
MATH 776
APPLICATIONS: L-FUNCTIONS AND DENSITIES

ANDREW SNOWDEN

1. Dirichlet series

A Dirichlet series is a series of the form
∑

n≥1
an
ns where the an are complex numbers.

An Euler product is a product of the form
∏

p fp(p
−s)−1, where the product is over prime

numbers p and fp(T ) is a polynomial (called the Euler factor at p) with constant term 1.
One can formally expand an Euler product to obtain a Dirichlet series. A Dirichlet series
admits an Euler product if and only if an is a multiplicative function of n (i.e., anm = anam
for (n,m) = 1) and n 7→ apn satisfies a linear recursion for each prime p.

Example 1.1. The Riemann zeta function is ζ(s) =
∑

n≥1
1
ns . It admits the Euler

product ζ(s) =
∏

p(1− p−s)−1. �

Example 1.2. Let K be a number field. The Dedekind zeta function of K is ζK(s) =∑
a

1
N(a)−s , where the sum is over all integral ideals a. Note that this is indeed a Dirichlet

series, as it can be written in the form
∑

n≥1
an
ns where an is the number of ideals of norm n.

It admits the Euler product
∏

p(1 −N(p)−s)−1, where the product is over all prime ideals.

Note this this can be written as
∏

p fp(p
−s)−1, where fp(T ) =

∏
p|p(1 − T f(p|p)) and f(p|p)

denotes the degree of the residue field extension, and thus indeed fits our definition of Euler
product. �

Example 1.3. Recall that a Dirichlet character of modulus m is a group homomorphism

χ : (Z/mZ)× → C×. The Dirichlet L-series associated to χ is L(s, χ) =
∑

n≥1
χ(n)
ns ,

where, by convention, we put χ(n) = 0 if (n,m) 6= 1. This admits the Euler product∏
p(1− χ(p)p−s)−1, using the same convention. �

Example 1.4. More generally, let m be a modulus of a number field K. A Dirichlet
character of K with modulus m is a homomorphism χ : Cm → C×, where Cm denotes the

ray class group. The Dirichlet L-series associated to χ is L(s, χ) =
∑

a
χ(a)

N(a)−s , where, as

before, χ(a) is defined to be 0 if a is not prime to mf . Again, this admits an Euler product
L(s, χ) =

∏
p(1− χ(p)N(p)−s)−1. �

Example 1.5. Let ρ : GK → C× be a continuous one-dimensional representation of the
absolute Galois group of the number field K. The Artin L-series of ρ is L(s, ρ) =

∏
p(1−

ρ(Frobp)N(p)−s)−1, using the convention that ρ(Frobp) = 0 if ρ is ramified at p (i.e., inertia
acts non-trivially). �

Date: February 7, 2019.
1



2 ANDREW SNOWDEN

Example 1.6. More generally, let ρ : GK → GL(V ) be a continuos representation of GK on
a finite-dimensional complex vector space V . Then the Artin L-series of ρ is

L(s, ρ) =
∏
p

det(1−N(p)−sFrobp | V Ip)−1,

where V Ip denotes the space of vectors fixed by the inertia group Ip. Note that V = V Ip for
all but finitely many p, and so the polynomial appearing in the Euler factor at p is essentially
the characteristic polynomial of Frobp. �

Thus we essentially have three types of L-series: Dedekind zeta functions, Dirichlet L-
series, and Artin L-series. There are a few important relationships among them.

Proposition 1.7. We have the following:

(a) Let ρ and σ be two representations of GK. Then L(s, ρ⊕ σ) = L(s, ρ)L(s, σ).
(b) Let L/K be a finite extension and let ρ be a representation of GL. Then L(s, ρ) =

L(s, IndGK
GL

(ρ)).
(c) Let L/K be a finite Galois extension with group G, and let ρ be the regular represen-

tation of G. Then L(s, ρ) = ζL(s).
(d) Let L/K be a finite Galois extension with group G. Then ζL(s) =

∏
ρ L(s, ρ)d(ρ) where

the product is over the irreducible complex representations ρ of G and d(ρ) denotes
the degree (dimension) of ρ.

