(1)$. We thus get a map

$$
\mathrm{H}^{i}\left(G, \operatorname{CoInd}_{H}^{G}(M)\right) \rightarrow \mathrm{H}^{i}(H, M) .
$$

Exercise: show that this is the isomorphism from Shapiro's lemma.
Proposition 5.1 (Inflation-restriction sequence). Let H be a normal subgroup of G and let M be a G-module. Let $r>0$ be an integer, and suppose that $\mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right)=0$ for all $0<i<r$. Then the sequence

$$
0 \rightarrow \mathrm{H}^{r}\left(G / H, M^{H}\right) \xrightarrow{\text { inf }} \mathrm{H}^{r}(G, M) \xrightarrow{\text { res }} \mathrm{H}^{r}(H, M)
$$

is exact.
Proof. We first treat the $r=1$ case, in which the vanishing hypothesis is vacuous. The first map is obviously injective, since it is simply pullback along $G \rightarrow G / H$. We must show that the image and kernel agree in the middle. Thus let $\varphi: G \rightarrow M$ be a crossed homomorphism that restricts to a principal crossed homomorphism of H. Let $x \in M$ be such that $\varphi(h)=h x-x$ for $h \in H$. Let $\varphi^{\prime}=\varphi-d x$, i.e., $\varphi^{\prime}(g)=\varphi(g)-(g x-x)$. Then φ^{\prime} is a crossed homomorphism representing the same cohomology class as φ, and φ^{\prime} restricts to 0 on H. We have $\varphi^{\prime}(g h)=g \varphi^{\prime}(h)+\varphi^{\prime}(g)=\varphi^{\prime}(g)$ and $\varphi^{\prime}(h g)=h \varphi^{\prime}(g)+\varphi^{\prime}(h)=h \varphi^{\prime}(g)$. We also have $h \varphi^{\prime}(g)=\varphi^{\prime}(h g)=\varphi^{\prime}\left(g\left(g^{-1} h g\right)\right)=\varphi^{\prime}(g)$. We thus see that φ^{\prime} defines a function $G / H \rightarrow M^{H}$, which is easily seen to be a crossed homomorphism. This proves the proposition.

The general case now follows by dimension shifting. Precisely, we proceed by induction on r, having established the $r=1$ case above. Consider a short exact sequence

$$
0 \rightarrow M \rightarrow I \rightarrow N \rightarrow 0
$$

with I injective. Then $\mathrm{H}^{r}(G, M) \cong \mathrm{H}^{r-1}(G, N)$; in particular, $\mathrm{H}^{i}(G, N)=0$ for $0<i<r-1$. Thus we have an inflation-restriction exact sequence for N in degree $r-1$, and this gives one for M. (We leave the details as an exercise.)

6. Corestriction

Let H be a subgroup of G and let M be a G-module. The adjunction between restriction and induction gives rise to the co-unit morphism

$$
\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M, \quad g \otimes x \mapsto g x,
$$

which is a map of G-modules. Now suppose that H has finite index. We can then combine the above map with the isomorphism between induction and co-induction to get a natural map of G-modules

$$
\operatorname{CoInd}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M, \quad f \mapsto \sum_{g \in H \backslash G} g^{-1} f(g)
$$

Combining this with the Shapiro isomorphism, we thus get a map

$$
\text { cor: } \mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right) \cong \mathrm{H}^{i}\left(G, \operatorname{CoInd}_{H}^{G}\left(\operatorname{Res}_{G}^{H}(M)\right)\right) \rightarrow \mathrm{H}^{i}(G, M)
$$

called corestriction.
Proposition 6.1. The corestriction map on H^{0} is given by

$$
\operatorname{cor}: M^{H} \rightarrow M^{G}, \quad x \mapsto \sum_{g \in G / H} g x .
$$

Proof. The isomorphism

$$
M^{H} \cong\left(\operatorname{CoInd}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right)\right)^{G}
$$

takes $x \in M^{H}$ to the function $f: G \rightarrow M$ given by $f(g)=x$ for all g; note that $f(h g)=x=$ $h x=h f(g)$ since x is H-invariant. Under the map $\operatorname{CoInd}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(M)\right) \rightarrow M$ defined above, the element f is sent to

$$
\sum_{g \in H \backslash G} g^{-1} f(g)=\sum_{g \in H \backslash G} g^{-1} x=\sum_{g \in G / H} g x .
$$

This completes the proof.
Proposition 6.2. The composition

$$
\mathrm{H}^{i}(G, M) \xrightarrow{\text { res }} \mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right) \xrightarrow{\text { cor }} \mathrm{H}^{i}(G, M)
$$

is multiplication by $[G: H]$.
Proof. First suppose $i=0$. Let $x \in \mathrm{H}^{0}(G, M)=M^{G}$. Then

$$
\operatorname{cor}(\operatorname{res}(x))=\sum_{g \in G / H} g x=[G: H] x,
$$

which proves the claim. Thus corores and multiplication by $[G: H]$ define morphisms of $\mathrm{H}^{\bullet}(G,-)$ which agree at index 0 , and so they are equal.
Corollary 6.3. Suppose that G is a finite group of order n. Then $n \cdot \mathrm{H}^{i}(G, M)=0$ for any G-module M and any $i>0$.
Proof. Take H to be the trivial group. Then $\mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right)=0$, and so $\operatorname{res}(x)=0$ for any $x \in \mathrm{H}^{i}(G, M)$. Thus $n x=\operatorname{cor}(\operatorname{res}(x))=0$.
Corollary 6.4. Let G be a finite group and let M be a finitely generated $\mathbf{Z}[G]$-module. Then $\mathrm{H}^{i}(G, M)$ is finite for $i>0$.

