MATH 776
 REVIEW OF HOMOLOGICAL ALGEBRA

ANDREW SNOWDEN

Let \mathcal{A} be an abelian category. One can take \mathcal{A} to be the category of left modules over a ring without losing much generality.

1. Chain complexes

A chain complex in \mathcal{A} is a pair $\left(M_{n}, d_{n}\right)_{n \in \mathbf{Z}}$ where M_{n} is an object of \mathcal{A} and $d_{n}: M_{n} \rightarrow$ M_{n-1} is a morphism such that $d_{n-1} \circ d_{n}=0$ for all n. We write a chain complex as

$$
\cdots \longrightarrow M_{2} \xrightarrow{d_{2}} M_{1} \xrightarrow{d_{1}} M_{0} \longrightarrow \cdots
$$

We typically just write d in place of d_{n}, and leave this implicit when writing a chain complex. A morphism of chain complexes $f: M_{\bullet} \rightarrow N_{\bullet}$ consists of giving for each $n \in \mathbf{Z}$ a morphism $f_{n}: M_{n} \rightarrow N_{n}$ in \mathcal{A}, such that the diagrams

commute for all n. In this way, we have a category $\operatorname{Ch}(\mathcal{A})$ of chain complexes in \mathcal{A}. It is again an abelian category, with kernels, cokernels, and images computed pointwise.

Let M_{\bullet} be a chain complex. Since $d_{n} \circ d_{n+1}=0$, it follows that $\operatorname{im}\left(d_{n+1}\right) \subset \operatorname{ker}\left(d_{n}\right)$. The homology of M_{\bullet} is defined to be the quotient: specifically,

$$
\mathrm{H}_{n}\left(M_{\bullet}\right)=\frac{\operatorname{ker}\left(d_{n}\right)}{\operatorname{im}\left(d_{n+1}\right)}
$$

The complex M_{\bullet} is said to be acyclic if $\mathrm{H}_{n}\left(M_{\bullet}\right)=0$ for all n. If $f: M_{\bullet} \rightarrow N_{\bullet}$ is a morphism of chain complexes then f naturally induces an isomorphism $\mathrm{H}_{n}\left(M_{\bullet}\right) \rightarrow \mathrm{H}_{n}\left(N_{\bullet}\right)$ for all n. The morphism f is said to be a quasi-isomorphism if these maps are all isomorphisms.
Remark 1.1. There is a variant notion called "cochain complex" that is sometimes used. The only difference is notation. In a cochain complex, the groups are indexed with a superscript (so M^{0}, M^{1}, etc.), and the differentials increase degree (so $d^{0}: M^{0} \rightarrow M^{1}$, etc.). All the concepts and theorems we prove can be translated to this language.

2. Chain homotopies

Let $f: M_{\bullet} \rightarrow N_{\bullet}$ be a morphism of chain complexes. We say that f is null homotopic if there exist morphisms $s_{n}: M_{n} \rightarrow N_{n+1}$ such that

$$
f_{n}=d_{n+1} s_{n}+s_{n-1} d_{n}
$$

The diagram is

Two morphisms $f, g: M_{\bullet} \rightarrow N_{\bullet}$ are said to be chain homotopic if $f-g$ is null homotopic. Two complexes M_{\bullet} and N_{\bullet} are said to be homotopy equivalent if there exist morphisms $f: M_{\bullet} \rightarrow N_{\bullet}$ and $g: N_{\bullet} \rightarrow M_{\bullet}$ such that $f g$ and $g f$ are each chain homotopic to the identity map.

