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1. G-modules

Let G be a group. A G-module is an abelian group M equipped with a left action
G ×M → M that is additive, i.e., g · (x + y) = (g · x) + (g · y) and g · 0 = 0. A G-module
is exactly the same thing as a left module over the group algebra Z[G]. In particular, the
category ModG of G-modules is a module category, and therefore has enough projectives and
enough injectives.

We note that one can pass between left and right G-modules: if M is a right G-module
then defining gx = xg−1 gives M the structure of a left G-module. For this reason, we always
work with left G-modules.

Suppose that M and N are two left G-modules. Then M ⊗Z N has the structure of a
G-module via g(x ⊗ y) = (gx) ⊗ (gy). We also define a second tensor product, denoted
M ⊗G N , by regarding M as a right G-module and then forming the tensor product over
Z[G]. Explicitly, M ⊗G N is the quotient of M ⊗Z N by the relations g−1x⊗ y = x⊗ gy.

2. Group cohomology

Given a G-module M , we let MG denote the set of invariant elements:

MG = {x ∈M | gx = x for all g ∈ G}.

One easily verifies that M 7→MG is a left-exact functor of M . We define Hi(G,−) to be the
ith right derived functor of this functor. These functors are called group cohomology. To
be completely clear, group cohomology is computed as follows. Let M → I• be an injective
resolution. Then Hi(G,M) is the ith cohomology group of the complex (I•)G.

We regard Z as a G-module with trivial action. For a G-module M , one clearly has

MG = HomG(Z,M).

Thus the invariants functor is just the Hom functor HomG(Z,−). It follows that group
cohomology is simply an Ext group:

Hi(G,M) = ExtiG(Z,M).

Thus, by properties of Ext, we can compute group cohomology using a projective resolution
of the trivial G-module Z. This is a useful observation, since it means we can find just a single
resolution (the projective resolution of Z) and use it to compute the group cohomology of
any module; we don’t need to find injective resolutions of each module separately. Of course,
this raises the problem of finding a projective resolution of Z. Fortunately, there is a general
construction that applies uniformly to all groups.
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Let Pr be the free Z-module with basis Gr+1; we write [g0, . . . , gr] for the element of Pr

corresponding to (g0, . . . , gr) ∈ Gr+1. We give Pr the structure of a G-module by defining
g[g0, . . . , gr] = [gg0, . . . , ggr]. Define a differential d : Pr → Pr−1 by

g[g0, . . . , gr] =
r∑

i=0

(−1)i[g0, . . . , ĝi, . . . , gr],

where the hat indicates omission. One readily verifies that d2 = 0. Let ε : P0 → Z be the
augmentation map, i.e., the additive map defined by ε([g]) = 1 for all g ∈ G.

Proposition 2.1. ε : P• → Z is a projective resolution.

Proof. It is clear that each Pr is a free Z[G]-module, since G freely permutes a basis. It thus
suffices to prove that the augmented complex is exact. Pick an arbitrary element h ∈ G,
and define a map sr : Pr → Pr+1 by

sr([g0, . . . , gr]) = [h, g0, . . . , gr].

Similarly, define s−1 : Z→ P0 by 1 7→ [h]. We thus have the following diagram:

· · · // P2
//

s2
~~

P1
//

s1~~

P0
//

s0~~

Z //

s−1��

0

· · · // P2
// P1

// P0
// Z // 0

One easily verifies that dsr+sr−1d is the identity on Pr, and similarly, that ds−1 is the identity
on Z. We thus see that the identity map on the augmented complex is null-homotopic, and
so the complex is acyclic. �

Remark 2.2. Note that the maps sr in the above proof are not maps of G-modules. Thus
we have not shown that the complex is null-homotopic in the category Ch(ModG), and it
typically is not (just think about trying to make s−1 a G-map). The proof does show that
the complex is null-homotopic in Ch(Ab) though, and that’s sufficient for checking it is
exact. �

Corollary 2.3. Let M be a G-module. Then Hi(G,M) = Hi(HomG(P•,M)).

Let’s examine the above formula a bit more closely. An element of HomG(P•,M) can be
identified with a function ϕ : Gr+1 →M that is G-equivariant, i.e., that satisfies

ϕ(g[g0, . . . , gr]) = gϕ([g0, . . . , gr]).

