MATH 776 REVIEW OF HOMOLOGICAL ALGEBRA

ANDREW SNOWDEN

Let \mathcal{A} be an abelian category. One can take \mathcal{A} to be the category of left modules over a ring without losing much generality.

1. CHAIN COMPLEXES

A chain complex in \mathcal{A} is a pair $(M_n, d_n)_{n \in \mathbb{Z}}$ where M_n is an object of \mathcal{A} and $d_n \colon M_n \to M_{n-1}$ is a morphism such that $d_{n-1} \circ d_n = 0$ for all n. We write a chain complex as

$$\cdots \longrightarrow M_2 \xrightarrow{d_2} M_1 \xrightarrow{d_1} M_0 \longrightarrow \cdots$$

We typically just write d in place of d_n , and leave this implicit when writing a chain complex. A **morphism** of chain complexes $f: M_{\bullet} \to N_{\bullet}$ consists of giving for each $n \in \mathbb{Z}$ a morphism $f_n: M_n \to N_n$ in \mathcal{A} , such that the diagrams

$$\begin{array}{c|c}
M_n & \xrightarrow{d} & M_{n-1} \\
f_n & & & \downarrow_{f_{n-1}} \\
N_n & \xrightarrow{d} & N_{n-1}
\end{array}$$

commute for all n. In this way, we have a category $Ch(\mathcal{A})$ of chain complexes in \mathcal{A} . It is again an abelian category, with kernels, cokernels, and images computed pointwise.

Let M_{\bullet} be a chain complex. Since $d_n \circ d_{n+1} = 0$, it follows that $\operatorname{im}(d_{n+1}) \subset \operatorname{ker}(d_n)$. The **homology** of M_{\bullet} is defined to be the quotient: specifically,

$$H_n(M_{\bullet}) = \frac{\ker(d_n)}{\operatorname{im}(d_{n+1})}.$$

The complex M_{\bullet} is said to be **acyclic** if $H_n(M_{\bullet}) = 0$ for all n. If $f: M_{\bullet} \to N_{\bullet}$ is a morphism of chain complexes then f naturally induces an isomorphism $H_n(M_{\bullet}) \to H_n(N_{\bullet})$ for all n. The morphism f is said to be a **quasi-isomorphism** if these maps are all isomorphisms.

Remark 1.1. There is a variant notion called "cochain complex" that is sometimes used. The only difference is notation. In a cochain complex, the groups are indexed with a superscript (so M^0 , M^1 , etc.), and the differentials increase degree (so $d^0: M^0 \to M^1$, etc.). All the concepts and theorems we prove can be translated to this language.

2. Chain homotopies

Let $f: M_{\bullet} \to N_{\bullet}$ be a morphism of chain complexes. We say that f is **null homotopic** if there exist morphisms $s_n: M_n \to N_{n+1}$ such that

$$f_n = d_{n+1}s_n + s_{n-1}d_n.$$

Date: February 19, 2019.

The diagram is

Two morphisms $f, g: M_{\bullet} \to N_{\bullet}$ are said to be **chain homotopic** if f - g is null homotopic. Two complexes M_{\bullet} and N_{\bullet} are said to be **homotopy equivalent** if there exist morphisms $f: M_{\bullet} \to N_{\bullet}$ and $g: N_{\bullet} \to M_{\bullet}$ such that fg and gf are each chain homotopic to the identity map.

The importance of this concept is due to the following observation:

Proposition 2.1. Let $f, g: M_{\bullet} \to N_{\bullet}$ be chain homotopic maps of complexes. Then the maps $H_n(M_{\bullet}) \to H_n(N_{\bullet})$ induced by f and g are equal. In particular, if f is null homotopic then it induces the zero map on homology.

Proof. It suffices to treat the case where f is null homotopic. Let $y \in H_n(M_{\bullet})$. Let $x \in M_n$ be a lift of y with dx = 0. By definition, f(y) is represented by $f(x) \in N_n$. Now, we have $f(x) = d_{n+1}(s_n(x)) + s_{n-1}(d_n(x)) = d_{n+1}(s_n(x))$ since dx = 0. But this shows that $f(x) \in \operatorname{im}(d_{n+1})$, and thus maps to 0 in $H_n(N_{\bullet})$.