The importance of this concept is due to the following observation:
Proposition 2.1. Let $f, g: M_{\bullet} \rightarrow N_{\bullet}$ be chain homotopic maps of complexes. Then the maps $\mathrm{H}_{n}\left(M_{\bullet}\right) \rightarrow \mathrm{H}_{n}\left(N_{\bullet}\right)$ induced by f and g are equal. In particular, if f is null homotopic then it induces the zero map on homology.
Proof. It suffices to treat the case where f is null homotopic. Let $y \in \mathrm{H}_{n}\left(M_{\bullet}\right)$. Let $x \in M_{n}$ be a lift of y with $d x=0$. By definition, $f(y)$ is represented by $f(x) \in N_{n}$. Now, we have $f(x)=d_{n+1}\left(s_{n}(x)\right)+s_{n-1}\left(d_{n}(x)\right)=d_{n+1}\left(s_{n}(x)\right)$ since $d x=0$. But this shows that $f(x) \in \operatorname{im}\left(d_{n+1}\right)$, and thus maps to 0 in $\mathrm{H}_{n}\left(N_{\bullet}\right)$.

The homotopy category of $\mathbf{C h}(\mathcal{A})$, denoted $\mathbf{K}(\mathcal{A})$, is the category whose objects are chain complexes and whose morphisms are where $\operatorname{Hom}_{\mathbf{K}(\mathcal{A})}(M, N)$ is the set of equivalence classes of morphisms of complexes under chain homotopy. Thus two complexes are homotopy equivalent if and only if they are isomorphic in $\mathbf{K}(\mathcal{A})$. The above proposition shows that homology yields a well-defined functor $\mathrm{H}_{n}: \mathbf{K}(\mathcal{A}) \rightarrow \mathcal{A}$.

3. Long exact sequences

Suppose that

$$
0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0
$$

is a short exact sequence in $\operatorname{Ch}(\mathcal{A})$. Let c be an element of C_{n} with $d c=0$. Lift c arbitrarily to an element $b \in B_{n}$. Since $d b$ maps to $d c=0$, it follows that $a=d b \in A_{n-1}$. We have $d a=d^{2} b=0$.
Proposition 3.1. There is a well-defined morphism $\partial: \mathrm{H}_{n}\left(C_{\bullet}\right) \rightarrow \mathrm{H}_{n-1}\left(A_{\bullet}\right)$ given by $c \mapsto a$.
Proof. Suppose that b^{\prime} is a second lift of c. Then $b^{\prime}=b+\epsilon$ for some $\epsilon \in A_{n}$. Thus $a^{\prime}=d b^{\prime}=d b+d \epsilon=a+d \epsilon$ and so a^{\prime} and a differ by $d \epsilon$, and thus represent the same class in $\mathrm{H}_{n-1}\left(A_{\bullet}\right)$. Thus the construction is independent of the choice of lift b. We therefore have a well-defined map $\widetilde{\partial}: \operatorname{ker}\left(d_{n}: C_{n} \rightarrow C_{n-1}\right) \rightarrow \mathrm{H}_{n-1}\left(A_{\bullet}\right)$.

Now suppose that $c=d\left(c^{\prime}\right)$ for some $c^{\prime} \in C_{n+1}$. Let $b^{\prime} \in B_{n+1}$ be a lift of c^{\prime}, so that $b=d b^{\prime}$ is a lift of c. Then $a=d b=d^{2} b^{\prime}=0$. Thus $\widetilde{\partial}$ kills $\operatorname{im}\left(d_{n-1}: C_{n+1} \rightarrow C_{n}\right)$, and therefore induces a map ∂ as claimed.

The morphism ∂ in the above lemma is called the connecting homomorphism. Its importance is due to the following result:
Proposition 3.2. The sequence

$$
\cdots \rightarrow \mathrm{H}_{n}\left(A_{\bullet}\right) \rightarrow \mathrm{H}_{n}\left(B_{\bullet}\right) \rightarrow \mathrm{H}_{n}\left(A_{\bullet}\right) \xrightarrow{\partial} \mathrm{H}_{n-1}\left(A_{\bullet}\right) \rightarrow \mathrm{H}_{n-1}\left(B_{\bullet}\right) \rightarrow \mathrm{H}_{n-1}\left(A_{\bullet}\right) \rightarrow \cdots
$$

is everywhere exact.