Such a function ϕ is called a homogeneous r-cochain of G with values in M . The group

of such objects is denoted C̃r(G,M). If ϕ is such an r-cochain then dϕ is the (r+ 1)-cochain
given by

(dϕ)([g0, . . . , gr+1] =
r+1∑
i=0

(−1)iϕ([g0, . . . , ĝi, . . . , gr+1]).

We say that ϕ is a homogeneous r-cocycle if dϕ = 0, and a homogenous r-coboundary
if ϕ = dψ for some (r − 1)-cochain ψ. The corollary identifies Hr(G,M) with the group of
homogeneous r-cocycles modulo homogeneous r-coboundaries.
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Define an inhomogeneous r-cochain to be any function Gr → M , and let Cr(G,M)
be the group of them. We associated to a homogeneous r-cochain ϕ the inhomogeneous
r-cochain given by

(g1, . . . , gr) 7→ ϕ([1, g1, g1g2, . . . , g1 · · · gr]).
One easily verifies that this gives an isomorphism C̃r(G,M)→ Cr(G,M). We can therefore
transfer the differential on the latter to the former. The result is as follows: given an
inhomogeneous r-cochain ϕ, the inhomogeneous (r + 1)-cochain dϕ is

(dϕ)(g1, . . . , gr+1) =g1ϕ(g2, . . . , gr+1)

+
r∑

i=1

[
(−1)iϕ(g1, . . . , gigi+1, . . . , gr+1)

]
+ (−1)r+1ϕ(g1, . . . , gr).

We thus have an isomorphism of complexes C•(G,M) ∼= C̃•(G,M). Therefore, letting
Zr(G,M) be the kernel of d (the group of inhomogeneous r-cocycles) and Br(G,M)
denote the image of d (the group of inhomogeneous r-coboundaries), we find:

Proposition 2.4. Hr(G,M) = Zr(G,M)/Br(G,M).

Remark 2.5. Let us verify that the differentials on homogeneous and inhomogenous 1-chains
agree. Let ϕ : G→M be an inhomogeneous 1-cochain. Then dϕ is given by

(dϕ)(g1, g2) = g1ϕ(g2)− ϕ(g1g2) + ϕ(g1).

The corresponding homogeneous 1-cochain ψ : G2 →M is given by ψ([g0, g1]) = g0ϕ(g−10 g1).
Thus

(dψ)([g0, g1, g2]) = ψ(g1, g2)− ψ(g0, g2) + ψ(g0, g1),

and so

(dψ)([1, g1, g1g2]) = ψ(g1, g1g2)− ψ(1, g2) + ψ(1, g1) = g1ϕ(g2)− ϕ(g2)− ϕ(g1).

�

3. Group homology

Given a G-module M , let MG be the group of coinvariants:

MG = M/{x− σx | σ ∈ G, x ∈M}.

One easily verifies that M 7→ MG is a right-exact functor of M . We define Hi(G,−) to be
the ith left derived functor of this functor. These functors are called group homology.
We quickly recall the definition: Hi(G,M) is the ith homology group of the complex (P•)G
where P• →M is a projective resolution of M .

We have an identification

MG = M ⊗G Z.

Indeed, recall that M ⊗G Z is by definition the quotient of M ⊗ Z = M by the relations
σx ⊗ 1 = x ⊗ σ−1 = x ⊗ 1, which is exactly the definition of MG. It follows that group
homology can be viewed as Tor:

Hi(G,M) = TorGi (G,Z).
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In particular, we can compute group homology using a projective resolution of Z. Using
the resolution from the previous section gives a description of group homology in terms of
chains, cycles, and boundaries. We skip the details, but mention one important case:

Proposition 3.1. If M is a trivial G-module then H1(G,M) = Gab ⊗Z M . In particular,
H1(G,Z) = Gab.

4. Induced and coinduced modules

Let H ⊂ G be groups and let M be an H-module. We define the induction of M to G
by

IndG
H(M) = Z[G]⊗Z[H] M,

where the action of G comes from its (left) action on Z[G]. Similarly, we define the coin-
duction of M to G by

CoIndG
H(M) = HomH(G,M).

Thus CoIndG
H(M) consists of all functions f : G→M satisfying f(hg) = hf(g) for g ∈ G and

h ∈ H. The G-action is given by (gf)(g′) = f(g′g). We say that a G-module is (co)induced
if it is (co)induced from the trivial subgroup.

Suppose that G = qi∈IgiH is the decomposition of G into cosets of H. Then Z[G] is free
right Z[H]-module with basis gi, and so

IndG
H(M) =

⊕
i∈I

gi ⊗M.