Proof. The group of cochains $C^{i}(G, M)$ is obviously a finitely generated abelian group, since M is finitely generated and G is finite. Since $\mathrm{H}^{i}(G, M)$ is a subquotient of $C^{i}(G, M)$, it too is finitely generated. Since it is also killed by $\# G$, it is thus finite.

Corollary 6.5. Let H be the p-Sylow subgroup of G and let M be a G-module. Then the restriction map

$$
\text { res: } \mathrm{H}^{i}(G, M) \rightarrow \mathrm{H}^{i}\left(H, \operatorname{Res}_{H}^{G}(M)\right)
$$

is injective on the p-primary components of these groups.
Proof. Suppose $x \in \mathrm{H}^{i}(G, M)$ has order a power of p and $\operatorname{res}(x)=0$. Then $0=\operatorname{cor}(\operatorname{res}(x))=$ $[G: H] x$. But $[G: H]$ is prime to p and x has p-power order; thus $x=0$.

7. Cup products

Let G be a group and let M and N be G-modules. We define a map

$$
\mathrm{H}^{r}(G, M) \times \mathrm{H}^{s}(G, N) \rightarrow \mathrm{H}^{r+s}(G, M \otimes N), \quad(x, y) \mapsto x \cup y,
$$

called the cup product, as follows. Let x be represented by the (homogeneous) r-cocycle φ and let y be represented by the s-cocycle ψ. Then $x \cup y$ is represented by the $(r+s)$-cocycle

$$
\left(g_{1}, \ldots, g_{r+s}\right) \mapsto \varphi\left(g_{1}, \ldots, g_{r}\right) \otimes g_{1} \cdots g_{r} \psi\left(g_{r+1}, \ldots, g_{s}\right)
$$

We leave it as an exercise to verify that this is well-defined.
Proposition 7.1. The cup product has the following properties:
(a) It is bi-additive.
(b) It is functorial in M and N.
(c) In cohomological degree 0, it is the map

$$
\cup: M^{G} \otimes N^{G} \rightarrow(M \otimes N)^{G}, \quad x \cup y=x \otimes y
$$

(d) Suppose that

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is an exact sequence of G-modules, and N is a G-module such that the sequence

$$
0 \rightarrow M_{1} \otimes N \rightarrow M_{2} \otimes N \rightarrow M_{3} \otimes N \rightarrow 0
$$

is exact. Then for $x \in \mathrm{H}^{r}\left(G, M_{3}\right)$ and $y \in \mathrm{H}^{s}(G, N)$ we have $(\delta x) \cup y=\delta(x \cup y)$, where δ is the connecting homomorphism.
(e) Suppose that

$$
0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0
$$

is an exact sequence of G-modules, and M is a G-module such that the sequence

$$
0 \rightarrow M \otimes N_{1} \rightarrow M \otimes N_{2} \rightarrow M \otimes N_{3} \rightarrow 0
$$

is exact. Then for $x \in \mathrm{H}^{r}(G, M)$ and $y \in \mathrm{H}^{s}\left(G, N_{3}\right)$ we have $x \cup(\delta y)=(-1)^{r} \delta(x \cup y)$, where δ is the connecting homomorphism.
Moreover, these properties uniquely characterize cup product; that is, given another product rule on cohomology satisfying these axioms, it is equal to cup product.

Proof. Checking the properties is a simple exercise. Uniqueness is proved by dimension shifting.

Proposition 7.2. The cup product satisfies the following properties:
(a) For $x \in \mathrm{H}^{r}(G, M), y \in \mathrm{H}^{s}(G, N)$, and $z \in \mathrm{H}^{t}(G, K)$, we have $x \cup(y \cup z)=(x \cup y) \cup z$, under the natural identification $M \otimes(N \otimes K)=(M \otimes N) \otimes K$.
(b) For $x \in \mathrm{H}^{r}(G, M)$ and $y \in \mathrm{H}^{s}(G, N)$, we have $x \cup y=(-1)^{r s} y \cup x$ under the natural identification $M \otimes N=N \otimes M$.
(c) $\operatorname{res}(x \cup y)=\operatorname{res}(x) \cup \operatorname{res}(y)$ when defined.
(d) $\operatorname{cor}(x \cup \operatorname{res}(y))=\operatorname{cor}(x) \cup y$ when defined.

Proof. Exercise.
Suppose that $M \times N \rightarrow K$ is a G-equivariant pairing, that is, the map $M \otimes N \rightarrow K$ is a map of G-modules. We can then consider the composite

$$
\mathrm{H}^{r}(G, M) \times \mathrm{H}^{s}(G, N) \xrightarrow{\cup} \mathrm{H}^{r+s}(G, M \otimes N) \rightarrow \mathrm{H}^{r+s}(G, K) .
$$

This will also be refereed to as the cup product.
As a corollary to the above proposition, we see that $\bigoplus_{i \geq 0} \mathrm{H}^{i}(G, \mathbf{Z})$ is a graded-commutative ring. That is, it is a graded, unital, and associative ring, and satisfies the modified commutativity rule $x y=(-1)^{r s} y x$ when x and y are homogeneous of degrees r and s. This ring is called the cohomology ring of G. Moreover, if M is a G-module then $\bigoplus_{i \geq 0} \mathrm{H}^{i}(G, M)$ is a module over the cohomology ring.

References

[K] K. Kedlaya. Notes on class field theory. http://www.math.mcgill.ca/darmon/courses/cft/refs/kedlaya.pdf
[K] J.S. Milne. Class field theory. https://www.jmilne.org/math/CourseNotes/cft.html