The **homotopy category** of $Ch(\mathcal{A})$, denoted $K(\mathcal{A})$, is the category whose objects are chain complexes and whose morphisms are where $Hom_{K(\mathcal{A})}(M, N)$ is the set of equivalence classes of morphisms of complexes under chain homotopy. Thus two complexes are homotopy equivalent if and only if they are isomorphic in $K(\mathcal{A})$. The above proposition shows that homology yields a well-defined functor $H_n: K(\mathcal{A}) \to \mathcal{A}$.

3. Long exact sequences

Suppose that

$$0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$$

is a short exact sequence in $\mathbf{Ch}(\mathcal{A})$. Let c be an element of C_n with dc = 0. Lift c arbitrarily to an element $b \in B_n$. Since db maps to dc = 0, it follows that $a = db \in A_{n-1}$. We have $da = d^2b = 0$.

Proposition 3.1. There is a well-defined morphism $\partial \colon H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ given by $c \mapsto a$. *Proof.* Suppose that b' is a second lift of c. Then $b' = b + \epsilon$ for some $\epsilon \in A_n$. Thus $a' = db' = db + d\epsilon = a + d\epsilon$ and so a' and a differ by $d\epsilon$, and thus represent the same class in $H_{n-1}(A_{\bullet})$. Thus the construction is independent of the choice of lift b. We therefore have a well-defined map $\tilde{\partial} \colon \ker(d_n \colon C_n \to C_{n-1}) \to H_{n-1}(A_{\bullet})$.

Now suppose that c = d(c') for some $c' \in C_{n+1}$. Let $b' \in B_{n+1}$ be a lift of c', so that b = db' is a lift of c. Then $a = db = d^2b' = 0$. Thus $\tilde{\partial}$ kills $\operatorname{im}(d_{n-1}: C_{n+1} \to C_n)$, and therefore induces a map ∂ as claimed.

The morphism ∂ in the above lemma is called the **connecting homomorphism**. Its importance is due to the following result:

Proposition 3.2. The sequence

 $\cdots \to \mathrm{H}_n(A_{\bullet}) \to \mathrm{H}_n(B_{\bullet}) \to \mathrm{H}_n(A_{\bullet}) \xrightarrow{\partial} \mathrm{H}_{n-1}(A_{\bullet}) \to \mathrm{H}_{n-1}(B_{\bullet}) \to \mathrm{H}_{n-1}(A_{\bullet}) \to \cdots$

is everywhere exact.

Proof. Left as an exercise.

The sequence in the above proposition is called the **long exact sequence** associated to the original short exact sequence of chain complexes. It is functorial in the short exact sequence, in the obvious sense.

4. Projectives and injectives

An object P of \mathcal{A} is **projective** if in any diagram

where p is a given surjection and f is a given morphism, one can find g making the diagram commute. Equivalently, the functor $\operatorname{Hom}(P, -)$ is exact. The category \mathcal{A} is said to have **enough projectives** if every object is a quotient of a projective.

The dual notion to "projective" is "injective." Precisely, an object I is called **injective** if in any diagram

where *i* is a given injection and *f* is a given morphism, one can find *g* making the diagram commute. Equivalently, the functor Hom(-, I) is exact. The category \mathcal{A} is said to have **enough injectives** if every object injects into an injective.

Example 4.1. Suppose \mathcal{A} is the category of R-modules. Then any free R-module is projective. If R is a Dedekind domain, then any ideal of R is projective; this yields examples of projective modules that are not free. If $R = \mathbf{Z}$ then a module is injective if and only if it is divisible; thus \mathbf{Q} and \mathbf{Q}/\mathbf{Z} are examples of injective \mathbf{Z} -modules. For any R, the category \mathcal{A} has enough projectives and enough injectives.