Proof. Left as an exercise.
The sequence in the above proposition is called the long exact sequence associated to the original short exact sequence of chain complexes. It is functorial in the short exact sequence, in the obvious sense.

4. Projectives and injectives

An object P of \mathcal{A} is projective if in any diagram

where p is a given surjection and f is a given morphism, one can find g making the diagram commute. Equivalently, the functor $\operatorname{Hom}(P,-)$ is exact. The category \mathcal{A} is said to have enough projectives if every object is a quotient of a projective.

The dual notion to "projective" is "injective." Precisely, an object I is called injective if in any diagram

where i is a given injection and f is a given morphism, one can find g making the diagram commute. Equivalently, the functor $\operatorname{Hom}(-, I)$ is exact. The category \mathcal{A} is said to have enough injectives if every object injects into an injective.
Example 4.1. Suppose \mathcal{A} is the category of R-modules. Then any free R-module is projective. If R is a Dedekind domain, then any ideal of R is projective; this yields examples of projective modules that are not free. If $R=\mathbf{Z}$ then a module is injective if and only if it is divisible; thus \mathbf{Q} and \mathbf{Q} / \mathbf{Z} are examples of injective \mathbf{Z}-modules. For any R, the category \mathcal{A} has enough projectives and enough injectives.

5. Projective resolutions

Let M be an object of \mathcal{A}. A projective resolution of M is an exact complex

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \xrightarrow{\epsilon} M \rightarrow 0 \rightarrow 0 \rightarrow \cdots
$$

where each P_{i} is projective. One typically regards P_{\bullet} as a complex, which is 0 in negative degrees, and refers to the above complex with M tacked on as the augmented complex. One can also view a projective resolution as a quasi-isomorphism of complexes $\epsilon: P_{\bullet} \rightarrow M$, where M is regarded as a complex concentrated in degree 0 :

Existence of projective resolutions is straightforward:
Proposition 5.1. Suppose \mathcal{A} has enough projectives. Then every object of \mathcal{A} has a projective resolution.

Proof. Since \mathcal{A} has enough projectives, we can find a surjection $\epsilon: P_{0} \rightarrow M$ with P_{0} projective. Suppose now we have constructed a partial projective resolution

$$
P_{n} \xrightarrow{d_{n}} \cdots \longrightarrow P_{0} \xrightarrow{\epsilon} M \longrightarrow 0 .
$$

That is, each P_{i} is projective, and the sequence is exact away from P_{n}. We can then extend one more step by choosing a surjection $P_{n+1} \rightarrow \operatorname{ker}\left(d_{n}\right)$ with P_{n+1} projective. This is possible since there are enough projectives.

Projective resolutions are obviously not unique in general. For example, if $M=0$ and P is an projective then

$$
\cdots \rightarrow 0 \rightarrow P \rightarrow P \rightarrow M \rightarrow 0
$$

is a projective resolution of M. However, they are unique up to homotopy. We deduce this from the following more general result.

Proposition 5.2. Let $\epsilon: P_{\bullet} \rightarrow M$ be a projective resolution, let $\delta: Q . \rightarrow N$ be any exact augmented complex, and let $f: M \rightarrow N$ be a morphism. Then there exists a morphism of complexes $g: P_{\bullet} \rightarrow Q_{\bullet}$ lifting f. Moreover, if g^{\prime} is a second lift then g and g^{\prime} are chain homotopic.

Proof. We first construct g_{0}. Consider the diagram

Since δ is surjective and P_{0} is projective, the lifting property of projectives allows us to find g_{0}. Suppose now we have constructed g_{0}, \ldots, g_{n} and we want to construct g_{n+1}. Consider the diagram

(When $n=0$ the right column should consist of M and N.) Let $K=\operatorname{ker}\left(d: Q_{n} \rightarrow Q_{n-1}\right)$. Since the bottom row is exact, the differential gives a surjection $Q_{n+1} \rightarrow K$. Of course, the composition $g_{n} d$ maps P_{n+1} into K. Thus, by the lifting property of projectives, we can find $g_{n+1}: P_{n+1} \rightarrow Q_{n+1}$.