In particular, we see that IndG
H(M) is an exact functor of M . Similarly, if G = qi∈IHg

′
i then

CoIndG
H(M) ∼=

∏
i∈I

M, f 7→ (f(g′i))i∈I .

In particular, CoIndG
H(M) is an exact functor of M .

Proposition 4.1. Suppose that H has finite index in G. Then we have a natural isomor-
phism of G-modules

IndG
H(M) ∼= CoIndG

H(M).

Proof. Define a function

Φ: CoIndG
H(M)→ IndG

H(M), f 7→
∑

g∈H\G

g−1 ⊗ f(g).

It is clear that Φ is well-defined and G-equivariant. By the above descriptions of induction
and coinduction, it is an isomorphism. (We are essentially taking g′i = g−1i here.) �

Suppose that N is a G-module. Then we can obviously regard N as an H-module. We
sometimes denote this H-module by ResGH(N), and refer to it as the restriction of N to H.
It is clear that ResGH(N) is an exact functor of N .

Proposition 4.2 (Frobenius reciprocity). Let M be an H-module and let N be a G-module.
We have natural isomorphisms

HomG(IndG
H(M), N) = HomH(M,ResGH(N)),

HomG(N,CoIndG
H(M)) = HomH(ResGH(N),M).
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In other words, induction is left adjoint to restriction and co-induction is right adjoint. When
H has finite index in G, induction and restriction are adjoint to each other on both sides.

Proof. Exercise. �

Corollary 4.3. If M is an injective H-module then CoIndG
H(M) is an injective G-module.

Similarly, if M is a projective H-module then IndG
H(M) is a projective G-module.

Proof. Suppose M is injective. Then

HomG(−,CoIndG
H(M)) = HomH(ResGH(−),M)

is an exact functor, and so CoIndG
H(M) is injective. �

Corollary 4.4. We have natural isomorphisms (CoIndG
H(M))G ∼= MH and (IndG

H(M))G ∼=
MH .

Proof. For the first isomorphism, apply the proposition with N = Z. For the second, note
that

(IndG
H(M))G = Z⊗Z[G] (Z[G]⊗Z[H] M) = Z⊗Z[H] M = MH . �

Proposition 4.5 (Shapiro’s lemma). Let H ⊂ G be groups and let M be an H-module.
Then we have a canonical isomorphism

Hi(G,CoIndG
H(M)) ∼= Hi(H,M).

There is a similar statement for homology and induced modules.

Proof. Let M → I• be an injective resolution of M as an H-module. Since co-induction is
exact and takes injectives to injectives, we see that CoIndG

H(M) → CoIndG
H(I•) is an injec-

tive resolution. Thus H•(G,CoIndG
H(M)) is computed by the complex (CoIndG

H(I•))G. But
this is just (I•)H , by the relationship between co-induction and invariants, which computes
H•(H,M). �

Corollary 4.6. Suppose that M is a co-induced G-module. Then Hi(G,M) = 0 for i > 0.
Similarly for induced modules and homology.

5. Extended functoriality

Let (G,M) and (G′,M ′) be pairs consisting of a group and a module over the group.
A morphism (G,M) → (G′,M ′) consists of a group homomorphism α : G′ → G and an
additive map β : M → M ′ satisfying β(α(g)x) = gβ(x) for all g ∈ G′ and x ∈ M . Given
such a pair, one obtains a map of complexes

C•(G,M)→ C•(G′,M ′), ϕ 7→ ((g1, . . . , gr) 7→ β(ϕ(α(g1), . . . , α(gr))))

and thus a map on cohomology

H•(G,M)→ H•(G′,M ′).

Thus we can say that group cohomology is functorial in (G,M).
There are a number of important special cases of this general construction:
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(a) Let H ⊂ G be groups and let M be a G-module. We then have a morphism (G,M)→
(H,ResGH(M)), where α : H → G is the inclusion and β : M → ResGH(M) is the
identity. We thus obtain a map

res : Hi(G,M)→ Hi(H,ResGH(M))

called restriction. It simply restricts a cocycle on G to one on H.
(b) LetH ⊂ G be a normal subgroup and letM be aG-module. We then have a morphism

(G/H,MH)→ (G,M) where α : G→ G/H is the quotient map and β : MH →M is
the inclusion. We thus obtain a map

inf : Hi(G/H,MH)→ Hi(G,M)

called inflation.
(c) Again, let H ⊂ G be a normal subgroup and let M be a G-module. For g ∈ G, let

αg : H → H be the map h 7→ g−1hg and let βg : M → M be the map βg(x) = gx.
Then αg and βg define an endomorphism of (H,ResGH(M)). In this way, we get an
action of G on Hi(H,M). Exercise: show that the action of H on Hi(H,M) is trivial;
thus the action of G can really be regarded as an action of G/H.