5. PROJECTIVE RESOLUTIONS

Let M be an object of \mathcal{A} . A **projective resolution** of M is an exact complex

$$\cdots \to P_2 \to P_1 \to P_0 \stackrel{\epsilon}{\to} M \to 0 \to 0 \to \cdots$$

where each P_i is projective. One typically regards P_{\bullet} as a complex, which is 0 in negative degrees, and refers to the above complex with M tacked on as the augmented complex. One can also view a projective resolution as a quasi-isomorphism of complexes $\epsilon \colon P_{\bullet} \to M$, where M is regarded as a complex concentrated in degree 0:

Existence of projective resolutions is straightforward:

Proposition 5.1. Suppose \mathcal{A} has enough projectives. Then every object of \mathcal{A} has a projective resolution.

Proof. Since \mathcal{A} has enough projectives, we can find a surjection $\epsilon \colon P_0 \to M$ with P_0 projective. Suppose now we have constructed a partial projective resolution

$$P_n \xrightarrow{d_n} \cdots \longrightarrow P_0 \xrightarrow{\epsilon} M \longrightarrow 0.$$

That is, each P_i is projective, and the sequence is exact away from P_n . We can then extend one more step by choosing a surjection $P_{n+1} \to \ker(d_n)$ with P_{n+1} projective. This is possible since there are enough projectives.

Projective resolutions are obviously not unique in general. For example, if M = 0 and P is an projective then

$$\dots \to 0 \to P \to P \to M \to 0$$

is a projective resolution of M. However, they are unique up to homotopy. We deduce this from the following more general result.

Proposition 5.2. Let $\epsilon: P_{\bullet} \to M$ be a projective resolution, let $\delta: Q_{\bullet} \to N$ be any exact augmented complex, and let $f: M \to N$ be a morphism. Then there exists a morphism of complexes $g: P_{\bullet} \to Q_{\bullet}$ lifting f. Moreover, if g' is a second lift then g and g' are chain homotopic.

Proof. We first construct g_0 . Consider the diagram

$$\begin{array}{ccc} P_0 & \stackrel{\epsilon}{\longrightarrow} & M \\ g_0 & & & & \\ g_0 & \stackrel{\delta}{\longrightarrow} & N \end{array}$$

Since δ is surjective and P_0 is projective, the lifting property of projectives allows us to find g_0 . Suppose now we have constructed g_0, \ldots, g_n and we want to construct g_{n+1} . Consider the diagram

$$\begin{array}{c} P_{n+1} \longrightarrow P_n \longrightarrow P_{n-1} \\ g_{n+1} & g_n & g_{n-1} \\ Q_{n+1} \longrightarrow Q_n \longrightarrow Q_{n-1} \end{array}$$

(When n = 0 the right column should consist of M and N.) Let $K = \ker(d: Q_n \to Q_{n-1})$. Since the bottom row is exact, the differential gives a surjection $Q_{n+1} \to K$. Of course, the composition $g_n d$ maps P_{n+1} into K. Thus, by the lifting property of projectives, we can find $g_{n+1}: P_{n+1} \to Q_{n+1}$.

We now prove the uniqueness claim. If g and g' are two lifts of f then g - g' is a lift of 0. It thus suffices to show that if f = 0 then g is null-homotopic. We thus construct maps $s_n: P_n \to Q_{n+1}$ having the requisite properties. To construct s_0 , consider the diagram

Since the right square commutes, g_0 maps P_0 into ker $(Q_0 \to N)$. Since the bottom row is exact, Q_1 surjects onto this kernel. Thus, by the mapping property for projectives, we can

find a map $s_0: P_0 \to Q_1$ such that $g_0 = ds_0$. Note that $P_n = 0$ for n < 0, and so $s_n = 0$ for n < 0. We thus have $g_0 = ds_0 + s_{-1}d$, as requied.

Suppose now that we have constructed s_0, \ldots, s_{n-1} satisfying the appropriate identities. Consider the diagram

Consider $h = g_n - s_{n-1}d$. We have

$$dh = dg_n - ds_{n-1}d = g_{n-1}d - ds_{n-1}d = (g_{n-1} - ds_{n-1})d = (s_{n-2}d)d = 0.$$

Thus h maps into $K = \ker(d: Q_n \to Q_{n-1})$. Since Q_{n+1} surjects onto K, the mapping property allows us to lift h to a map $s_n: P_n \to Q_{n+1}$. Since $h = ds_{n+1}$, we have $g_n = ds_n + s_{n-1}d$, as required.