We now prove the uniqueness claim. If g and g^{\prime} are two lifts of f then $g-g^{\prime}$ is a lift of 0 . It thus suffices to show that if $f=0$ then g is null-homotopic. We thus construct maps $s_{n}: P_{n} \rightarrow Q_{n+1}$ having the requisite properties. To construct s_{0}, consider the diagram

Since the right square commutes, g_{0} maps P_{0} into $\operatorname{ker}\left(Q_{0} \rightarrow N\right)$. Since the bottom row is exact, Q_{1} surjects onto this kernel. Thus, by the mapping property for projectives, we can
find a map $s_{0}: P_{0} \rightarrow Q_{1}$ such that $g_{0}=d s_{0}$. Note that $P_{n}=0$ for $n<0$, and so $s_{n}=0$ for $n<0$. We thus have $g_{0}=d s_{0}+s_{-1} d$, as requied.

Suppose now that we have constructed s_{0}, \ldots, s_{n-1} satisfying the appropriate identities. Consider the diagram

Consider $h=g_{n}-s_{n-1} d$. We have

$$
d h=d g_{n}-d s_{n-1} d=g_{n-1} d-d s_{n-1} d=\left(g_{n-1}-d s_{n-1}\right) d=\left(s_{n-2} d\right) d=0 .
$$

Thus h maps into $K=\operatorname{ker}\left(d: Q_{n} \rightarrow Q_{n-1}\right)$. Since Q_{n+1} surjects onto K, the mapping property allows us to lift h to a map $s_{n}: P_{n} \rightarrow Q_{n+1}$. Since $h=d s_{n+1}$, we have $g_{n}=$ $d s_{n}+s_{n-1} d$, as required.

Corollary 5.3. Let $\epsilon: P_{\bullet} \rightarrow M$ and $\delta: Q_{\bullet} \rightarrow M$ be two projective resolutions of M. Then P_{\bullet} and $Q_{\text {• }}$ are homotopy equivalent.

Proof. The identity map $M \rightarrow M$ lifts to morphisms of complexes $f: P_{\bullet} \rightarrow Q_{\bullet}$ and $g: Q_{\bullet} \rightarrow$ P_{\bullet}. Since $f g$ and $\operatorname{id}_{P_{\bullet}}$ are both lifts of the identity on M, they are chain homotopic. Since $g f$ and id_{Q}. are chain homotopic.

Corollary 5.4. Assume \mathcal{A} has enough projectives. There exists a well-defined functor $\mathcal{A} \rightarrow$ $\mathbf{K}(\mathcal{A})$ sending an object of \mathcal{A} to its projective resolution.

We need one more result about projective resolutions:
Proposition 5.5 (Horseshoe lemma). Consider an exact sequence in \mathcal{A} :

$$
0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0
$$

Let $\epsilon: P_{\bullet} \rightarrow L$ and $\varphi: R_{\bullet} \rightarrow N$ be projective resolutions. Then there exists a projective resolution $\delta: Q_{\bullet} \rightarrow M$ such that $Q_{n}=P_{n} \oplus R_{n}$ and the differential $Q_{n} \rightarrow Q_{n-1}$ has the form $d_{n}(x, y)=\left(d_{n}(x)+g_{n}(y), d_{n}(y)\right)$ for some $g_{n} \in R_{n} \rightarrow P_{n-1}$. In particular, we have a commutative diagram

where each row is an exact sequence.
Proof. We have already defined the groups Q_{n}, the only problem is to define the differentials and the augmentation. We begin with the latter. Since $M \rightarrow N$ is surjective, the augmentation $\varphi: R_{0} \rightarrow N$ lifts through it; let $\delta^{\prime}: R_{0} \rightarrow M$ be a lift. Then we define $\delta: Q_{0} \rightarrow M$ by $\delta(x, y)=\epsilon(x)+\delta^{\prime}(y)$. One readily verifies that it is surjective.