Proof. (a) This is obvious since the characteristic polynomial on a direct sum is the product
of characteristic polynomials.

(b) Let p be a prime of K and let q1, . . . , qr be the primes of L above it. By Mackey’s the-
orem (which explains how induction and restriction interact), the restriction of the induced

representation to the decomposition group Gp decomposes as
⊕r

i=1 Ind
Gp

Gqi
(ρ|Gqi

). The result

now easily follows.
(c) Let σ be the trivial representation of GL. Then clearly L(s, σ) = ζL(s). As ρ =

IndGK
GL

(σ), the result follows from (b).
(d) This follows from (a) and (c) together with the result describing how the regular

representation decomposes into irreducibles. �

The following proposition links Artin and Dirichlet L-series via class field theory. The use
of class field theory here is very simple, but this is an extremely important bridge.

Proposition 1.8. Let K be a number field and let m be a modulus. Let χ : Cm → C× be
a Dirichlet character. Let ρ : GK → C× be the one-dimensional obtained by the following
composition:

GK −→ Gal(Km/K)
ϕ−→ Cm

χ−→ C×,

where Km is the ray class field and ϕ is the isomorphism induced by the global Artin map.
Then L(s, χ) = L(s, ρ), up to finitely many Euler factors.

Proof. We have ρ(Frobp) = χ(p) by definition (recall that ϕ(Frobp) = p), and so the Euler
factors in L(s, χ) and L(s, ρ) are the same at p prime to m. (Note that p could divide m but
χ could be unramified at p—e.g., take χ to be the trivial character—and at such p the Euler
factors differ.) �
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Corollary 1.9. Let H be a subgroup of Cm, and let L = KH
m be the corresponding abelian

extension. Then

ζL(s) =
∏

χ : Cm/H→C×

L(s, χ),

up to finitely many Euler factors, where the product on the right is over all Dirichlet char-
acters of modulus m that are trivial on H.

Proof. This follows by combining Propositions 1.7(d) and 1.8. �

2. Convergence of Dirichlet series

So far, we have been treating Dirichlet series as formal series. We now analyze their
convergence behavior. We begin by recalling the behavior of the Riemann zeta function:

Proposition 2.1. Let ζ(s) =
∑

n≥1
1
ns be the Riemann zeta function.

(a) The Dirichlet series defining ζ(s) converges absolutely for <(s) > 1. The function
s 7→ ζ(s) is holomorphic in this half-plane.

(b) The series (1−21−s)−1
∑

n≥1
(−1)n+1

ns converges for <(s) > 0 and coincides with ζ(s) for
<(s) > 1. Thus ζ(s) admits a meromorphic continuation to the half-plane <(s) > 0
that is holomorphic away from s = 1 and has a simple pole at s = 1 of residue 1.

(c) In fact, ζ(s) admits a meromorphic continuation to the entire complex plane that is
holomorphic except at s = 1.

Proof. (a) This is basic analysis.
(b) The identity

(1− 21−s)−1
∑
n≥1

(−1)n+1

ns
=

∑
n≥1

1

ns

is a simple formal manipulation. The fact that the series appearing in the left side defines a
holomorphic function for <(s) > 0 is basic analysis. Since (1− 21−s)−1 has a simple pole at

s = 1 with residue (log 2)−1 and
∑

n≥1
(−1)n+1

n
= log(2), the rest of the statement follows.

(c) This follows from a more advanced analysis of ζ(s). �

We now have the following general convergence result.

Proposition 2.2. Consider a Dirichelt series F (s) =
∑

n≥1
an
ns , and put S(x) =

∑
n<x an.