Corollary 5.3. Let $\epsilon: P_{\bullet} \to M$ and $\delta: Q_{\bullet} \to M$ be two projective resolutions of M. Then P_{\bullet} and Q_{\bullet} are homotopy equivalent.

Proof. The identity map $M \to M$ lifts to morphisms of complexes $f: P_{\bullet} \to Q_{\bullet}$ and $g: Q_{\bullet} \to P_{\bullet}$. Since fg and $id_{P_{\bullet}}$ are both lifts of the identity on M, they are chain homotopic. Since gf and $id_{Q_{\bullet}}$ are chain homotopic.

Corollary 5.4. Assume \mathcal{A} has enough projectives. There exists a well-defined functor $\mathcal{A} \to \mathbf{K}(\mathcal{A})$ sending an object of \mathcal{A} to its projective resolution.

We need one more result about projective resolutions:

Proposition 5.5 (Horseshoe lemma). Consider an exact sequence in A:

$$0 \to L \to M \to N \to 0.$$

Let $\epsilon: P_{\bullet} \to L$ and $\varphi: R_{\bullet} \to N$ be projective resolutions. Then there exists a projective resolution $\delta: Q_{\bullet} \to M$ such that $Q_n = P_n \oplus R_n$ and the differential $Q_n \to Q_{n-1}$ has the form $d_n(x, y) = (d_n(x) + g_n(y), d_n(y))$ for some $g_n \in R_n \to P_{n-1}$. In particular, we have a commutative diagram

where each row is an exact sequence.

Proof. We have already defined the groups Q_n , the only problem is to define the differentials and the augmentation. We begin with the latter. Since $M \to N$ is surjective, the augmentation $\varphi \colon R_0 \to N$ lifts through it; let $\delta' \colon R_0 \to M$ be a lift. Then we define $\delta \colon Q_0 \to M$ by $\delta(x, y) = \epsilon(x) + \delta'(y)$. One readily verifies that it is surjective. We now construct the differential $d: Q_{n+1} \to Q_n$. Consider the diagram

(When n = 0, the bottom row should be replaced with the given short exact sequence.) Let $y \in R_{n+1}$. Then

$$0 = d^{2}(0, dy) = d(g_{n}(dy), 0) = (dg_{n}(dy), 0)$$

Thus $g_n \circ d$ maps into ker $(d: P_{n-1} \to P_n)$. Since this is surjected onto from P_n , the mapping property yields a lift $g_{n+1}: R_{n+1} \to P_n$; thus $dg_{n+1}(y) = g_n(dy)$. We use this g_{n+1} to define the differential $Q_{n+1} \to Q_n$ we leave the remainder of the proof as an exercise.

Remark 5.6. Everything in this section has an injective analog. Injective resolutions are usually written using cochain complexes. Thus an injective resolution of M is an exact complex

$$0 \to M \to I^0 \to I^1 \to \cdots$$

If \mathcal{A} has enough injectives then every object has an injective resolution, and they are unique up to homotopy.

6. Derived functors

We now assume that \mathcal{A} has enough projectives. Left \mathcal{B} be a second abelian category and let $F: \mathcal{A} \to \mathcal{B}$ be a right-exact functor. Recall that this means that F is additive (i.e., commutes with direct sums) and that whenever

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

is a short exact sequence in \mathcal{A} , the sequence

$$F(M_1) \to F(M_2) \to F(M_3) \to 0$$

is exact in \mathcal{B} . Note that this is not a short exact sequence: the first map is not required to be injective.

Example 6.1. Let *R* be a commutative ring and let $\mathcal{A} = \mathcal{B} = \text{Mod}_R$. Let *N* be an *R*-module. Then the functor $F : \mathcal{A} \to \mathcal{B}$ given by $F(M) = M \otimes_R N$ is right-exact.