We now construct the differential $d: Q_{n+1} \rightarrow Q_{n}$. Consider the diagram

(When $n=0$, the bottom row should be replaced with the given short exact sequence.) Let $y \in R_{n+1}$. Then

$$
0=d^{2}(0, d y)=d\left(g_{n}(d y), 0\right)=\left(d g_{n}(d y), 0\right)
$$

Thus $g_{n} \circ d$ maps into $\operatorname{ker}\left(d: P_{n-1} \rightarrow P_{n}\right)$. Since this is surjected onto from P_{n}, the mapping property yields a lift $g_{n+1}: R_{n+1} \rightarrow P_{n}$; thus $d g_{n+1}(y)=g_{n}(d y)$. We use this g_{n+1} to define the differential $Q_{n+1} \rightarrow Q_{n}$ we leave the remainder of the proof as an exercise.

Remark 5.6. Everything in this section has an injective analog. Injective resolutions are usually written using cochain complexes. Thus an injective resolution of M is an exact complex

$$
0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots
$$

If \mathcal{A} has enough injectives then every object has an injective resolution, and they are unique up to homotopy.

6. DERIVED FUNCTORS

We now assume that \mathcal{A} has enough projectives. Left \mathcal{B} be a second abelian category and let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a right-exact functor. Recall that this means that F is additive (i.e., commutes with direct sums) and that whenever

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is a short exact sequence in \mathcal{A}, the sequence

$$
F\left(M_{1}\right) \rightarrow F\left(M_{2}\right) \rightarrow F\left(M_{3}\right) \rightarrow 0
$$

is exact in \mathcal{B}. Note that this is not a short exact sequence: the first map is not required to be injective.

Example 6.1. Let R be a commutative ring and let $\mathcal{A}=\mathcal{B}=\operatorname{Mod}_{R}$. Let N be an R-module. Then the functor $F: \mathcal{A} \rightarrow \mathcal{B}$ given by $F(M)=M \otimes_{R} N$ is right-exact.

Definition 6.2. Let $i \geq 0$ be an integer. The i th left derived functor of F, denoted $\mathrm{L}_{i} F$, is the functor $\mathcal{A} \rightarrow \mathcal{B}$ defined by $\left(\mathrm{L}_{i} F\right)(M)=\mathrm{H}_{i}\left(F\left(P_{\bullet}\right)\right)$, where $P_{\bullet} \rightarrow M$ is any projective resolution. We put $\mathrm{L}_{i} F=0$ for $i<0$.

The way the definition is formulated, it is perhaps not clear that $\mathrm{L}_{i} F$ is well-defined. To make this clear, we can rephrase as follows. Let $\Pi: \mathcal{A} \rightarrow \mathbf{K}(\mathcal{A})$ be the functor assigning to an object its projective resolution (Corollary 5.4). Then $\mathrm{L}_{i} F$ is the composition

$$
\mathcal{A} \xrightarrow{\Pi} \mathbf{K}(\mathcal{A}) \xrightarrow{F} \mathbf{K}(\mathcal{B}) \xrightarrow{\mathrm{H}_{i}} \mathbf{B}
$$

The only point on which we have not remarked yet is that F induces a well-defined functor $\mathbf{K}(\mathcal{A}) \rightarrow \mathbf{K}(\mathcal{B})$. But this is clear: the definition of homotopy simply passes through a functor.