(d) Let H ⊂ G be a subgroup and let M be an H-module. We then have a morphism
(G,CoIndG

H(M))→ (H,M) where α : H → G is the inclusion and β : CoIndG
H(M)→

M is given by β(f) = f(1). We thus get a map

Hi(G,CoIndG
H(M))→ Hi(H,M).

Exercise: show that this is the isomorphism from Shapiro’s lemma.

Proposition 5.1 (Inflation–restriction sequence). Let H be a normal subgroup of G and let
M be a G-module. Let r > 0 be an integer, and suppose that Hi(H,ResGH(M)) = 0 for all
0 < i < r. Then the sequence

0→ Hr(G/H,MH)
inf→ Hr(G,M)

res→ Hr(H,M)

is exact.

Proof. We first treat the r = 1 case, in which the vanishing hypothesis is vacuous. The
first map is obviously injective, since it is simply pullback along G → G/H. We must
show that the image and kernel agree in the middle. Thus let ϕ : G → M be a crossed
homomorphism that restricts to a principal crossed homomorphism of H. Let x ∈ M be
such that ϕ(h) = hx − x for h ∈ H. Let ϕ′ = ϕ − dx, i.e., ϕ′(g) = ϕ(g) − (gx − x). Then
ϕ′ is a crossed homomorphism representing the same cohomology class as ϕ, and ϕ′ restricts
to 0 on H. We have ϕ′(gh) = gϕ′(h) + ϕ′(g) = ϕ′(g) and ϕ′(hg) = hϕ′(g) + ϕ′(h) = hϕ′(g).
We also have hϕ′(g) = ϕ′(hg) = ϕ′(g(g−1hg)) = ϕ′(g). We thus see that ϕ′ defines a
function G/H →MH , which is easily seen to be a crossed homomorphism. This proves the
proposition.

The general case now follows by dimension shifting. Precisely, we proceed by induction
on r, having established the r = 1 case above. Consider a short exact sequence

0→M → I → N → 0

with I injective. Then Hr(G,M) ∼= Hr−1(G,N); in particular, Hi(G,N) = 0 for 0 < i < r−1.
Thus we have an inflation–restriction exact sequence for N in degree r − 1, and this gives
one for M . (We leave the details as an exercise.) �
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6. Corestriction

Let H be a subgroup of G and let M be a G-module. The adjunction between restriction
and induction gives rise to the co-unit morphism

IndG
H(ResGH(M))→M, g ⊗ x 7→ gx,

which is a map of G-modules. Now suppose that H has finite index. We can then combine
the above map with the isomorphism between induction and co-induction to get a natural
map of G-modules

CoIndG
H(ResGH(M))→M, f 7→

∑
g∈H\G

g−1f(g).

Combining this with the Shapiro isomorphism, we thus get a map

cor : Hi(H,ResGH(M)) ∼= Hi(G,CoIndG
H(ResHG (M)))→ Hi(G,M)

called corestriction.

Proposition 6.1. The corestriction map on H0 is given by

cor : MH →MG, x 7→
∑

g∈G/H

gx.

Proof. The isomorphism
MH ∼= (CoIndG

H(ResGH(M)))G

takes x ∈MH to the function f : G→M given by f(g) = x for all g; note that f(hg) = x =
hx = hf(g) since x is H-invariant. Under the map CoIndG

H(ResGH(M))→M defined above,
the element f is sent to ∑

g∈H\G

g−1f(g) =
∑

g∈H\G

g−1x =
∑

g∈G/H

gx.

This completes the proof. �

Proposition 6.2. The composition

Hi(G,M)
res−→ Hi(H,ResGH(M))

cor−→ Hi(G,M)

is multiplication by [G : H].

Proof. First suppose i = 0. Let x ∈ H0(G,M) = MG. Then

cor(res(x)) =
∑

g∈G/H

gx = [G : H]x,

which proves the claim. Thus cor ◦ res and multiplication by [G : H] define morphisms of
H•(G,−) which agree at index 0, and so they are equal. �

Corollary 6.3. Suppose that G is a finite group of order n. Then n ·Hi(G,M) = 0 for any
G-module M and any i > 0.