Definition 6.2. Let $i \ge 0$ be an integer. The *i*th **left derived functor** of F, denoted L_iF , is the functor $\mathcal{A} \to \mathcal{B}$ defined by $(L_iF)(\mathcal{M}) = H_i(F(P_{\bullet}))$, where $P_{\bullet} \to \mathcal{M}$ is any projective resolution. We put $L_iF = 0$ for i < 0.

The way the definition is formulated, it is perhaps not clear that $L_i F$ is well-defined. To make this clear, we can rephrase as follows. Let $\Pi: \mathcal{A} \to \mathbf{K}(\mathcal{A})$ be the functor assigning to an object its projective resolution (Corollary 5.4). Then $L_i F$ is the composition

$$\mathcal{A} \xrightarrow{\Pi} \mathbf{K}(\mathcal{A}) \xrightarrow{F} \mathbf{K}(\mathcal{B}) \xrightarrow{\mathbf{H}_i} \mathbf{B}$$

The only point on which we have not remarked yet is that F induces a well-defined functor $\mathbf{K}(\mathcal{A}) \to \mathbf{K}(\mathcal{B})$. But this is clear: the definition of homotopy simply passes through a functor.

Proposition 6.3. We have $L_0F = F$.

Proof. Let $P_{\bullet} \to M$ be a projective resolution of M. The sequence

$$P_1 \to P_0 \to M \to 0$$

is exact. Applying F, the sequence remains exact:

$$F(P_1) \to F(P_0) \to F(M) \to 0.$$

By definition, $(L_0F)(M)$ is the cokernel of $F(P_1) \to F(P_0)$. The above shows that this is canonically identified with F(M).

The most important property of the left derived functor is the following:

Proposition 6.4. Consider a short exact sequence in A:

$$0 \to M_1 \to M_2 \to M_3 \to 0.$$

Then there is an associated long exact sequence in \mathfrak{B} :

$$\cdots \to (\mathbf{L}_i F)(M_1) \to (\mathbf{L}_i F)(M_2) \to (\mathbf{L}_i F)(M_3) \to (\mathbf{L}_{i-1} F)(M_1) \to \cdots$$

Moreover, this long exact sequence is functorial in the original short exact sequence.

Proof. Let $P_{\bullet} \to M_1$ and $P''_{\bullet} \to M_3$ be projective resolutions. Let $P'_{\bullet} \to M_2$ be the projective resolution produced by the horseshoe lemma. Recall that

$$0 \to P_{\bullet} \to P'_{\bullet} \to P''_{\bullet} \to 0$$

is a short exact sequence of complexes, and at each index is split. Since F is additive, the sequence

$$0 \to F(P_{\bullet}) \to F(P'_{\bullet}) \to F(P''_{\bullet}) \to 0$$

remains exact. The result now follows from Proposition 3.2.

Remark 6.5. Suppose $T_i: \mathcal{A} \to \mathcal{B}$ are functors satisfying the following conditions:

(a) $T_i = 0$ for i < 0.

(b)
$$T_0 = F$$
.

- (c) $T_i(P) = 0$ for i > 0 and P projective.
- (d) To every short exact sequence in \mathcal{A} there is functorially associated a long exact sequence in the T's.

Then $T_i \cong L_i F$. The proof of this is left as an exercise.

Remark 6.6. There is a dual version of everything here. Suppose $G: \mathcal{A} \to \mathcal{B}$ is a left-exact functor and \mathcal{A} has enough injectives. Then one has right derived functors $\mathbb{R}^i G: \mathcal{A} \to \mathcal{B}$. The definition is as follows: $(\mathbb{R}^i G)(M) = \mathbb{H}^i(G(I^{\bullet}))$, where $M \to I^{\bullet}$ is an injective resolution of M.