(a) Suppose |S(x)| = O(xb) for some b > 0. Then the series converges for <(s) > b and
F (s) is a holomorphic function in this half-plane.

(b) Suppose |S(x) − ax| = O(xb) for some 0 < b < 1 and some a ∈ C×. Then F (s)
extends to a meromorphic function in the half-plane <(s) > b that is holomorphic
away from s = 1 and has a simple pole at s = 1 with residue a.

Proof. (a) is follows from elementary analysis. (b) follows by applying (a) to F (s) − aζ(s)
and using the properties of ζ(s) that we already know. �
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3. Partial zeta functions

Let K be a number field. Fix a modulus m and a class c ∈ Cm. Define the partial zeta
function by

ζK(s, c) =
∑
a∈c

1

N(a)−s
,

where the sum is over integral ideals a that a prime to m and belong to the class c. This
Dirichlet series does not admit an Euler product in general. It is not really a main object
of interest, but it is useful in analyzing other series we care more about. To analyze its
behavior, put

S(x, c) = #{a ∈ c | N(a) < x},
that is, S(x, c) is the number of integral ideals in the class c with norm less than x.

Proposition 3.1. Let d = [K : Q]. Then

|S(x, c)− a(m)x| = O(x1−1/d)

where a(m) is the constant given by

a(m) =
2r−#m∞(2π)s reg(m)

wmN(mf )|∆K/Q|1/2

and

• r is the number of real places of K
• s is the number of complex places of K.
• reg(m) is the regulator for U ∩Km,1

• wm is the number of roots of unity in Km,1

• ∆K/Q is the discriminant of K/Q.

Proof. Let b be an integral ideal of class c−1. Then if a is an integral ideal in c we have
ab = (α) for some integral α ∈ Km,1. Thus we are essentially counting the number of
integral elements α ∈ Km,1, up to units, with norm at most N(b)x. This can be done using
techniques similar to those used in the proof of Dirichlet’s unit theorem. �

Proposition 3.2. The Dirichlet series defining ζK(s, c) converges for <(s) > 1. The func-
tion ζK(s, c) extends to a meromorphic function in the half-plane <(s) > 1 − 1/d that is
holomorphic away from s = 1 and has a simple pole at s = 1 with residue a(m).

Proof. This follows from the previous proposition and our general results on Dirichlet series.
�

Corollary 3.3 (Analytic class number formula). The Dirichlet series defining ζK(s) con-
verges for <(s) > 1. The function ζK(s) extends to a meromorphic function in the half-plane
<(s) > 1 − 1/d that is holomorphic away from s = 1 and has a simple pole at s = 1 with
residue

2r(2π)s reg(K)hK
w|∆K/Q|1/2

where hK is the class number of K and w is the number of roots of unity in K.

Proof. The function ζK(s) is the sum of the partial zeta functions ζK(s, c) over c ∈ Cm with
m the trivial modulus. The result now follows from the proposition. �
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Remark 3.4. The simple fact that ζK(s) has a pole at s = 1 is already interesting. Indeed,
let S be the set of split primes in K (i.e., those with residue field Fp) and let T be the set
of non-split primes. Then

ζK(s) =

[∏
p∈S

(1−N(p)−s)−1

][∏
p∈T

(1−N(p)−s)−1

]
.

Now, the second factor above converges at s = 1: indeed, if p ∈ T is above p then N(p) = pf

for some f > 1, and the claim follows from the fact that
∑

p p
−2 converges. Thus, since

ζK(s) has a pole at s = 1, it follows that S is infinite, that is, there are infinitely many split
primes. We will refine this result in the next section.

Applying this argument to the Galois closure of K, we see that there are infinitely many
primes p of Q that split completely in K. As an application, we see that if f(x) ∈ Q[x] is
irreducible then there are infinitely many primes p such that f(x) splits into linear factors
modulo p. �

Corollary 3.5. Let χ be a non-trivial Dirichlet character of K with modulus m. Then the
Dirichlet series defining L(s, χ) converges for <(s) > 1. The function L(s, χ) extends to a
holomorphic function in the half-plane <(s) > 1− 1/d; there is no pole at s = 1.