Proposition 6.3. We have $\mathrm{L}_{0} F=F$.
Proof. Let $P_{\bullet} \rightarrow M$ be a projective resolution of M. The sequence

$$
P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is exact. Applying F, the sequence remains exact:

$$
F\left(P_{1}\right) \rightarrow F\left(P_{0}\right) \rightarrow F(M) \rightarrow 0
$$

By definition, $\left(\mathrm{L}_{0} F\right)(M)$ is the cokernel of $F\left(P_{1}\right) \rightarrow F\left(P_{0}\right)$. The above shows that this is canonically identified with $F(M)$.

The most important property of the left derived functor is the following:
Proposition 6.4. Consider a short exact sequence in \mathcal{A} :

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

Then there is an associated long exact sequence in \mathcal{B} :

$$
\cdots \rightarrow\left(\mathrm{L}_{i} F\right)\left(M_{1}\right) \rightarrow\left(\mathrm{L}_{i} F\right)\left(M_{2}\right) \rightarrow\left(\mathrm{L}_{i} F\right)\left(M_{3}\right) \rightarrow\left(\mathrm{L}_{i-1} F\right)\left(M_{1}\right) \rightarrow \cdots
$$

Moreover, this long exact sequence is functorial in the original short exact sequence.
Proof. Let $P_{\bullet} \rightarrow M_{1}$ and $P_{\bullet}^{\prime \prime} \rightarrow M_{3}$ be projective resolutions. Let $P_{\bullet}^{\prime} \rightarrow M_{2}$ be the projective resolution produced by the horseshoe lemma. Recall that

$$
0 \rightarrow P_{\bullet} \rightarrow P_{\bullet}^{\prime} \rightarrow P_{\bullet}^{\prime \prime} \rightarrow 0
$$

is a short exact sequence of complexes, and at each index is split. Since F is additive, the sequence

$$
0 \rightarrow F\left(P_{\bullet}\right) \rightarrow F\left(P_{\bullet}^{\prime}\right) \rightarrow F\left(P_{\bullet}^{\prime \prime}\right) \rightarrow 0
$$

remains exact. The result now follows from Proposition 3.2.
Remark 6.5. Suppose $T_{i}: \mathcal{A} \rightarrow \mathcal{B}$ are functors satisfying the following conditions:
(a) $T_{i}=0$ for $i<0$.
(b) $T_{0}=F$.
(c) $T_{i}(P)=0$ for $i>0$ and P projective.
(d) To every short exact sequence in \mathcal{A} there is functorially associated a long exact sequence in the T 's.
Then $T_{i} \cong \mathrm{~L}_{i} F$. The proof of this is left as an exercise.
Remark 6.6. There is a dual version of everything here. Suppose $G: \mathcal{A} \rightarrow \mathcal{B}$ is a left-exact functor and \mathcal{A} has enough injectives. Then one has right derived functors $\mathrm{R}^{i} G: \mathcal{A} \rightarrow \mathcal{B}$. The definition is as follows: $\left(\mathrm{R}^{i} G\right)(M)=\mathrm{H}^{i}\left(G\left(I^{\bullet}\right)\right)$, where $M \rightarrow I^{\bullet}$ is an injective resolution of M.

7. Morphisms of derived functors

Let $F, G: \mathcal{A} \rightarrow \mathcal{B}$ be right-exact functors of abelian categories where \mathcal{A} has enough injectives. Thus we have derived functors $\mathrm{R}^{\bullet} F$ and $\mathrm{R}^{\bullet} G$. A morphism of derived functors $\varphi^{\bullet}: \mathrm{R}^{\bullet} F \rightarrow \mathrm{R}^{\bullet} G$ consists of a natural transformation $\varphi^{i}: \mathrm{R}^{i} F \rightarrow \mathrm{R}^{i} G$ for each i such that if

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is a short exact sequence in \mathcal{A} then we obtain a morphism of long exact sequences