 \square

ANDREW SNOWDEN

7. Morphisms of derived functors

Let $F, G: \mathcal{A} \to \mathcal{B}$ be right-exact functors of abelian categories where \mathcal{A} has enough injectives. Thus we have derived functors $\mathbb{R}^{\bullet}F$ and $\mathbb{R}^{\bullet}G$. A **morphism** of derived functors $\varphi^{\bullet}: \mathbb{R}^{\bullet}F \to \mathbb{R}^{\bullet}G$ consists of a natural transformation $\varphi^{i}: \mathbb{R}^{i}F \to \mathbb{R}^{i}G$ for each i such that if

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

is a short exact sequence in \mathcal{A} then we obtain a morphism of long exact sequences

The cheif fact we need is:

Proposition 7.1. A morphism of derived functors is determined by its 0th member. That is, if φ^{\bullet} and ψ^{\bullet} are morphisms of derived functors $\mathbb{R}^{\bullet}F \to \mathbb{R}^{\bullet}G$ such that $\varphi^{0} = \psi^{0}$ then $\varphi^{i} = \psi^{i}$ for all *i*.

Proof. It suffices to assume $\varphi^0 = 0$ and show $\varphi^i = 0$ for i > 0. We proceed inductively, so suppose that we have shown $\varphi^i = 0$. Let M be a given object of \mathcal{A} , and choose a short exact sequence

$$0 \to M \to I \to N \to 0$$

with I injective. Since $(\mathbb{R}^{i+1}F)(I) = 0$, and similarly for G, we obtain a diagram

$$\begin{split} (\mathbf{R}^{i}F)(N) & \longrightarrow (\mathbf{R}^{i+1}F)(M) \longrightarrow 0 \\ & \downarrow^{0} & \downarrow^{\varphi^{i+1}} \\ (\mathbf{R}^{i}G)(N) & \longrightarrow (\mathbf{R}^{i+1}G)(M) \longrightarrow 0 \end{split}$$

Thus $\varphi^{i+1} = 0$.

8. Ext

The most important example of a derived functor is Ext, which is the derived functor of Hom. To be precise, for objects M and N of \mathcal{A} , we have left-exact functors

$$\Phi_M \colon \mathcal{A} \to \mathbf{Ab}, \qquad \Psi_N \colon \mathcal{A}^{\mathrm{op}} \to \mathbf{Ab}$$
$$X \mapsto \operatorname{Hom}(M, X) \qquad Y \mapsto \operatorname{Hom}(Y, N)$$

If \mathcal{A} has enough injectives, we can form the derived functor $\mathbb{R}^{\bullet}\Phi_{M}$. If \mathcal{A} has enough projectives, then $\mathcal{A}^{\mathrm{op}}$ has enough injectives, and we can form the derived functor $\mathbb{R}^{\bullet}\Psi_{N}$. The important fact is that when both are defined they agree, in the following sense:

Proposition 8.1. Suppose \mathcal{A} has enough projectives and enough injectives. Then $(\mathbb{R}^i \Phi_M)(N) = (\mathbb{R}^i \Psi_N)(M)$ for all M and N.

Proof. Fix M. We will show that $N \mapsto (\mathbb{R}^i \Psi_N)(M)$ is the *i*th derived functor of Φ_M . Let $P_{\bullet} \to M$ be a projective resolution. We note that $(\mathbb{R}^i \Psi_N)(M) = H_i(\operatorname{Hom}(P_{\bullet}, N))$, by definition. We check the conditions of Remark 6.5:

• We have $(\mathbb{R}^i \Psi_N)(M) = 0$ for i < 0 by definition.

- We have $(\mathbb{R}^0 \Psi_N)(M) = \Psi_N(M) = \Phi_M(N)$.
- Let I be an injective. Since I is injective, the functor $\operatorname{Hom}(-, I)$ is exact, and so $\operatorname{Hom}(P_{\bullet}, I)$ is exact away from degree 0. Hence $(\operatorname{R}^{i}\Psi_{I})(M) = 0$ for i > 0.
- Consider a short exact sequence

$$0 \to N_1 \to N_2 \to N_3 \to 0$$

Applying $\text{Hom}(P_i, -)$ yields an exact sequence, since P_i is projective. Thus, applying $\text{Hom}(P_{\bullet}, -)$, we obtain an exact sequence of complexes

$$0 \to \operatorname{Hom}(P_{\bullet}, N_1) \to \operatorname{Hom}(P_{\bullet}, N_2) \to \operatorname{Hom}(P_{\bullet}, N_3) \to 0.$$

Taking homology, we thus get a long exact sequence in the $(\mathbb{R}^{\bullet}\Psi_{N_i}(M))$, as required. The proposition now follows from Remark 6.5.