Proof. We have L(s, χ) =
∑

c∈Cm
χ(c)ζK(s, c). The proposition thus shows that the series

defining L(s, χ) converges for <(s) > 1 and that L(s, χ) extends to a meromorphic function in
the half-plane <(s) > 1 that it holomorphic away from s = 1 and has (at worst) a simple pole
at s = 1 with residue a(m)

∑
c χ(c). However, this sum vanishes since χ is non-trivial. �

We can now prove an extremely important and deep theorem:

Theorem 3.6. Let χ be a non-trivial Dirichlet character of K. Then L(1, χ) 6= 0.

Proof. Let m be a modulus for K, and let Km be the ray class field. By Corollary 1.9, we
have

ζKm(s) =
∏
χ

L(s, χ)

where the product is over all Dirichlet characters of modulus m. Let χ0 be the trivial Dirichlet
character. Then L(s, χ) = ζK(s) and ζKm(s) have simple poles at s = 1 (Corollary 3.3). For
χ 6= χ0, the function L(s, χ) is holomorphic at s = 1 (Corollary 3.5). Thus, comparing the
order of pole on each side of the equation, we see that L(1, χ) 6= 0 for all non-trivial χ. �

Remark 3.7. The proof of the theorem makes crucial use of class field theory: without it,
we would not be able to connect Artin and Dirichlet L-functions, and we would have no
information about the behavior of

∏
χ L(s, χ) at s = 1. �

4. Densities

Let T be a set of primes of a number field K. There are a few ways to define a notion of
density for T :

• The natural density of T is

lim
x→∞

#{p ∈ T | N(p) ≤ x}
#{p | N(p) ≤ x}

.
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• Let ζK,T (s) =
∏

p∈T (1−N(p)−s)−1. We say that T has polar density n/m if ζK,T (s)m

is meromorphic at s = 1 with a pole of order n.
• The Dirichlet density of T is

(−1) · lim
s→1+

∑
p∈T N(p)−s

log(s− 1)
.

The motivation for this definition comes from the observation that log ζK(s) behaves
like − log(s− 1) as s→ 1, and

log ζK(s) = log

[∏
p

(1−N(p)−s)−1

]
= −

∑
p

log(1−N(p)−s)

=
∑
p

∑
n≥1

N(p)−ns

n

∼
∑
p

N(p)−s

where the final line is an asymptotic statement near s = 1, which comes from the fact
that

∑
p N(p)−n converges for n > 1.

None of these densities need to exist. They are related as follows:

Proposition 4.1. If the polar density of T exists then so does the Dirichlet density, and
they are equal. Similar, if the natural density of T exists then so does the Dirichlet density,
and they are equal.

Proof. Left as an exercise. �

Theorem 4.2. Let L/K be an extension of number fields, and let M be the Galois closure
of L over K. Let T be the set of primes of K that split completely in L. Then T has polar
density 1/[M : K].

Proof. First note that a prime p of K splits completely in L if and only if it splits (completley)
in M . So we can just concentrate on M . Let S be the set of primes of K that do not split
completely in K. We have

ζM(s) =

 ∏
q|p∈T

(1−N(q)−s)−1

 ·
 ∏

q|p∈S

(1−N(q)−s)−1

 .
In the first product, we have N(q) = N(p) since p splits. Moreover, over each p there are
exact [M : K] q’s. Thus the first factor is exactly ζK,T (s)[M :K]. In the second factor, if p lies
over the rational prime p then N(q) = pf with f > 1 (away from the finitely many primes
that ramify). Thus this product converges as s→ 1. We thus find

ζM(s) = ζK,T (s)[M :K] · (a function that is holomorphic and non-zero at s = 1).