The cheif fact we need is:
Proposition 7.1. A morphism of derived functors is determined by its 0th member. That is, if φ^{\bullet} and ψ^{\bullet} are morphisms of derived functors $\mathrm{R}^{\bullet} F \rightarrow \mathrm{R}^{\bullet} G$ such that $\varphi^{0}=\psi^{0}$ then $\varphi^{i}=\psi^{i}$ for all i.
Proof. It suffices to assume $\varphi^{0}=0$ and show $\varphi^{i}=0$ for $i>0$. We proceed inductively, so suppose that we have shown $\varphi^{i}=0$. Let M be a given object of \mathcal{A}, and choose a short exact sequence

$$
0 \rightarrow M \rightarrow I \rightarrow N \rightarrow 0
$$

with I injective. Since $\left(\mathrm{R}^{i+1} F\right)(I)=0$, and similarly for G, we obtain a diagram

Thus $\varphi^{i+1}=0$.

8. Ext

The most important example of a derived functor is Ext, which is the derived functor of Hom. To be precise, for objects M and N of \mathcal{A}, we have left-exact functors

$$
\begin{aligned}
\Phi_{M}: \mathcal{A} & \rightarrow \mathbf{A b}, & \Psi_{N}: \mathcal{A}^{\mathrm{op}} & \rightarrow \mathbf{A b} \\
X & \mapsto \operatorname{Hom}(M, X) & Y & \mapsto \operatorname{Hom}(Y, N)
\end{aligned}
$$

If \mathcal{A} has enough injectives, we can form the derived functor $\mathrm{R}^{\bullet} \Phi_{M}$. If \mathcal{A} has enough projectives, then $\mathcal{A}^{\text {op }}$ has enough injectives, and we can form the derived functor $\mathrm{R}^{\bullet} \Psi_{N}$. The important fact is that when both are defined they agree, in the following sense:

Proposition 8.1. Suppose \mathcal{A} has enough projectives and enough injectives. Then $\left(\mathrm{R}^{i} \Phi_{M}\right)(N)=$ $\left(\mathrm{R}^{i} \Psi_{N}\right)(M)$ for all M and N.

Proof. Fix M. We will show that $N \mapsto\left(\mathrm{R}^{i} \Psi_{N}\right)(M)$ is the i th derived functor of Φ_{M}. Let $P_{\bullet} \rightarrow M$ be a projective resolution. We note that $\left(\mathrm{R}^{i} \Psi_{N}\right)(M)=\mathrm{H}_{i}\left(\operatorname{Hom}\left(P_{\bullet}, N\right)\right)$, by definition. We check the conditions of Remark 6.5:

- We have $\left(\mathrm{R}^{i} \Psi_{N}\right)(M)=0$ for $i<0$ by definition.
- We have $\left(\mathrm{R}^{0} \Psi_{N}\right)(M)=\Psi_{N}(M)=\Phi_{M}(N)$.
- Let I be an injective. Since I is injective, the functor $\operatorname{Hom}(-, I)$ is exact, and so $\operatorname{Hom}\left(P_{\bullet}, I\right)$ is exact away from degree 0 . Hence $\left(\mathrm{R}^{i} \Psi_{I}\right)(M)=0$ for $i>0$.
- Consider a short exact sequence

$$
0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0
$$

Applying $\operatorname{Hom}\left(P_{i},-\right)$ yields an exact sequence, since P_{i} is projective. Thus, applying $\operatorname{Hom}\left(P_{\bullet},-\right)$, we obtain an exact sequence of complexes

$$
0 \rightarrow \operatorname{Hom}\left(P_{\bullet}, N_{1}\right) \rightarrow \operatorname{Hom}\left(P_{\bullet}, N_{2}\right) \rightarrow \operatorname{Hom}\left(P_{\bullet}, N_{3}\right) \rightarrow 0 .
$$

Taking homology, we thus get a long exact sequence in the $\left(\mathrm{R}^{\bullet} \Psi_{N_{i}}(M)\right.$, as required. The proposition now follows from Remark 6.5.
Definition 8.2. Assume \mathcal{A} has enough projective or enough injectives. We then define Ext ${ }^{i}$ to be the i th right derived functor of Hom.