Proof. Take H to be the trivial group. Then Hi(H,ResGH(M)) = 0, and so res(x) = 0 for any
x ∈ Hi(G,M). Thus nx = cor(res(x)) = 0. �

Corollary 6.4. Let G be a finite group and let M be a finitely generated Z[G]-module. Then
Hi(G,M) is finite for i > 0.
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Proof. The group of cochains Ci(G,M) is obviously a finitely generated abelian group, since
M is finitely generated and G is finite. Since Hi(G,M) is a subquotient of Ci(G,M), it too
is finitely generated. Since it is also killed by #G, it is thus finite. �

Corollary 6.5. Let H be the p-Sylow subgroup of G and let M be a G-module. Then the
restriction map

res : Hi(G,M)→ Hi(H,ResGH(M))

is injective on the p-primary components of these groups.

Proof. Suppose x ∈ Hi(G,M) has order a power of p and res(x) = 0. Then 0 = cor(res(x)) =
[G : H]x. But [G : H] is prime to p and x has p-power order; thus x = 0. �

7. Cup products

Let G be a group and let M and N be G-modules. We define a map

Hr(G,M)× Hs(G,N)→ Hr+s(G,M ⊗N), (x, y) 7→ x ∪ y,
called the cup product, as follows. Let x be represented by the (homogeneous) r-cocycle ϕ
and let y be represented by the s-cocycle ψ. Then x∪ y is represented by the (r+ s)-cocycle

(g1, . . . , gr+s) 7→ ϕ(g1, . . . , gr)⊗ g1 · · · grψ(gr+1, . . . , gs).

We leave it as an exercise to verify that this is well-defined.

Proposition 7.1. The cup product has the following properties:

(a) It is bi-additive.
(b) It is functorial in M and N .
(c) In cohomological degree 0, it is the map

∪ : MG ⊗NG → (M ⊗N)G, x ∪ y = x⊗ y.
(d) Suppose that

0→M1 →M2 →M3 → 0

is an exact sequence of G-modules, and N is a G-module such that the sequence

0→M1 ⊗N →M2 ⊗N →M3 ⊗N → 0

is exact. Then for x ∈ Hr(G,M3) and y ∈ Hs(G,N) we have (δx) ∪ y = δ(x ∪ y),
where δ is the connecting homomorphism.

(e) Suppose that
0→ N1 → N2 → N3 → 0

is an exact sequence of G-modules, and M is a G-module such that the sequence

0→M ⊗N1 →M ⊗N2 →M ⊗N3 → 0

is exact. Then for x ∈ Hr(G,M) and y ∈ Hs(G,N3) we have x∪(δy) = (−1)rδ(x∪y),
where δ is the connecting homomorphism.

Moreover, these properties uniquely characterize cup product; that is, given another product
rule on cohomology satisfying these axioms, it is equal to cup product.

Proof. Checking the properties is a simple exercise. Uniqueness is proved by dimension
shifting. �

Proposition 7.2. The cup product satisfies the following properties:
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(a) For x ∈ Hr(G,M), y ∈ Hs(G,N), and z ∈ Ht(G,K), we have x∪(y∪z) = (x∪y)∪z,
under the natural identification M ⊗ (N ⊗K) = (M ⊗N)⊗K.

(b) For x ∈ Hr(G,M) and y ∈ Hs(G,N), we have x ∪ y = (−1)rsy ∪ x under the natural
identification M ⊗N = N ⊗M .

(c) res(x ∪ y) = res(x) ∪ res(y) when defined.
(d) cor(x ∪ res(y)) = cor(x) ∪ y when defined.

Proof. Exercise. �

Suppose that M ×N → K is a G-equivariant pairing, that is, the map M ⊗N → K is a
map of G-modules. We can then consider the composite

Hr(G,M)× Hs(G,N)
∪→ Hr+s(G,M ⊗N)→ Hr+s(G,K).

This will also be refereed to as the cup product.
As a corollary to the above proposition, we see that

⊕
i≥0 Hi(G,Z) is a graded-commutative

ring. That is, it is a graded, unital, and associative ring, and satisfies the modified commu-
tativity rule xy = (−1)rsyx when x and y are homogeneous of degrees r and s. This ring is
called the cohomology ring of G. Moreover, if M is a G-module then

⊕
i≥0 Hi(G,M) is a

module over the cohomology ring.
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