Since ζM(s) has a pole of order 1 at s = 1, the result follows. �

Corollary 4.3. Let m be a modulus of K and let T be the set of primes of T in the trivial
class of the ray class group Cm. Then T has polar density 1/#Cm.
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Proof. Let Km be the ray class field, so that Gal(Km/K) = Cm via the global Artin map. A
prime [p] ∈ Cm corresponds to Frobp ∈ Gal(Km/K), we see that p splits completely in Km if
and only if [p] = 0 in Cm. Thus the result follows from the theorem. �

Corollary 4.4. Given any integer m > 1, there are infinitely many prime numbers p con-
gruent to 1 modulo m.

5. Dirichlet’s theorem and consequences

We now improve the above corollaries by considering other congruence classes.

Theorem 5.1. Let m be a modulus of K, let H be a subgroup of Cm, and let k ∈ Cm. Let T
be the set of primes p of K such that [p] ∈ k +H. Then T has Dirichlet density 1/[Cm : H].

Proof. For a Dirichlet character χ, we have

logL(s, χ) ∼
∑
p

χ(p)

N(p)−s
.

If χ is trivial, this is asymptotic to − log(s − 1) as s → 1+. If χ is non-trivial, then this is
bounded as s→ 1+: this follows from the fact that L(s, χ) is holomorphic and non-vanishing
at s = 1. Now, by Fourier analysis on the group Cm/H, we have

1

[Cm : H]

∑
χ : Cm/H→C×

χ−1(k)χ(p) =

{
1 if [p] ∈ k +H

0 otherwise

and so
1

[Cm : H]

∑
χ : Cm/H→C×

χ−1(k)L(s, χ) ∼
∑
p∈T

N(p)−s.

The result thus follows. �

Corollary 5.2. Let a and m be coprime positive integers. Then the set of primes p congruent
to a modulo m has Dirichlet density 1/ϕ(m). In particular, there are infinitely many such
primes.

Corollary 5.3. Let L/K be a finite abelian extension. Let g ∈ Gal(L/K) be a given element,
and let T be the set of primes p of K such that Frobp = g (and p is unramified in L). Then
T has Dirichlet density 1/[L : K]. In particular, every element of Gal(L/K) is a Frobenius
element, and in fact, in infinitely many ways.

Proof. This follows by combining the theorem and class field theory. Specifically, we have L =
KH

m for some modulus m and subgroup H ⊂ Cm, and the Artin map gives an isomorphism
Gal(L/K) = Cm/H. Thus g ∈ Gal(L/K) corresponds to some k ∈ Cm/H. We thus see that
Frobp = g if and only if [p] ∈ k+H, and so we are exactly in the situation of the theorem. �

6. Chebotarev’s theorem

Chebotarev’s theorem improves the previous corollary to the setting of non-abelian exten-
sions:

Theorem 6.1. Let L/K be a finite Galois extension of number fields with group G. Let
C ⊂ G be a conjugacy class and let T be the set of primes p of K such that Frobp ∈ C. The
T has Dirichlet density #C/#G.
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Proof. Pick σ ∈ C and let M = Lσ be its fixed field. Let f = [L : M ] be the order of
σ, let c = #C, and let d = #G. Let S be the set of primes q of M such that Frobq = σ
and f(q | p) = 1, where p is the contraction of q to K. Let R be the set of primes P of
L such that FrobP = σ. We claim that (a) contraction induces a bijection R → S; and
(b) contraction induces a map R → T that is exactly d/cf to 1. Since S has density 1/f
(abelian version of Chebotarev, proved in previous section), it will follow that T has density
c/d, as desired.

(a) Let P ∈ R, let q be its contraction to M , and let p be its contraction to K. By
definition, Frobq = FrobP, and is thus σ. Thus f(P|q) = f = [L : M ], and so P is the
unique prime above q; thus the contraction map is injective. Since f(P|p) = f as well,
it follows that f(q|p) = 1, and so q ∈ S. Thus contraction gives a well-defined injection
R → S. Finally, if q ∈ S and P is any prime over q then FrobP = Frobq by definition, and
thus belongs to R.