To be completely clear, we spell out exactly how to compute Ext. Let M and N be given. Suppose that $P_{\bullet} \rightarrow M$ is a projective resolution of M. Then $\operatorname{Ext}^{i}(M, N)$ is the homology of the sequence

$$
\operatorname{Hom}\left(P_{i-1}, N\right) \rightarrow \operatorname{Hom}\left(P_{i}, N\right) \rightarrow \operatorname{Hom}\left(P_{i+1}, N\right)
$$

Similarly, suppose that $N \rightarrow I^{\bullet}$ is an injective resolution of N. Then $\operatorname{Ext}^{i}(M, N)$ is the homology of the sequence

$$
\operatorname{Hom}\left(M, I^{i-1}\right) \rightarrow \operatorname{Hom}\left(M, I^{i}\right) \rightarrow \operatorname{Hom}\left(M, I^{i+1}\right)
$$

The proposition ensures that the two computations give the same answer, when they are both defined.

We now compute a few simple examples.
Proposition 8.3. Let $\mathcal{A}=\mathbf{A b}$. Then

$$
\operatorname{Ext}^{i}(\mathbf{Z} / n \mathbf{Z}, M)= \begin{cases}M[n] & i=0 \\ M / n M & i=1 \\ 0 & i>1\end{cases}
$$

Proof. We have the following projective resolution of $\mathbf{Z} / n \mathbf{Z}$:

$$
\cdots \rightarrow 0 \rightarrow \mathbf{Z} \xrightarrow{n} \mathbf{Z} \rightarrow \mathbf{Z} / n \mathbf{Z} \rightarrow 0 .
$$

Applying $\operatorname{Hom}(-, M)$ to P_{\bullet}, we obtain the complex

$$
\operatorname{Hom}(\mathbf{Z}, M) \xrightarrow{n} \operatorname{Hom}(\mathbf{Z}, M) \rightarrow 0 \rightarrow \cdots .
$$

Of course, $\operatorname{Hom}(\mathbf{Z}, M)=M$. The result thus follows.

9. Tor

Let R be a ring (not necessarily commutative). Let ${ }_{R} \operatorname{Mod}$ and Mod_{R} denote the category of left and right R-modules. Given a right R-module M and a left R-module N, we have right-exact functors

$$
\begin{aligned}
\Phi_{M}:{ }_{R} \operatorname{Mod} & \rightarrow \mathbf{A b}, \\
X & \mapsto M \otimes_{R} X
\end{aligned}
$$

$$
\begin{aligned}
\Psi_{N}: \operatorname{Mod}_{R} & \rightarrow \mathbf{A b}, \\
Y & \mapsto Y \otimes_{R} N
\end{aligned}
$$

Since module categories always have enough projectives (simply use free modules), we can form the left-derived functors of Φ_{M} and Ψ_{N}. As with Ext, the two derived functors agree:

Proposition 9.1. We have $\left(\mathrm{L}_{i} \Phi_{M}\right)(N)=\left(\mathrm{L}_{i} \Psi_{N}\right)(M)$ for all M and N.
Definition 9.2. We define Tor_{i} to be the i th left-derived functor of either Φ_{M} or Ψ_{N}.
Thus to compute $\operatorname{Tor}_{i}(M, N)$, one picks a projective resolution of M, applies $-\otimes_{R} N$, and computes homology; or one picks a projective resolution of N, applies $M \otimes_{R}-$, and computed homology.

References

[K] K. Kedlaya. Notes on class field theory. http://www.math.mcgill.ca/darmon/courses/cft/refs/kedlaya.pdf
[K] J.S. Milne. Class field theory. https://www.jmilne.org/math/CourseNotes/cft.html
[S] D. Speyer, Mathoverflow answer, https://mathoverflow.net/questions/234358/
[W] L. Washington. Introduction to Cyclotomic Fields, Chapter 14