Definition 8.2. Assume \mathcal{A} has enough projective or enough injectives. We then define Ext^{i} to be the *i*th right derived functor of Hom.

To be completely clear, we spell out exactly how to compute Ext. Let M and N be given. Suppose that $P_{\bullet} \to M$ is a projective resolution of M. Then $\operatorname{Ext}^{i}(M, N)$ is the homology of the sequence

$$\operatorname{Hom}(P_{i-1}, N) \to \operatorname{Hom}(P_i, N) \to \operatorname{Hom}(P_{i+1}, N).$$

Similarly, suppose that $N \to I^{\bullet}$ is an injective resolution of N. Then $\operatorname{Ext}^{i}(M, N)$ is the homology of the sequence

$$\operatorname{Hom}(M, I^{i-1}) \to \operatorname{Hom}(M, I^{i}) \to \operatorname{Hom}(M, I^{i+1})$$

The proposition ensures that the two computations give the same answer, when they are both defined.

We now compute a few simple examples.

Proposition 8.3. Let $\mathcal{A} = \mathbf{Ab}$. Then

$$\operatorname{Ext}^{i}(\mathbf{Z}/n\mathbf{Z}, M) = \begin{cases} M[n] & i = 0\\ M/nM & i = 1\\ 0 & i > 1 \end{cases}$$

Proof. We have the following projective resolution of $\mathbf{Z}/n\mathbf{Z}$:

 $\cdots \to 0 \to \mathbf{Z} \xrightarrow{n} \mathbf{Z} \to \mathbf{Z}/n\mathbf{Z} \to 0.$

Applying $\operatorname{Hom}(-, M)$ to P_{\bullet} , we obtain the complex

$$\operatorname{Hom}(\mathbf{Z}, M) \xrightarrow{n} \operatorname{Hom}(\mathbf{Z}, M) \to 0 \to \cdots$$
.

Of course, $Hom(\mathbf{Z}, M) = M$. The result thus follows.

9. Tor

Let R be a ring (not necessarily commutative). Let R Mod and ModR denote the category of left and right R-modules. Given a right R-module M and a left R-module N, we have right-exact functors

$$\Phi_M \colon {}_R \operatorname{Mod} \to \operatorname{\mathbf{Ab}}, \qquad \qquad \Psi_N \colon \operatorname{Mod}_R \to \operatorname{\mathbf{Ab}}, \\ X \mapsto M \otimes_R X \qquad \qquad Y \mapsto Y \otimes_R N$$

ANDREW SNOWDEN

Since module categories always have enough projectives (simply use free modules), we can form the left-derived functors of Φ_M and Ψ_N . As with Ext, the two derived functors agree:

Proposition 9.1. We have $(L_i \Phi_M)(N) = (L_i \Psi_N)(M)$ for all M and N.

Definition 9.2. We define Tor_i to be the *i*th left-derived functor of either Φ_M or Ψ_N .

Thus to compute $\operatorname{Tor}_i(M, N)$, one picks a projective resolution of M, applies $-\otimes_R N$, and computes homology; or one picks a projective resolution of N, applies $M \otimes_R -$, and computed homology.

References

- [K] K. Kedlaya. Notes on class field theory. http://www.math.mcgill.ca/darmon/courses/cft/refs/kedlaya.pdf
 [K] J.S. Milne. Class field theory. https://www.jmilne.org/math/CourseNotes/cft.html
- [K]J.S. Mine. Class field theory. https://www.jmine.org/math/courseNotes/cft.html[S]D. Speyer, Mathoverflow answer, https://mathoverflow.net/questions/234358/
- [W] L. Washington. Introduction to Cyclotomic Fields, Chapter 14