(b) Let p ∈ T and let P0 ∈ R be a prime of L over it with FrobP0 = σ. For τ ∈ G we have
FrobτP0 = τστ−1, and so τP0 ∈ R if and only if τ ∈ Z(σ) (the centralizer of σ). Moreover,
τP0 = P0 if and only if τ ∈ GP0 = 〈σ〉, the decomposition group at P0. We thus see that
the primes P over p with FrobP = σ are in bijection with the set Z(σ)/〈σ〉. Now, 〈σ〉 has
order f , while G/Z(σ) ∼= C, and so Z(σ) has order d/c. The result follows. �

Corollary 6.2. Let L/K and G be as above. Given any σ ∈ G there exist infinitely many
primes P of L such that FrobP = σ.

Proof. Let T be the set of primes p of K such that the conjugacy class Frobp is equal to the
conjugacy class of σ. This set is infinite by the theorem. Let p ∈ T be given, and let P be a
prime of L above p. Then Frobp is by definition the conjugacy class of FrobP, and so FrobP

is conjugate to σ, say it’s τστ−1. Letting P′ = τP, we have FrobP′ = σ. Thus for every
prime in T there is a prime above it in L whose Frobenius element is σ. This completes the
proof. �

Corollary 6.3. Let K be a number field, let S be a finite set of places of K, and let GK,S be
the Galois group of the maximal extension of K unramified away from S. Then the Frobenius
elements of GK,S are dense.

Proof. Density exactly means that in any finite quotient of GK,S, every element is represented
by a Frobenius element, and this is exactly the previous corollary. �

7. An application of Chebotarev’s theorem

Let X be a smooth projective variety over a field k. Recall that if ` is a prime different
from the characteristic of k then one has the étale cohomology group Hi

et(Xk,Q`), which is
a Q` vector space. The general theory of étale cohomology establishes the following:

• Each Hi
et(Xk,Q`) is finite dimensional, and only finitely many are non-zero.

• The absolute Galois group Gk of k acts continuously on Hi
et(Xk,Q`).

• If k is a finite field then the trace of Frobenius on H∗et(Xk,Q`) is #X(k). (This is the
Grothendieck–Lefschetz trace formula.)
• If k = C then Hi

et(Xk,Q`) is naturally identified with the singular cohomology of
X(k) with coefficients in Q`.
• Suppose X is a smooth projective scheme over a DVR R, and ` is different from

the residue character of R. Then the étale cohomologies of the special and generic
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fibers are canonically identified; moreover, this identification is compatible with Galois
actions (the Galois action on the generic fiber being unramified).

Combining this theory with the Cheobtarev density theorem can yield some very interesting
results. For example:

Theorem 7.1. Let X and Y be smooth projective varieties over Q. Suppose that #X(Fp) =
#Y (Fp) for a set of primes p of Dirichlet density 1. Then the topological spaces X(C) and
Y (C) have the same Euler characteristic.

Proof. Pick a prime number `. Let S be a finite set of primes, including `, such that X
and Y extend to smooth projective varieties over Z[1/S]. Then Hi(XQ,Q`) is a continuous
representation of GQ,S. Let V be the alternating sum of these representations, considered
as a virtual representation of GQ,S. Let W be the analogous thing for Y . Our hypothesis,
combined with Grothendieck–Lefschetz, shows that tr(Frobp|V ) = tr(Frobp|W ) for a set of
primes p of Dirichlet density 1. By Chebotarev, the Frobenius elements are dense in GK,S.
We thus see that tr(σ|V ) = tr(σ|W ) for all σ ∈ GK,S. Taking σ = 1, we obtain the stated
equality of Euler characteristics. �
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